Mastering
Machine Gode on your

Commodore 64

Mark Greenshields

MASTERING MACHINE
CODE ON YOUR
COMMODORE 64

Mark Greenshields

INTERFACE 111+
PUBLICATIONS T

[TTT]

This book is dedicated to my grandmother,
NANCY GREENSHIELDS

First published in the UK by:

Interface Publications,

9-11 Kensington High Street,

London W8 5NP.

Copyright © Mark Greenshields, 1984

First printing May 1984

ISBN 0 907563 69 4

The programs in this book have been included for their instructional value. They
have been tested with care, but are not guaranteed for any particular purpose.
While every care has been taken, the publishers cannot be held responsible for any
running mistakes which may occur.

ALL RIGHTS RESERVED

No use whatsoever may be made of the contents of this volume—programs and/or
text—except for private study by the purchaser of this volume, without the prior
written permission of the copyright holder.

Reproduction in any form or for any purpose is forbidden.

Books published by Interface Publications are distributed in the U.K. by WHS
Distributors, St. John's House, East Street, Leicester LE1 6NE (0533 551196) and
in Australia and New Zealand by PITMAN PUBLISHING. Any queries regarding the

contents of this book should be directed by mail to Interface Publications at the
address above.

Cover lllustrator David John Rowe.

Printed and bound by Heffers Printers Ltd, Cambridge

iv

CONTENTS

SECTION 1

A complete listing of a 6510 assembler/dissassembler/
monitor.

A tutorial of every command in 6510 Assembly language and
every programming mode of the 6510 chip, complete with
examples throughout.

SECTION 2

This section of the book uses the knowledge acquired in
Section 1 (and the assembler from the same) to show how
scrolling (both pixel and character), Raster scan graphics
and high resolution graphics may be produced via Assembly
language.

It also shows how sound can be achieved properly in
machine code.

You will learn how to use interrupts for doing things
independently of the computer, eg. playing a tune through-
out the running of a program without slowing it down, or while
typing on the computer. There is a section on how to
programme the function keys and how to simulate the ZX
Spectrum keyboard (i.e. one key entry).

You will also be shown how to add commands to BASIC
the easy way.

SECTION 3

All ROM routines are explained here, with instructions on
their use.

APPENDICES
Memory map.

Colour, screen, ASCII charts, etc.
Kernal jump table listings.

6510 commands listed, along with their Hex and decimal
equivalents.

vi

SECTION 2 CONTENTS

PROGRAMS

SCROLLING

1:

2.

3:

Character scroll up
Character scroll down

Character scroll left

: Character scroll right

Pixel scrolling up
Pixel scrolling down
Pixel scrolling left

Pixel scrolling right

SPRITES

9:
10:

Sprite player movement routine (Sprite 0)

Mcode sprite/character detection routine

MusSIC

11:
12:
13:

14:

Playing a scale (one channel)
Playing a tune (one channel)
Playing a scale (three channel)
Playing a tune (three channel)

vii

Page

46
47
48
50
52
53
54
55

58
60

65
66
68
69

INTERRUPTS
15: Routine to increment the border colour

16: Routine to program the function keys

17: Routine to simulate the Spectrum keyboard (one
key entry)

18: Routine to play a tune

19: Routine to turn the keyboard into a musical
organ

20: Routine to allow listings to be printed to a
specified width.

RASTERS

21: Routine to colour the screen with two different
border and screen colours

22: Routine to put a text and a high resolution screen
on the screen at the same time

23: Routine to put a text, Hi-res and text screen on
the screen at once—with a demo program to
demonstrate this raster

24: Routine to do the impossible . . . put three
different screen and border colours, normal text,
multicolour text, extended colour mode text and 24
sprites on the screen at the same time without any
flicker

HIGH RESOLUTION
25: GRAPH . . . turn on high resolution screen

viii

Page

73

74

76

80

82

83

67

88

89

92

96

Page

26: NRM ... turn off high resolution screen and turn

on text 95
27: FILL . . . fill areas with a byte 95
28: CLG . . . clear high resolution screen 95
29: COLOUR . . . set colours of screen, border,

mult1, 2 and text 98

30: PLOT . . . plot a point on the high resolution
screen 102

31: CHAR . . . put an eight by eight character onto

the high resolution screen 95
32: UNPLOT . . . remove a point from the high
resolution screen 102

33: INVERT ... invert an area on the high resolution
screen or memory 95

ADDING COMMANDS TO BASIC
34: BASIC patch . . . to insert the commands into BASIC

35: GRAPH 128
36: NRM 128
37: CLG 128
38: FILL 128
39: CHAR 128
40: COLOUR 128

41:
42:
43:
44
45:
46:
47:
48:
49:

50:

PLOT
UNPLOT
APND
PROG
OFF
OoLD
MSAVE
MLOAD
MVERIFY
INVERT

Page
128

128
129
129
129
129
129
129
129

129

ACKNOWLEDGEMENTS

With thanks to my parents Jack and Sheila Greenshields, my
sister Louise, my grandparents Roy and Gracie Reid,
Douglas Grant, Ronnie Brown, Neil Kolban, Lesley Currie,
Neil Dunlop, Mark Kelly, Wiliam Drummond, Graeme
Douglas, Lynn Johnston, John Lovie, Jonathan Coggans,
Lois Todd, Lesley Darling, Alan Fletcher, and all my relations
for their encouragement.

Also, special thanks to COMMSCOT.

| would like to thank Jim Butterfield for his public domain
program SUPERMON.

Finally, | would like to thank Liz North for all the encourage-
ment that she has given me with the preparation of this book.

Mark Greenshields,
March 1984.

Xi

PREFACE

This book was not written just as a complete Assembly
language tutorial on the Commodore 64. When | sat down to
write this book | decided that there was no point in writing a
book to teach Assembly language without including any
practical routines that show how to make use of the
language just learnt. Consequently, | wrote the second
section to demonstrate how to use Assembly language to do
things that everybody wants to do but cannot find any
literature on how to do them. For example, scrolling,
interrupts, Raster scan graphics and adding commands to
BASIC.

The book is of use to both the beginner in Assembly
language and advanced programmers who want to find out
how to do more with their computer.

| hope you like the book and that it achieves what | had
hoped when | wrote it.

Mark Greenshields
March 1984

xiii

INTRODUCTION

All the programs in this book were LISTed on a BMC
Centronics printer. This printer cannot reproduce the stan-
dard Commodore symbols for colour controls, etc, so here is
a list of the symbols and how they will appear in the listings.

{CLR} IS CLEAR SCREEN
{HOME > IS HOME CURSOR
{INST DEL} IS INSERT
{BLK?} IS BLACK

{WHT? IS WHITE

{RED} IS RED

{CYN} IS CYAN

{PUR} IS PURPLE
{GRN3} IS GREEN

{BLU} IS BLUE

{YEL} IS YELLOW

{RVS ON3 IS RVS ON
{RVS OFF} IS RVS OFF

{OR} IS ORANGE
{BRN} IS BROWN
{LT RED} IS LIGHT RED
{GY 13 IS GREY 1
{GY 23 IS GREY 2

{LT GRN} IS LIGHT GREEN
{LT BLU} IS LIGHT BLUE
{GY 33 IS GREY 3

{CUR DN IS CRSR DOWN
{CUR UP} IS CRSR UP
{CUR RT? IS CRSR RIGHT
{CUR L} IS CRSR LEFT

XV

SECTION ONE
SUPERMON

All the programs in this book are listed in mnemonic format
and therefore need an assembler to enter them. This need
not be a powerful macro-assembler, just a simple non-
symbolic assembler will do.

Following is a listing of SUPERMON which is a public
domain assembler/disassembler/monitor. Thanks to Jim
Butterfield for this program. The BASIC program which
precedes the data is used to enter this assembler. You will
need this assembler or a similar one to enter all the programs
in this book.

SUPERMON is listed as a Hex dump which is a listing of
hexadecimal numbers. Using the BASIC loader program
provided, you should find it easy to enter.

To enter SUPERMON, type in the following commands in
direct mode (where ‘<return>’ means press the Return
key). Then type in the BASIC loader and SAVE it.

POKE 43,1 <return>
POKE 44,32 <return>
POKE 8192,0 <return>
NEW <return>

Now LOAD and RUN the loader and you should see the
following prompt:

.0800?

You should note that the first number corresponds with the
first number in the SUPERMON listing. This is an indication

1

that you should type in the data. To help you, the first three
lines that you should type in are shown below. Type the
program in without spaces.

. 9800 ? OP1AQ86409992293
.9808 ? 121D1D1D1IDS3ISS5M

9819 ? 45522036342D4D4F

Don’t worry if you don’t understand what you are typing in.
Just type exactly what is printed and it will work. All this initial
hard work will be worth it in the end as writing machine code
using an assembler is far easier than doing it by hand.

Once you have finished typing in the program you will be
prompted with the message:

SAVE TO TAPE OR DISK?

Press ‘T’ if you are using cassette and have a blank
cassette in the recorder. Press ‘D’ if you are using disk, and
make sure that your disk is formatted with at least 11 blocks
free.

If you pressed ‘T’ then you will be prompted with ‘PRESS
PLAY ON TAPE’, and if you pressed ‘D’ the drive will start
whirring. The program is now being SAVED to tape or disk. If
an error occurs, then typing RUN100 will allow you to save
the program again.

It can be loaded in the normal way, ie. LOAD“SUPER-
MON”,1 or LOAD“SUPERMON"8. Then you RUN the
program and some writing will appear on the screenanda .’
prompt will appear. To make spare copies of SUPERMON
just load the program and save it as if it was BASIC.

SUPERMON is given here as a relocatable loader in that it
can be located anywhere in RAM. To adjust where it is to be

2

located in memory, find the starting address and add 2065 to
it. Now use the following formula to calculate the two
numbers necessary.

LO=INT(number/256)
Hl=((number/256)—L0)*256

Now POKE 55 with the value of LO and POKE 56 with the
value of Hl and RUN SUPERMON.

To re-start SUPERMON you should type ‘SYS starting
address+1'. (The normal value to start SUPERMON is SYS
38893.)

Here are the instructions for using SUPERMON. SUPER-
MON commands are all one letter commands usually
followed by parameters.

The first command that we will look atis ‘A’. This stands for
assemble and is the most frequently used command in any
assembler. It will be used for entering almost all of the
programs in this book.

The syntax for ‘A’ is as follows:
A (start address in Hex) (mnemonic) (operand)
eg. A 1000 LDA #$10
The address is the starting address in Hex. The mnemonic

is the Assembly language command, and the operand is the
number associated with the command if there is one.

After you press the Return key from the first line, if it is
correct syntax the computer will prompt you with an ‘A’ and
the next address. Therefore, you need only enter the starting
address and the assembler does the rest. To leave the
assembler, press the Return key.

Here is a simple example program. For now it is sufficient
to see how the assembler works.

3

A 193¢0 LDA HEGH
A 1982 STA $DE29
.A 16805 STA D@21

.A 1088 RTS

The above program makes the screen and the border turn
black. If you make an error, the computer will print a question
mark. If this happens use the normal screen editor and
change the mistake and delete the question mark. Press the
Return key and if the next address is prompted, the line is
now correct.

Now that you have typed this in you may want to SAVE the
program. The command to do this is ‘S’. The syntax is as
follows:

S“name”,device,start,end+1

The total length of the name must not exceed 16
characters or a question mark will be printed.

The ‘device’ is the device that the computer is to SAVE to
01 is tape and 08 is disk. The 0s before the number are
essential for correct syntax.

The ‘start’ is the starting address in Hex of the SAVE.

The ‘end+ 1’ is the end address plus one that the computer
is to save to. The reason that you must save up to the
‘end+1’ is that the ROM routine used to SAVE to memory
saves up to, but not including, the end address specified.
Note that all the parameters must be separated by a comma.

The next command is the command to execute a program
in machine code from the assembler. It is ‘G’ and has the
syntax:

G address to start at.

If you want to return control to the monitor when the
program has been RUN, then make the last command of the
program a BRK command instead of an RTS.

The Hex command allows you to see a program in
memory.
Itis ‘D’ and has the syntax:

D start
eg. D 1000

This command clears the screen and prints a page of
commands. To see more press ‘D’ and the Return key.

The next command is the same as ‘D’, except that it prints
a continuous listing without clearing the screen. The
command is ‘P’ and it has the syntax:

P start end

It is mainly used when you want a printer listing. To print a
disassembly to the printer, type the following in BASIC:

OPEN4,4 : CMD4 : SYS38893

(The SYS assumes that the monitor is at its default position
in memory. If it isn’'t use your address.)

The printer will print something and then you can type
what you want. You can use ‘P’ or ‘M’ (coming up next). To
disable the printer when it has finished, type ‘X' <return>
(explained later) and CLOSE4. <return>.

Often you will want a listing of memory in Hex (like
SUPERMON). This is done with the ‘M’ command which has
the syntax:

M start end
Where ‘start’ and ‘end’ are in Hex. This command may
also be used to the printer. (You may change memory using

this command and then typing over values and pressing the
Return key at the end of each line.)

5

The monitor has a command to fill areas of memory with a
number. It is ‘F’ and it has the syntax:

F start end byte

Where ‘start’ and ‘end’ are addresses in Hex, and ‘byte’ is
a byte in Hex.

SUPERMON has the facility to move parts of memory to
another location. The command is ‘T" which stands for
Transfer memory. It has the syntax:

T oldstart oldend newstart

Where ‘oldstart’, ‘oldend’ and ‘newstart’ are addresses in
Hex.

If you want to find the contents of the registers at any time,
type the command ‘R’ on its own.

If you are working in the assembler and want to load a
program into memory where it came from, there are two
ways to do this: either return to BASIC and type LOAD
“name”, device,1 (eg. to load the file ‘hello’ from tape type
LOAD"HELLO”,1,1); or use the command ‘L’ in the monitor
using the syntax . .. L“name”, device (where ‘device’ is 01 for
tape and 08 for disk).

To exit the assembler and return to BASIC, type ‘X
<return> or press Run/Stop and Restore.

SUMMARY OF
SUPERMON
COMMANDS

COMMAND MEANING SYNTAX

A Assemble mnemonics into memory A 1000 LDA #$10
D Disassemble memory D 1000

M Display Hex from memory M 1000 2000

S Save memory to device S“name”,08,1000,2000
L Load memory from device L“name”,01

P Print disassembly of mernory P 1000 2000

F Fill memory F 3000 4000 FF

T Transfer memory to memory T 1000 2000 C000
X Exit to BASIC X

R Register display R

G Go to address G FFD2

1 HE$="0123456789ABCDEF"

19 PRINT"{CLR}"

20 FORA=2049T04587STEPS8

39 GOSUB1999:REM CONVERT ADDRESS TO HEX
IN H$

4@ PRINT".";H%; : INPUT As:REM 8 HEX NUMBE
RS

5@ FORX=1TO16STEP2

6@ BH=MIDS (A%, X,2)

78 GOSUB2@0©0@:REM CONVERT HEX NO. TO DECI
MAL

80 POKEA+X/2,HEX

99 NEXT:NEXT

1298 INPUT"SAVE TO TAPE OR DISK";TD%

119 IFTD$="D"ORTD$="T"THEN129

115 GOTO199

120 IFTD$="D"THENDEV=8

130 IFTD$="T"THENDEV=1

149 FORA=9T034:READB:POKEA+49152,BINEXT:
POKE49153, DEV: INPUT"ARE YOU SURE";S%

7

15¢ IFS$="N"THEN1@@

160 SYS49152: REM SAVE ASSEMBLER

17@ PRINT"MACHINE CODE SAVED"

1828 PRINT"IT MAY BE LOADED FROM TAPE OR
DISK IN THE NORMAL WAY LIKE A BASIC"®

19¢ PRINT"PROGRAM AND THEN RUN"

299 END

1988 N1=INT(A/4096) :N6=(A/4896-N1)¥16:N2
=INT (N&) :N3=INT((N6-N2) %¥16)

1918 NA=(((N6-N2)%16)-N3) %16

1939 H$=MIDH (HE$,N1+1,1) +MID® (HES, N2+1,1
) +MID® (HE$,N3+1, 1) +MID$ (HE$,N4+1,1)

12948 RETURN

2000 FORV=1T016:B=V-1:IFLEFT$(B%, 1)=MID$
(HE$, V, 1) THEN2920

2010 NEXT

2020 HEX=B¥16

2@3@ FORV=1TO16:B=V-1:IFRIGHTS (B$,1)=MID
% (HE$,V, 1) THEN2859

2948 NEXT

2952 HEX=HEX+B

2068 PRINT HEX

2070 RETURN

19000 DATA 162,1,1608,1,32,186,255, \62,26
,160,192,169,8,32, 189,255, 162,236, 160
19218 DATA 17,169,251,32,216,255,96,83,8
5,80,69,82,77,79,78,0

.:19800 00 1A 98 64 P8 99 22 93

.:19808 12 1D 1D 1D 1D 53 55 5@

.:@81@¢ 45 52 2@ 36 34 2D 4D 4F

.:19818 4E 99 31 98 &6E 99 99 22

.19820 11 20 20 20 20 20 20 20

.:19828 20 20 20 20 20 20 20 20

.:19830 90 4B @98 78 @0 99 22 11

.:19838 20 2E 2E 4A 49 4D 20 42

.:1@84@ 55 54 54 45 52 46 49 45

.:19848 4C 44 90 66 98 82 99 9E

.:1985@ 28 C2 28 34 33 29 AA 32

.:19858 35 36 AC C2 28 34 34 29

.:19860 AA 31 32 37 29 00 00 99

8

10868
19870
19878
. 9880
. 9888
19899
19898
1 98AQ
: 98A8
1 98BY
:98B8
- 98CH

1@8C8
: 98D@
:98D8
:98EQ
1 98ES8
:O8FQg
1 O8F8
9909
1 9998
19910
19918

. s 0920

19928
19939
19938
19949
@948
19958
19958
10969
19968
19979
19978
199840
19988
10999
10998
1 99A0

AA
AA
AA
AS
AS
AQ
Cé
DG
Fg
Cé
24
37
21
Cé
k4]
85
29
29
8D
o9
8D
8D
8A
o9
a2
2A
34
a2
2D
EA
2D
EA
(o
A2
8A
BD
EC
3A
A9
5S4

AA
AA
AA
2D
37
29
22
a2
21
23
AA
D@

37
38
B6
33
aF
8D

-
7

17]
3D
3B
E?
[1%]
29
29
Eé
Eé
D@
EA
A9
EA
2E
oE
2A
Cé
4C
a2
28
FD

AA
AA
AA
85
85
AS
B1
Cé
85
Cé
AS
@2

8A
cé
c9
AS
aF
16
23
D8
22
22
22
8D
57
57
ct
26
Fs
A9
2E
EA
Fo
DD
AA
FF
ED
AS
85
00

AA
AA
AA
22
24
22
22
23
26
22
26
cé
48
37
aF
38
4F
o3
A%
68
68
68
8D
39
FD
FA
DO
60
68
20
20
EA
F9
B7
BD
00
FA
c2
1D
B1

AA
AA
AA
AS
AS
D@
D@
cé
AS
B1
65
38
AS
68
D@
85
aF
AD
8@
8D
8D
AA
3A
o2
20
20
26
20
68
20
57
20
o
FF
c7
ag
00
8D
AG
c1

AA
AA
AA
2E
38
22
3C
22
22
22
25
ce
37
91
ED
34
AD
E7
29
3E
3C
68
22
BA
A2
A%
E6
CF
EA
85
FA
3E
29
29
FF
69
AS
39
20
20

AA
AA
AA
85
85
Cé
AS
B1
DO
18
as
37
Do
37
AS
6C
Eé
FF
90
92
02
A8
98
8E
42
52
c2
FF
EA
26
20
F8
Fo
Do
20
CA
c1
22
20
a8

AA
AA
AA
23
25
23
22
22
22
65
AS
68
o2
18
37
37
FF
20
FF
68
68
38
E9
3F
A9
DO
DO
co
EA
A2
EA
20
FS
ac
a8
10
8D
60
20
FA

1 O9A8
:99BO
1 99B8
1 99Ca
1 99Cs8
19900
19908
1 O9EQ
: O9ES8
t99F @2
t99F8
1 OARY
1 OALB8
t9A10
tPAL8
tOA20
tOA28
tBA39
tBA38
1 9A40Q
:2A48
1 BASY
: OAS8
HY - 1aY-1"]
:BAG8
L OA73
t9A78
1 9ABY
: 9AB8
1 9AP9
: OA98
t9AAD

. : BAAB

:9ABO
: JAB8
tOACEO
tBACS8
:9ADE
1 9ADS8
1 9AEQ

29
Fi
AZ
23
29
A9
48
ac
EA
20
AG
92
20
2@
F8
20
20
FA
El
AS
o0
20
Fo
FA
20
FA
20
D@
FF
D1
8@
AE
48
48
3E
AE
o1
84
A9
20

20
69
20
ac
cé
22
20
57
A2
D2
3B
20
a8
8D
00
&9
79
20
FF
c3
2E
a1
E®
20
B7
20
3E
F8
co
20
F8
3F
AD
AD
92
3F
84
99
02
Fo

33
20
o9
ED
1D
85
57
FA
29
FF
20
48
FA
F8
20
FA
FA
EA
Fo
cs
AD
FA
ac
5@
F8
50
F8
ac
@D
79
09
o2
3A
3C
ag
02
BA
84
85
F9

F8
88
81
FA
(-1
c2
FD
o9
29
ES8
c2
FA
29
a9
79
a9
29
EA
3C
(o3}
3A
<]
ED
23
[<17]
EB
29
47
F@
FA
EA
A
22
@2
EA
A
84
?3
BC
co

29
FA
Cc1
29
A9
A9
20
EA
BD
EQ
F8
o9
20
Fo
FA
29
k4)
EA
A6
AS
20
29
FA
29
D@
A9
28
F8
ac
29
EA
78
48
AE
EA
6C
B9
A9
29
2D

10

Cé
29
(o3}
20
3B
a5
68
EA
EA
16
29
AD
B”
SC
o9
3E
28
EA
26
c4
c2
8B
o0
80
a7z
28
Al
o9
ce
99
EA
AD
AD
3D
EA
a2
88
49
CF
Fea

1D
99
c1
33
8s
69
A2
EA
FF
Do
AD
3A
F8
20
99
F8
20
EA
D@
ES
F8
F8
29
F8
20
85
F8
20
20
23
EA
39
3B
22
EA
AQ
84
85
FF
38

D@
9B
F&
F8
(08 §
98
2E
EA
29
FS
39
a2
29
3E
33
a9
69
29
38
c2
29
29

-
7

o9
7’9
1D
29
CF
Do
29
EA
22
a2
AC
EA
AQ
B7
BB
co
c?

t9AES
:9AFO
: 9AF8
: OBOY
1 9BO8

t9B1@
1 9B18

1 9B29
t9B28
:9B3@
1 9B38

1 9B4g
1 9B48
1 9BSY
:9BS8
:9B6&Y
1 @B68
1 9B79
1 9B78
1 9B8Y
: OB88
:9B99
1 9B98
1 9BAY
: OBASB
: 9BBY
:9BBS8
:9BCYO
t9BCS8
:9BDY
:9BDS8
1 OBE@
:OBES
t9BFQ
: 9BF8
1 9Co9
1 9Co8
t9C19
H 1o ¥
t9C20

22
Fa
Eé
ED
Fa
FA

oD
20
EA
Fo
ac
co
20
2c
ct
69
Do
F2
c2
aA
AA
a8
FF
o6
c2
F3
85
85
20
20
18
2A
20
co
69
(o
26
F8
20

Do
19
B?
FA
16

29
ES

[-17]
6
EA
o9
47
2C
69
Do
85
FA
98
Fo
20
4A
68
8A
a9
69
95
69
c2
Ci
3E
3E
[-17]
9A
AF
3A
A2
D@
D6
2]
29

14
co
c8
1217]
co

29
85

&C
Fo
EA
AS
F8
Do
FA
AD
AE
29
EA
29
48
4A
29
29
39
A2
co
29
29
69
F8
F8
20
85
FA
g
22
28
c2
c9o
8D

29
2D
co
29
2C

aF
BA

39
2]
A%
o9
7]
BA
29
29
AS
20
EA
4C
FA
4A
aF
D2
co
22
68
88
88
A%
(7]]
o9
AF
2A
29
22
2C
B4
D6
29
29

CF
Fo
19
CF
Do

Fo
29

o3
D@
o9
29
20
20
20
79
cz
CF
EA
47
09
20
20
FF
3A
BS
95
FA
FA
o0
c9
co
FA
20
o5
69
A2
cz

C1

Fo
29

11

FF
29
Do
FF
DC

E?
CF

6C
D4
00
10
96
79
CF
FA
85
FF
EA
F8
AS
69
69
68
90
co
c2
20
20
00
20
20
20
3E
2A
28
20
)
69
Fo
21

c9
?1
EC
c9o
20

co
FF

32
EA
20
DO
F9
FA
FF
20
AF
co
EA
20
c1
FA
FA
ac
92
a8
cA
99
90
85
Y
DY
oA
F8
38
29
20
22
20
60
20

22
BB
4C
2D
88

a3
ce

23
EA
EF
oL
29
29
co
AS
20
oD
20
AS
48
29
o9
D2
69
BS
D@
22
a2
2A
a9
2E
9A
1)
(-1
oF
B4
Eé
3E
A9
cC

1 9C28
1 9C39
tBC38
t9C4a9
1 9C48
1 8CSe
1 9CS8
t9C&9a

.1 2C68

1 9C74a
1 9C?8
1 9C89
1 @C8s8
1 9C99
1 @Ccos8
tBCAQ
:BCAS8
1 9CBOG
1 9CB8
:9CCo
1 @CcCs8
:9Cho
1 9CDh8
t9CE@
:9CES8
tOCF@
1 OCF8
Hy 3] %]]
1 9De8
:9D1@
19018
1 9D29
1 9D28
1 8D39
1 9D38
1 @D4g
- 9D4s8
:9D5SY
1 9D58
1 9D&0

FA
FA
29
3F
A%
29
69
A2
co
AS
9E
4C
38
A8
20
24
29
4]
FB
29
D@
1E
85
Dg
FB
29
29
29
29
g
28
81
4C
29
29
29
3E
3E
CF
D@

o9
o9
20
22
3F
20
E6
@2
68
c3
a8
33
ES
25
69
- Jo
2F
15
o2
o5
EB
65
ca
3D
-7
BB
D4
ES
3E
14
2F
c1
ED
D4
ES
3E
F8
F8
FF
F1

20
9
79
A
28
5S4
C3
BS
95
A4
k4]
FB
C1
1E
FA
FB
FB
A6
4]
FB
29
C3
29
Al
BO
FA
FA
FA
F8
85
FB
20
FA
FA
FA
F8
(2]
o9
co
Fo

8F
a9
FA
EA
D2
FD
D@
ca
27
c4
2B
o293
85
-1
29
29
o9
26
SF
o9
28
85
ac
(08§
34
o9
29
o9
o9
1D
290
33
29
29
o9
o9
c9o
?D
2D
iC

FA
60
20
EA
FF
20
22
a8
cA
38
AS
AS
1E
20
20
29
29
D@
Al

29
FB
c3
FB
81

20
ac
20
20
29
A6
99
F8
ac
20
29
A2
27
10
Fo
8E

12

o9
29
B@
EA
4C
cA
Eé
BS
D@
E?
28
C3
@8
D4
ES
ES
69
64
Ci1
33
29
98
29
C3
B8
7D
69
69
88
26
ac
29
47
69
69
29
D@
a2
22
29

29
3E
DE
EA
47
D@
o
27
F3
a2
A4
A4
ES
FA
FA
FA
FA
29
81
F8
18
65
AS
20
FA
FB
FA
FA
FA
Do
AS
D@
F8
FA
FA
29
14
E8
E@
15%]

F8
AE
EA
F8
FA
69
?5
68
B@
29
c4
c2
o9
29
o9
29
28
C3
o9
AS
(of
26
28
2]
(7]%}
] %]
[]%]
<]
11
1D
EE
29
o 1%]
o9
29
20
29
29
21

1 8D68
:9D79
:9D?78
:@D8Y
:9D8s8
t@D9@
1 @Do8
1 ODAG
: 9DAS8
:9DBO
1 9DB8
1 agDCO
:oDCs
:@DD@Y
:8DD8
1 9DE@
:ODES8
t9DF@
:9DF&
1 GEQQ
:PEEZ8
tPE19D
IPE18
tPE20
tQEZ28
: OE3Q
1 QE38
tQE4Q
:PEA48
tQESSO
: 9ESS
t OESD
1 PE6S8
tPEZQ
L PE?S8
: 9E8PY
: 9E8S
t9ES9
tPEPS8
:9EAQ

20
a2
29
29
D2
29
a2
F3
29
8D
47
29
86
EA
20
85
A9
29
54
5S4
29
o9
E@
AS
29
2A
AS
a3
69

a1
86
69
a1
A8
22
AA
4A
849
(<]
29

8F
ES
20
D@
FF
AQ
Do
20
20
29
F8
AS
28
EA
6A
c1
91
AQ
FD
FD
Do
68
23
2A
cz
99
FD
20
29

c8
ic

AS
88
4A
Fa
BD
4A
A9
85
8F

FA
20
88
EC
29
[717]
ac
41
33
2F
o9
c2
A9
EA
FC
84
29
2C
o9
29
FC
29
Do
c9
FC
GE
o9
AS
(99))

98
20

1F
65
4]
13
Do
4A
29
2A
AA

29
CF
FA
86
57
o9
c8
FA
F8
FB
29
85
23
EA
29
c2
D2
29
29
A2
29
35
12
E8
29
BD
BD
FD
FC
29
48
38
C1
@B
29
FE
29
29
29
78

59
FF
-7
1c
FD
Bl
ES
00
20
20
D4
21
20
A%
20
cé
FF
c2
a1
00
a8
FD
A4
Bi
88
2A
30
20
20
c2
FA
A4
99
an
27
00
oF
AA
23
AQ

13

cé
co
99
A9
-7
c1
E4
20
A6
BO
FA
AZ
D2
16
cA
1D
ac
F8
FA
20
20
o0
IF
c1
Do
FF
FF
cA
AA
FC
o0
c2
o1
BO
29
BO
D@
BD
85
23

%D
oD
B6
99
A2
DD
ic
54
26
DD
29
29

FF
85
FC
DO
a7
00
20
Al
1F
A2
Fo
BO
F2
00
00
D@
ES
o9
A6
AA
cs
17
80
o4
%4
1D
IF
E®

10
Fo
EQ
20
20
10
DO
FD
Y
ac
85
00
EA
1D
20
F2
F8
20
20
ct
FD
26
2E
ic
26
20
Fo
DS
Do
8A
1c
10
69
ol
an
an
AD
FF
98
8A

. : OEAS8
. : EBQ
. : JEBS8
. i 9ECQ
. : GECS8
. : 9EDQ
. : OED8
. s JEEQ
. : OEES8
. : OEFQ
. 1 GEF8
. s IF 29
. : OF Q@8
.:9F1@
.1 9F18
. 1 OF 20
. s @F28
. t9F39
. :BF38
. 1 OF 49
.+ @F48
. 1 9FS@
. s @FS8
. 1 OF &9
. s OF 68
. i OF79
.t OF78
. : OF 89
. 1 9F88
. 1 OF9Q
. 1 OF98
. 1 OFAQ
. : OFA8
. : 9FBY
. : @FB8
. s 9FC@
.+ @FC8
. 1 9F DY
. 1 9FD8
. :9FEQ

)]

B1
29
F1
A8
77
Ag
Do
Do
D2
FA
FA
EA

85
a5
47
23
Al
Ci1
29
69
a9
FA
68
11
cAa
c9
29
FA
A9
a2
o9
75
29
AA
29
g6
15

99

29
FA
23

-
s

2]
a6
69
A9
20
29
A2
EA
FC
84

a9
1D
a9
21
28
D4
11
48
E?
6E
ED
Fo
FE
A4
2D
D@
26
29
FC
37
B9
23
2A

qA
D
29
1F
o0
85
A9
28
D2
A9
[17]
29
86
57
CA
El

FA
F8
AS
4C
29
20
a3
F9
a5
88
29
29
oF
c2
E8
28
X-]
1D
2A
BD
D@
A4
A%

29

A2
cs
F2
28
00
2A
FF
@D
20
20
28
FD
FC
FF
E9
00
o0
20
a6
D2
69
20
A2
an
D@
CF
Fo
20
85
9D
A2
26
AS
86
77
E3
1F
30

:OFES
t9FFgQ
:OFF8
1909
19008
11919
11918
119249
11928
11939
11038
119449
11948
119549
11958
11969
1968
11979
11978
: 1980
1988
119949
11998

1 10AQ
1 19A8
: 10BY
1 19B8
119C@
:19Cs8
:19D9
:19D8
t19E®Q
1 19E8
t10F9@
t19F8
t 1109
11108
11110
t1118
11120

B@
29
EB
29
29
29
FE
D@
Fa
29
24
29
A4
91
Ci1
c2
29
29
EA
29
98
19
28
69
28
28
28
28
DY
33
33
33
A9
29
85
S9
1C
?D
29
23

21
Ct
a6
BD
Do
B8
f]%]
A
28
1C
AS
cs8
iF
C1
209
EA
c2
41
EA
A8
Fo
a2
6a
38

a9
49
49
49
8cC
D@
D@
Do
29
29
2D
[]]
8A
8A
29
24

20
FE
2A
2A
BS
FE
D@
29
AS
FB
1E
%]
D@
88
CA
EA
F8
FaA
EA
29
QE
28
co
-1}

29
29
29
29
a4
8c
o8
o8
o9
59
2¢C
29
1c
1D
29
53

BF
o0
59
FF
cA
00
AG
69
29
o0
10
FA
23
Y
FC
EA
20
20
EA
BF
86
ES
30
a9

39
49
a9
29
o9
44
49
49
21
4D
29
58
23
23
19
1B

FE
D@
9B
o9
D@
D@
AS
FA
c9
99
9A
AS
B?
F8
o9
EA
20
29
EA
FE
1C
86
k4)
@2

22
a2
a2
29
29
A
a9
@9
81
91
2C
24
SD
2D
AE
23

15

29
c7
BC
29
D1
AB
28
29
2D
A
qC
1E
c2
AS
85
EA
54
54
4C
29
A6
1D
23
45

45
45
45
22
11
19
19
62
82
92
23
24
8B
8B
69
24

Do
88
39
B9
Fo
20
CS
A4
D@
28
ED
19
29
26
Cc1
AD
FD
FD
B@
D@
1D
A6
co
23

33
33
B3
44
22
22
22
13
29
86
28
o9
1B
1D
A8
53

cc
D@
FF
FE
A
BS
1D
1F
1A
D@
FA
Fé
o9
91
84
41
1]
o9
FD
11
DD
1C
47
Do
Do
D@
D@
33
44
44
44
78
o9
4A
24
o9
Al
Al
19
19

.:1128
.:113@
.:1138
.:1140
.:1148
.:1150
.:1158
.1 1160
.:1168
.1 1179
.:1178
.:1189
.51188
.:1199
.:1198
.:11A0
.:11A8
.:11B@
.:11B8
.t 11C@
.:11C8
.:11D@
.:11D8
.:11E@
.:11E8

29
AE
o9
29
23
24
E8
B4
F2
74
B2
26
26
S2
48
35
29
F9

{]%]
FD
ED
43
29
Sg

1A
AE
1]
53
AQ
88
94
28
A4
74
1%}
26
48
4D
a4
F9

a9
FB

2]
F2
29
S8
%]

SB
A8
15
84
D8
S4
29
6E
8A
74
299
72
44
47
SS9
29
F9

299
FD
46
29
29
52
<]

16

SB
AD
9C
13
62
44
7]
74
o9
72
22
72
44
58
2C
cc
o9
FA
co
o9
F8
2D
53
29
o9

AS
29
6D
34
SA
Cc8

Fa
[J2]
a4
212}
88
A2
4c
41
F8
89
o9
FB
8A
o0
20
52
59
o9

69
o9
@C
11
48
5S4
28
cC

68
20
cs
cs
53
a2
20
Fo
3E
-7
FD
FF
20
20
52
20

NUMBERING SYSTEMS

There are three numbering systems used in the 6510
processor.

1: HEXADECIMAL

This is the most common numbering system employed on
the 6510. It is similar to decimal except that the numbers are
made up of multiples of 16 digits instead of 10. It is therefore
referred to as a base 16 numbering system.

A decimal number has a base of 10 (therefore, it has 10 digits
which are combined to make up any number—these are the
numerals ‘0’ to ‘9’). In Hex we need 16 digits as itis a base 16
numbering system, so the first six letters of the alphabet are
used to represent the numbers 10 to 15 (A-F).

DECIMAL HEXADECIMAL

00
01

02
03
04
05
06
07
08
09
0A
0B
oC
oD
0E
oF
10
11

[G G G QY
NOOOPAOLON—LSOO~NOODOIAPWON—-O

And soon. ..

17

In decimal as you move left along a number the powers of 10
increase by one each time. For example, ‘9454 is
(9*1000)+(4*100)+(5*10)+(4). In hexadecimal (Hex), it is
the powers of 16 that increase by one each time. For
example, ‘1ED2’ is (1*4096)+(14*256)+(13"16)+(2). It is
also worth noting that the range of numbers that we can use
in decimal are from zero to 65535 inclusive whereas in Hex
the range is from 0000 to FFFF.

2: BINARY

Binary numbers are base two and therefore need only two
digits—these are one and zero (1,0). As you move left along
the table shown below, the powers of two increase by one
each time.

128 64 32 16 8 4 2 1

i 0 0 11 110

The above number in binary (10011110) is
128+16+8+4+2 (158) in decimal.

3: BINARY CODED DECIMAL

Binary coded decimal is a numbering system unique to the
6500 series of microprocessors. It is used where decimal
output is required as it makes hexadecimal numbers behave
like decimal. This will all be explained at a later stage (see
SED, CLD).

18

6510 ASSEMBLY
LANGUAGE TUTORIAL

Machine code is not as difficult to learn as a first glance
would make you think. Although it seems far more complex
than BASIC, once you grasp the principles it is all fairly
straightforward. Interested? Well, let's get underway.

All the routines in this book should be typed into the
computer using an assembler. If you don’t have one then use
SUPERMON.

You may now be asking “What is machine code?”. Well quite
simply, it is the language that the microprocessor in your
CBM 64 understands. How then can you write programs in
BASIC? The BASIC language is actually a huge machine
language program that interprets (changes) the BASIC
commands into machine code for the computer to execute.
The CBM 64 has a 6510 microprocessor (an upgraded
6502), so it understands 6510 machine code.

Let us compare a simple program in BASIC and then its
machine code equivalent.

10 A=1:B=1
20 C=A+B
30 PRINTC
40 END

That's pretty straightforward, isn't it—here is the 6510
machine code equivalent.

A9 01 69 0A 8D 00 04 A9 01 8D 00 D8 60

All rather unintelligible to the uninitiated. Because this is so
difficult to read there is a human version of machine code

19

called Assembly language. Here is the above program in
Assembly language.

LDA #$01 A=t

ADC #%$01 :Add one

STA 30400 :PRINT result

LDA #301 :Make character appear
STA $d800 :in white

RTS :End

This is much easier to understand. Assembly language is
made up of 56 three letter ‘words’ which are used in various
ways called addressing modes.

Here is an explanation of the seven addressing modes. They
will be explained more fully as we go on.

1. Immediate addressing: Directly doing something
without accessing memory.

2. Absolute addressing: Accessing memory locations
while doing something.

3. Zero Page addressing: Accessing memory while
doing something, but only in the range zero to 255.

4. Indexed addressing: Accessing memory with an
offset from the ‘X’ or 'Y’ registers.

5. Implied addressing: Jumping to a location through
two others. Used only with the ‘UMP’ command.

6. Indirect Indexed addressing: Accessing memory
through two other registers plus an offset.

7. Indexed Indirect addressing: Accessing memory
through two other registers plus an offset (different to (6)).

20

6510 Instruction Set

LDA Loads the Accumulator with
memory or a number.

LDX Loads the ‘X’ register with memory
or anumber.

LDY Loads the Y’ register with memory
or anumber.

STA Stores a number in the Accumulator
in memory location.

STX Stores anumberin the ‘X' register
in memory location.

STY Stores a numberinthe ‘Y’ registerin
memory location.

TAX Transfers the contents of the
Accumulator into the ‘X' register.

TAY Transfers the contents of the
Accumulator into the 'Y’ register.

TXA Transfers the contents of the ‘X’
register into the Accumulator.

TYA Transfers the contents of the 'Y’
register into the Accumulator.

NOP No operation (used to fill memory).

JMP Jumps to address. ..

JSR Jumps to a subroutine at address. . .

RTS Returns from a subroutine or to
BASIC.

INC Increments (add one to) memory.

INX Increments the value in ‘X'.

INY Increments the value in 'Y".

DEC Decrements (subtract one from)
memory.

21

DEX
DEY

CMP
CPX
CPY

BEQ
BNE
BCC
BCS
BVC
BVS
BPL
BMI

BRK
PHA

PHP
PLA

PLP

TXS
TSX

AND
ORA
EOR

BIT

Decrements the value in °X.
Decrements the value in Y’.

Compares ‘A’ with memory/number.
Compares ‘X’ with memory/number.
Compares 'Y’ with memory/number.

Branches if value equal to zero.
Branches if value not equal to zero.
Branches if carry clear (less than).
Branches if carry set (more than).
Branches if overflow.

Branches if no overflow.

Branches on plus (less than 128).
Branches on minus (more than
128).

Forces a stop inthe program.
Puts the value in A on to the top of
the stack.

Puts the processor status on to the
stack.

Takes the value off the top of the
stack and putsitin ‘A’.

Takes the status off the top of the
stack and puts itin the status
register.

Transfers the value in ‘X’ to the
stack pointer.

Transfers the stack pointerto ‘X'.

AND ‘A’ with memory or a number.
OR ‘A’ with memory or a number.
Exclusive OR ‘A’ with memory or a
number.

AND ‘A’ with memory or a number,
butleave ‘A’ and the memory intact
changing only the flags.

22

ADC Adds memory or anumber to ‘A’

with carry.
SBC Subtracts memory or a number from
‘A’ with carry.
SEC Sets carry.
CLC Clears carry.
SED Sets decimal mode (BCD).
CLD Clears decimal mode.
SEI Sets interrupt disable.
CLI Clears interrupt disable.
RTI Returns from interrupt.
CLv Sets the overflow bit.
ROR Rotates memory one bit right.
ROL Rotates memory one bit left.
ASL Shifts memory one bit left.
LSR Shifts memory one bit right.

We will start with the command ‘LDA’. This means LoaD (or
fill) the Accumulator with a value, or a value from an address.

eg. LDA #$10 :Putthe value 10 (Hex because of the $ sign)
into the Accumulator.

Once you have loaded a value in the Accumulator, you may
want to do something with it. The command ‘STA’ puts the
value in ‘A’ into a memory location. This is equivalent to the
BASIC command ‘POKE’.

eg. LDA #3%01 : This puts an ‘A’ in the top left area of the
screen.

STA $0400

We can also load the Accumulator with values from
memory locations. There are various formats for this:

23

LDA $address : Where ‘address’ is between zero and 255.
LDA $address : Where ‘address’ is between zero and
65535.

We can also use the ‘X’ and 'Y’ registers for the same
purpose:

LDX #3$0A : Load ‘X’ with 0A (Hex).

LDX $address : Load ‘X’ with a value in an address, where
‘address’ is between zero and 255.

LDX $address : Load ‘X’ with a value in an address, where
‘address’ is between zero and 65535.

LDY #3506 : Load 'Y’ with 06 (Hex).

LDY $address : Load ‘Y’ with a value in an address, where
‘address’ is between zero and 255.

LDY $address : Load ‘Y’ with a value in an address, where
‘address’ is between zero and 65535.

STX $address : Store a value in ‘X’ in an address, where
‘address’ is between zero and 255.

STX $address : Store a value in ‘X’ in an address, where
‘address’ is between zero and 65535.

STY $address : Store a value in ‘Y’ in an address, where
‘address’ is between zero and 255.

STY $address : Store a value in ‘Y’ in an address, where
‘address’ is between zero and 65535.

Values can easily be transferred between registers. There
are commands within the 6510 to do this and they are as
follows:

TAX : Transfers the contents of ‘A’ to ‘X’ leaving ‘A’ the
same. (If ‘A’ contains ‘12' and you use the TAX
command, both ‘A" and ‘X’ will contain the value 12.)

TAY : Transfers the contents of ‘A’ to ‘Y’ leaving ‘A’ the
same.

TXA : Transfers the contents of ‘X' to ‘A’ leaving ‘X’ the
same.

TYA : Transfers the contents of ‘Y’ to ‘A’ leaving 'Y’ the
same.

24

Assemblers that do not altow the use of labels (as in the one
at the beginning of the book) need some way of reserving
space in the middle of your program in case you want to
insert or extend a routine. There is a command for the 6510
that does just that—it acts just like ‘REM’ in BASIC, in that
the processor totally ignores it and goes on to the next
instruction. This command is ‘NOP’ and it stands by itself.

In a program you may want to jump to another part of the
program just as you would GOTO in BASIC. The command
to do this is ‘UMP address’. For example, to jump to address
3F00 (Hex) the command is JMP $3F00. You may also wish
to jump to a subroutine as you would GOSUB in BASIC. The
command for this is ‘JSR address’—to jump to a subroutine
starting at $4000 the command would be JSR $4000.

There will come a time when you want to return to the main
program from the subroutine. The command to do this is
‘RTS’ which does exactly the same as RETURN does in
BASIC. If you have not JSR’d to a routine or returned from it,
the ‘RTS’ command will also return control to BASIC.

Now let’s put some of the above commands to work. If you
have typed in the SUPERMON assembler or have a similar
one already, then type in the following program.

First enter the assembler with ‘SYS 38893’ (or however
you enter your own assembler) then type the following:

A 4000 LDA #300 :Load the Accumulator with zero.
A 4002 STA $D020 : Put it in $D020 (53280 dec)

A 4005 STA $D021 : Put it in $D021 (53281 dec)

.A 4008 RTS : Return to BASIC.

To start this program type ‘G 4000’. The screen and
border will now turn black. You have now entered your first
machine code program. You may say “But that's Assembly
language, not machine code”. You are wrong. . .you typed
Assembly language into the computer, but the assembler
transformed it into machine code. To see this machine code,

25

type ‘M 4000 4009'. You should see the following on the
screen:

M 4000 4008
;4000 A9 00 8D 20 DO 8D 21 DO
.;4008 60 00 00 00 00 00 0O 0O

The numbers in the second row after the ‘60’ may differ but
don’t worry, the program ends at the 60 (RTS).

Here is a program that uses all three registers in the 6510
to make the screen flash, swapping the border and screen
colours. To stop the program, press Run/Stop and Restore.

.A 3000 LDA $D021 : Load ‘A’ with the value in $D021

A 3003 TAX : Transfer it to ‘X’
.A 3004 LDA $D020 : Load ‘A’ with the value in $D020
.A 3007 TAY : Transfer it to 'Y’

.A 3008 STX $D020 : Store the value in ‘X’ in $D020
.A 300B STY $D021 : Store the value in 'Y’ in $D021
.A 300E JMP $3000 : Jump to address $3000

The above program is a simple example of how numbers
may be swapped with another in machine code.

We will often find during a program that we want to add
one to something. Well, the 6510 makes it easy for us. It
increments (adds one to) registers or memory locations.
Here are the commands you'll need to use:

INC $ memory location : Adds one to the value contained in
the memory location. If the number
exceeds 255, which is the greatest
number that a memory location (or
register) can hold, then the number
has 256 subtracted from it.

INX : Adds one to the contents of the ‘X’
register. If the value exceeds 255,
then 256 is subtracted from it.

INY : Adds one to the contents of the Y’
register. If the value exceeds 255,
then 256 is subtracted from it.

26

We can also automatically subtract one from the memory
location or the register. If the number becomes less than
zero, then 256 is added to it. The relevant commands are as
follows.

DEC $ memory location : Subtracts one from ‘memory

location’.
DEX : Subtracts one from the X’ register.
DEY : Subtracts one from the Y’ register.

Here is a program that cycles the screen and border
through all 256 colour combinations.

A 2F00 INC $D020 : Increment value in $D020
.A 2F03 DEC $D021 : Decrement value in $D021
A 2F06 JMP $2F00 : Jump to $2F00

To stop the above program, press Run/Stop and Restore
and re-enter the assembler with ‘SYS 38893'.

Say you only want to increment the number by a certain
amount, you need a method of checking when you get to that
number. There are commands in the 6510 which allow you
to compare two values. They are as follows:

CMP #$ value : Compare memory or Accumula-
tor with a value.

CMP $ memory location : Compare the value in ‘memory
location’ with the value in the
Accumulator.

CPX #$ value : Compare memory or the X'
register with a value.

CPX $ memory location : Compare the value in ‘memory
location’ with the value in the ‘X’
register.

CPY #$ value : Compare memory or Accumula-
tor with the value in the Y’ register.

CPY $ memory location : Compare the value in ‘memory
location’ with the value in the ‘Y’
register.

27

The above commands set various flags in the status
register. The status register contains eight flags but at the
moment we are concerned with only three of them. They are
the overflow flag, the sign flag and the zero flag.

The zero flag is set if the Accumulator is zero or if the value
in a register is the same as that which is being compared
using the ‘CMP’, ‘CPX’ or ‘CPY’ commands.

The overflow flag is set when an overflow happens, ie.
when a calculation passes 255 ($FF) or zero ($00).

The sign flag is set according to whether a number in one
of the registers is greater than or less than 128 ($80). If the
number is greater than or equal to 128 then the flag is set;
otherwise it is zero.

Now, once we have done a comparison we may want to do
something according to the result. There are commands
within the 6510 to do this. They are as follows:

BEQ $ memory location : Branch (jump) to ‘memory loca-
tion’ if the last byte used in X, Y, A
or amemory location is zero or zero
flag is set (i.e. values are equal).
This command only allows jumps of
128 forward and 127 back. If the
address after the ‘BEQ’ command
is greater than 128 forward then the
branch will be backward.

BNE $ memory location : Branch to memory location if the
last byte in X, Y, A or a memory
location is not equal to zero, does
not contain zero or a comparison is
not equal. The limitation of 128
forward and 127 back also applies
to this command.

BCC $ memory location : Branch to ‘memory location’ if the
last byte in X, Y, A or a memory
location is less than or equal to that
compared with, or the carry flag is
clear.

28

BCS $ memory location : Branch to ‘memory location’ if the
last byte in X, Y, A or a memory
location is greater than or equal to
that compared, or the carry flag is
set.

BVS $ memory location : Branch if the overflow flag is set.
The same limitation for branching
applies.

BVC $ memory location : Branch if the overflow flag is not
set. The same limitation for branch-
ing applies.

BPL $ memory location : Branch if the value in a register is
greater than 128. The same limita-
tion for branching applies.

BMI $ memory location : Branch if the value in a register is
less than 128. The same limitation
for branching applies.

Here follows a program that demonstrates the use of some
of the above commands in use.

A 1000 LDX #$00
A 1002 STX $D020
A 1005 INX

A 1006 CPX #$0F
.A 1008 BNE $1002
A 100A LDY #$0F
A 100C STY $D021
.A 100F DEY

A 1010 CPY #3%01
A 1012 BNE $100C
A 1014 LDA $C5
A 1016 CMP #3$04
.A 1018 BNE $1000
A101ARTS

: Load ‘X’ with 00 Hex

: Store value in ‘X’ in $D020
: Increment value in ‘X’

:Is value in ‘X" #3$0F (255)
: No? Then jump to $1002

: Load ‘Y’ with #$0F

: Store value in Y’ in $D021
: Decrement value in 'Y’

s value in 'Y’ #$01 (1)
:No? Then jump to $100C

: Load ‘A’ with value in $C5
s value in ‘A’ #$04 (4)

: No? Start all over again

: Return to BASIC.

The above program flashes the screen and border

colours, and if the ‘F1’ function key is being pressed returns
to BASIC. If it is not then the program starts all over again.

29

When you are testing a program using the assembler, you
will often want to return control to the assembler automatic-
ally. This can be done quite easily in a program by inserting
the command ‘BRK’ into it. If the assembler has not been
enabled then the result of this command will be that the
computer will do the equivalent of pressing Run/Stop and
Restore.

The 6510 has a part of memory that is specially used for
storing numbers. It is called the ‘stack’. It is 256 bytes long
and is located from 256 (dec) to 511 (dec). It is a
first-in-last-out area, i.e. the first number put on the stack is
the last to come out and vice versa. There are six commands
that you can use for the stack, and they are as follows:

PHA : Puts the contents of the Accumulator on to the top of
the stack.

PLA :Takes the number off the top of the stack and puts it
into the Accumulator.

PHP : Puts the processor status (the flags that are set) on
to the top of the stack.

PLP : Takes the processor status off the top of the stack
and puts it into the status flag.

TXS : Sets the stack pointer to the location 256 plus the
value in ‘X'. This is useful if you want to ignore
certain elements on the stack or if you want to pick
selected elements off the stack.

TSX : Puts the value of the stack pointer into the ‘X’
register.

Here is a program that demonstrates the use of the stack:

.A 6000 LDA #$93 : Load ‘A’ with #$93 (147)

.A 6002 PHA : Put on to the stack

.A 6003 LDA #%$41 :Load ‘A’ with #$41 (65)

.A 6005 LDX #$00 :Load ‘X’ with #300 (0)

A 6007 JSR $FFD2 : Jump to the PRINT subroutine
A 600A INX . Increment the value in ‘X’

.A 600B BNE $6007 :is ‘X’=0. No? Jump to $6007
.A 600D LDA $C5 :Load ‘A’ with value in $C5

.A 600F CMP #%$40 :Is it $40 (64)

30

.A 6011 BNE $600D : No? Jump to $600D

A 6013 PLA : Get top number off the stack
.A 6014 JSR $FFD2 : Jump to the PRINT subroutine
A 6017 RTS : Return to BASIC

The above program prints 256 ‘a’ characters on the screen
and pauses for a key to be pressed. It then takes the top
value off the stack and prints it (i.e. clears the screen).

Now it is time to delve into the various addressing modes.
We have already covered three of them:

1. Inmediate addressing: This is where the value after the
operand (6510 command) is a constant.

eg. LDA #$00
LDX #$FF
CMP #$0F

2. Absolute addressing: This is where the value after the
operand is an address.

eg. LDA $033C
STA $D022
CMP $D000

3. Zero Page addressing: This is where the value after the
operand is an address in zero page ($00-$FF (0-255)).

eg. LDA $C5
STA $FB
CMP $C5

The fourth addressing mode is called Indexed addressing.
This is where the operand is an address, but it can be altered
depending on the value in one of the index registers (i.e. ‘X’
or'Y’).

eg. LDA $0400,X

If the X’ register contained $12 then the Accumulator
would be loaded with the value in address $0400+$12
(which is $0412). If this seems strange then think of it as LDA
‘$0400+value in ‘X"

31

Here is a small program that fills the top 200 bytes of the
screen with circular shapes:

A 1000 LDX #$00
A 1002 LDA #$51
A 1004 STA $0400,X
.A 1007 LDA #301
A 1009 STA $D800,X

A 100C INX

A 100D CPX #3$C8
A 100F BNE $1002
A 1011 RTS

: Load ‘X’ with $00 (00 dec)
: Load ‘A’ with $51 (81 dec)
: Store it in $0400+X

: Load ‘A’ with $01 (1 dec)

: Store it in $d800+ X

: Increment value in ‘X’

s X' #$C8 (200 dec)

: No? Jump to $1002

: Return to BASIC

Here is a list of the commands covered earlier using the
Indexed addressing mode:

LDA $04,X
LDA $0400,X
LDA $0400,Y

STA $CC,X
STA $D800,X
STA $D000,Y

LDX $D0,Y
LDX $2000,Y

STX $BB)Y

LDY $AA X
LDY $DFAA X

STY $EE,X

INC $00,X
INC $F000,X

DEC $AD,X
DEC $D001,X

: Load ‘A’ with the value in $04+ X.
: Load ‘A’ with the value in $0400+ X.
: Load ‘A’ with the value in $0400+Y.

: Store the value in ‘A’ in $CC+X.
: Store the value in ‘A’ in $D800+ X.
: Store the value in ‘A’ in $D000+Y.

: Load ‘X’ with the value in $D0+Y.
: Load ‘X’ with the value in $2000+Y.

: Store the value in ‘X' in $BB+Y.

: Load ‘Y’ with the value in $AA+X.
: Load ‘Y’ with the value in $DFAA+X.

: Store the value in ‘X' in $EE+X.

: Increment the value in $00+ X.
. Increment the value in $F000+ X.

: Decrement the value in $AD +X.
: Decrement the value in $D001+X.

32

CMP $00,X : Compare the value in $00 with ‘A’.
CMP $D020,X : Compare the value in $D020+X with ‘A’.
CMP $AA00,Y :Compare the value in $AAD0+Y with ‘A’

There are two more addressing modes in the 6510; they
are also the most complex. They are Indexed Indirect
addressing and Indirect Indexed addressing.

The Indexed Indirect addressing mode does not follow the
normal formats of addressing—it does it through two other
locations in the zero page (hence the indirect part of its
name). However, it can only use the ‘A’ and ‘X’ registers.
Here is an example:

LDX #%$00 : Normal LDX.
LDA ($FB,X) :Indexed Indirect LDA.

The above ‘LDA’ would load the Accumulator from the
address in 6510 low/high byte in $FB+X.

Let me explain. The address which will be loaded from is
not $FB but it is contained in $FB AND $FC. For example,
suppose that $FB contained zero, $FC contained $04 and X
contained zero, ‘A’ would be loaded from the addresses
contained in $FB and $FC, i.e. 0400 (low byte=00 and high
byte=$04). This would therefore be equivalent to LDA
$0400. The value in ‘X' is added to the $FB so that ‘X’
contained $02, then ‘A’ would be loaded from the address
contained in $FB+$02 and $FC+$02, which is $FD and
$FE.

Why then use this mode if it appears the same as LDA
$0400. Well, this mode allows us to access all 64K of
memory in one command.

Here is a program that fills the entire screen with ‘@’
characters in one loop:

.A 2500 LDA #%$00 : Load ‘A’ with #$00
A 2502 STA $FB : Store ‘A’ in $FB
A 2504 STA $FD : Store ‘A’ in $FD

33

.A 2506 LDA #3$04 : Load ‘A’ with #$04

A 2508 STA $FC : Store ‘A’ in $FC
A 250A LDA #$D8 : Load ‘A’ with $D8
.A 250C STA $FE : Store ‘A’ in $FE

.A 250E LDX #%$00 : Load ‘X’ with #$00
A 2510 LDA #%$00 : Load ‘A’ with #$00
A 2512 STA ($FB,X) : Store ‘A’ through $FB, $FC
A 2514 LDA #%01 : Load ‘A’ with #$01
.A 2516 STA ($FD,X) : Store ‘A’ through $FD, $FE

.A 2518 INC $FB : Increment the value in $FB

A 251A INC $FD : Increment the value in $FD

.A 251C LDA $FB : Load ‘A’ with the value in $FB
A 251E BNE $2510 :Is ‘A’ zero? No? Jump to $2510
.A 2520 INC $FC . Increment the value in $FC

A 2522 INC $FE : Increment the value in $FE

.A 2524 LDA $FC : Load ‘A’ with the value in $FC

.A 2526 CMP #%$08 s it #$087?
.A 2528 BNE $2510 : No? Then branch to $2510
A 252A RTS : Return to BASIC

The first six commands are necessary to set up the
locations $FB to $FE to the values required by the program.

Here is a list of all the commands covered so far in Indexed
Indirect mode:

LDA ($01,X) :Load ‘A’ with the value from the address
contained in $01+X and $02+X.

STA ($DA,X) : Store the value in ‘A’ in the address con-
tained in $DA+X and $DB+X.

CMP ($F1,X) : Compare the value in ‘A’ with the value in
the address contained in $F1+X and $F2+X.

Now before we come to the final addressing mode there is
an addressing mode which really does not merit its own
section as it affects only one command. It is an Indirect
mode, i.e. the actual address to be used is contained in two
other addresses anywhere in memory. Unlike other indirect
modes it can jump through any memory address ($0000 to

34

$FFFF), e.g. JMP ($0314). It is mainly used where a program
can jump to one of many addresses depending upon the
result of a calculation or input from the user. Here follows an
example which demonstrates the use of the above com-
mand:

.A 2100 LDA $C5 : Load ‘A’ with the value in $C5

A 2102 CMP #%$3C ;s it #$3C (60)?

A 2104 BNE $2113 : No? Then jump to $2213

.A 2106 LDA #%$31 : Load ‘A’ with #$31 (48)

.A 2108 STA $033C : Store the value in ‘A’ in $033C

A 210B LDA #%21 : Load ‘A’ with #$21 (33)

.A 210D STA $033D : Store the value in ‘A’ in $033D

A 2110 JMP $212B :Jump to $212B

.A 2113 CMP #%$04 s it #3504 (4)?

A 2115 BNE $2124 : No? Then jump to $2220

A 2117 LDA #%$39 : Load ‘A’ with #$40(64)

A 2119 STA $033C : Store the value in ‘A’ in $033C

.A 211C LDA #$21 : Load ‘A’ with #$21(33)

.A211E STA $033D : Store the value in ‘A’ in $033D

A 2121 JMP $212B : Jump to $212B

A 2124 CMP #301(?) :lIs it #$01 (1)

.A 2126 BNE $212E : No? Jump to $212E

.A 2128 JMP $2141 :Jump to $2100

A 212B JMP ($033C) :Jump through $033C and
$033D

A 212E JMP $2100 : Jump to $2100 (start again)

A 2131 LDA #3$02 : Load ‘A’ with #$02 (2)

.A 2133 STA $D020 : Store the value in ‘A’ in $D020

A 2136 JMP $212E : Jump to $212E

.A 2139 LDA #%$00 : Load ‘A’ with #$00

A 213B STA $D020 : Store the value in ‘A’ in $D020

A 213E JMP $212E :Jump to $212E

A 2141 RTS : Return to BASIC

The above program alters the border colour according to
which key is pressed: if the key pressed is the Space Bar
then the screen will turn red; if the key is ‘F1’ then the screen
will turn black; and finally, if the key is the return key, then
control will be passed back to BASIC.

35

Let us now move onto the final mode of addressing on the
6510 chip. It is called Indirect Indexed addressing and only
makes use of the Accumulator and the ‘Y’ register. This
mode of addressing is very similar to Indexed Indirect except
for two things, the first of which is that the ‘Y’ register is used
instead of the ‘X’. And secondly, it is the actual address that
has the value in the ‘Y’ register added to it, not the zero page
addresses through which the actual address is found. The
actual address is stored in the same low/high byte order
within zero page.

Here is an example:
LDA ($CA),Y
If $CA contained #%$10, $CB contained $C0 and ‘Y’

contained $10, then the actual address would be equal to
$C010 added to $10, which is $C010.

Here is a program that changes all the characters on the
screen to each of the 16 colours using Indirect Indexed
addressing:

3099 A9 099 LDA #$0@ :Load ‘A’ with #3$00 (0)
3992 8D 3E 93 STA $@33E : Store ‘A’ in $033E (830)
3995 A9 00 LDA #s@@ :Load ‘A’ with #$00 (0)
3997 85 FB sTA sFB : Store ‘A’ in $FB (251)
3999 A% D8 LDA ##D8 :Load ‘A’ with #$D8
(216)
309B 85 FC sTA sFC : Store ‘A’ in $FC (252)
399D A9 E7 LDA #sE7 :Load ‘A’ with #3E7
(231)
399F 8D 3C @3 STA %@33C : Store ‘A’ in $033C (828)
3912 A9 DB LDA #$DB :Load ‘A’ with #$DB
(219)
3914 8D 3D @3 STA 233D : Store ‘A’ in $033D (829)
3017 AQ 00 LDY #$@@ :Load ‘Y’ with #$00 (0)
3919 AD 3E 83 LDA $©33E : Load ‘A’ with the value
in $033E
391C 91 FB STA
(sFB) ,Y :Store ‘A’ indirectly in
$FB,$FC

36

301E

3821

3923

3826
3028
392B

382D

3939
3032
3935

3837

3839
333A

303C
383D

3949

3943
3945
3947

3949
394B
394D
3959

29

AS

cDh

Fo
4C
AS

(091]

Fo
4C
Eé

Fo

[=1%)
Eé

[=17]
EE

AD

co
Fo
AS

co
Fo
4C
69

35

FB

3C
23
12
FC
3D
2B
17
FB

a1

FC

3E

3E

11
a9
CS

49
FA
25

39

a3

39

a3

39

a3

a3

39

JSR

LDA

CMP

BE@
JMP
LDA

CMP

BE®
JIMP
INC

BE@®

RTS
INC

RTS
INC

LDA

CMP
BE®
LDA

CMP
BE®
JIMP
RTS

%3935 : Jump to the subroutine

at $3035

$FB : Load ‘A’ with the value
in $FB

$033C: Is ‘A’ equal to the value
in $033C

%3928 : Yes? Branch to $302B

+3917: Jump to $3017

sFC :Load ‘A’ with the value
in $FC

$033D: Is ‘A’ equal to the value
in $033D

+303D: Yes? Branch to $303D

$3917 : Jump to $3017

&FB : Increment the value in
$FB

+393A : Is $FB equal to zero?
Then branch to $303A
: Return from subroutine

sFC : Increment the value in
$FC
: Return from subroutine

$@33E : Increment the value in
$033E

+@33E : Load ‘A’ with the value
in $033E

#e11 st #$11

%3950 Yes? Branch to $3050

sC5 : Load ‘A’ with the value
in $C5

#s40 s it #$40

%3947 : Yes? Branch to $3047

%3905 . Jump to $3005
: Return to BASIC

The above program will fill the screen with one colour and
wait for you to press a key. It will then fill the screen with the
next colour and wait again for a keypress . . . and so on, until
$0286 contains $OF (15). It will then return to BASIC.

37

Here is a list of all the commands covered so far in Indirect
Indexed mode:

LDA ($D0),Y :Load ‘A’ with the value in the address
contained in addresses $D0 and $D1.

STA ($FE),Y :Store the value in ‘A’ in the address
contained in addresses $FE and $FF.

CMP ($02),Y :Compare the value in ‘A’ with the value in
the address contained in $02 and $03.

Now we come to the logical operators. These are the
commands that allow us to programme using the bits of a
program, and not just the bytes; this is done when using
sprites (even in BASIC) for example. All logical commands
work with the Accumulator only.

Firstly the command ‘AND’, which is identical to its
equivalent in BASIC. It takes two binary numbers and if the
bit is one in both numbers, then the result is aone, elseitis a
zero.

eg. Binary Decimal

10111011 187
AND 11000101 197

10000001 129

As you can see ‘AND’ can be used for sectioning parts of
bytes off from the others (for example, if you want to check if
sprite ‘1’ is on but don't really care if the rest are or not).

Next the command ‘ORA’, which is the same as the BASIC
keyword ‘OR’. It takes two binary numbers and if the bit is
one in either number, then the result is one.

eg. Binary Decimal

11010011 211
ORA 10100010 162

11110011 243
38

This command is usually used to set certain bits without
affecting the others in the byte (for example to turn on sprite
‘3’ and leave the others as they are).

Now we will cover the command ‘EOR’ (Exclusive OR).
This command has no equivalent BASIC keyword but is
nevertheless just as simple to understand as it performs the
opposite function to ‘ORA’ command. It takes two binary
numbers and if one of the numbers is a ‘1’ then the resultis a
‘1’. However, if neither or both are one then the result is a
zero.

This command could be used in the high resolution
plotting of a shape, so that the shape could pass over the
background without disturbing it.

Finally on the subject of logical commands we move on to
‘BIT". This command performs the same function as ‘AND’
but only alters the status flags, leaving the two bytes being
‘ANDed’ the same as they were.

Here is a list of all the above commands in all the different
addressing modes:

AND #%$01 : AND the value in ‘A’ with #$01.

AND $DD,X : AND the value in ‘A’ with the value in
$DD+X.

AND $C020 : AND the value in ‘A’ with the value in
$C020.

AND $D000,X : AND the value in ‘A’ with the value in
$D0O00+X.

AND $F000,Y : AND the value in ‘A’ with the value in
$FO00+Y.

AND ($AA,X) : AND the value in ‘A’ with the value in the
address in $AA+X and $AB+X.

AND ($11),Y : AND the value in ‘A’ with the value in the
‘address+Y’ in $11 and $12.

ORA #$F0 : OR the value in ‘A’ with #$F0.

ORA %00 : OR the value in ‘A’ with the value in $00.

ORA $B2,X :OR the value in ‘A’ with the value in
$B2+X.

39

ORA $8010
ORA $2011,X
ORA $DDDD,Y
ORA ($BB,X)
ORA ($33),Y
EOR #$00
EOR $D1
EOR $EE,X
EOR $0000
EOR $1020,X
EOR $A000,Y
EOR ($CC,X)
EOR ($22),Y
BIT $AE

BIT $DAOE

:OR the value in ‘A’ with the value in
$8010.

:OR the value in ‘A’ with the value in
$2011+X.

:OR the value in ‘A’ with the value in
$DDDD+Y.

: OR the value in ‘A’ with the value in the
address contained in $BB+ X and $BC+X.
: OR the value in ‘A’ with the value in the
‘address+Y’ contained in $33 and $34.

: EOR the value in ‘A’ with #3$00.

: EOR the value in ‘A’ with the value in $01.
: EOR the value in ‘A’ with the value in
SEE+X.

: EOR the value in ‘A’ with the value in
$0000.

:EOR the value in ‘A’ with the value in
$1020+X.

: EOR the value in ‘A’ with the value in
SAQ000+Y.

: EOR the value in ‘A’ with the value in the
address contained in $CC+X and $CD+X.
: EOR the value in ‘A’ with the value in the
‘address+Y’ contained in $22 and $23.

: AND the value in ‘A’ with the value in $AE
and adjust the flags leaving the contents of
‘A’ and $AE intact.

: AND the value in ‘A’ with the value in
$DAOE and adjust the flags leaving the
contents of ‘A’ and $DAQE intact.

Now we come to the arithmetic commands. These allow
adding and subtracting in machine code. Firstly, let's
consider addition.

On the 6510, a register can only hold a value of between
zero and 255—so0 the following commands can only come up
with a result of between zero and 255. Later we will find a
way of getting around this problem.

The command for addition is ‘ADC’. This means ADd with

40

Carry. This carry is a flag in the status register that tells us if
the result is greater than 255. For example, if we added 129
and 128 the result would be ‘2’ in the Accumulator but the
carry flag would be set. The carry therefore acts as a ninth
bit. It tells us that the result is ‘256+1’ which is 257. We can
then add numbers up to 511 (256+255).

Here is an example of adding two numbers together and
POKEing the character associated with that number at the
top of the screen:

A 1000 LDA #%$01 :Load ‘A’ with #%$01 (1)

A 1002 CLC : Clear the carry flag

A 1003 ADC #%$02 : Add #%$02 to the value in ‘A’
.A 1005 STA $0400 : Store the value in ‘A’ in $0400
.A 1008 LDA #$01 :Load ‘A’ with #$01 (1)

.A 100A STA D800 : Store ‘A’ in $D800 (55296)

A 100B RTS : Return to BASIC

The ‘CLC’ command in the above program may cause
confusion. What it does is clear the carry flag. This is needed
in the above example as we are only adding two numbers. If,
however, there was an ADC before our program we might
have wanted the carry (bit nine—value 256) to be added to
our result if the value was greater than 255. So we must use
the ‘CLC’ command when we want to ignore what is in the
carry flag or before the first addition.

Now we come to subtraction. This command works in
basically the same way as ‘ADC’ in that if the carry flag is set
and you subtract, the carry is set if the number goes below
zero. The command is ‘SBC’. . .SuBtract with Carry.
However, unlike addition we have to set the carry flag in
order to make a correct subtraction. This is done with the
‘SEC’ (SEt Carry) command.

Here is a program that demonstrates the ‘SBC’ command
in use. It subtracts two numbers and POKEs the character
associated with the result at the top of the screen:

.A 1200 LDA #%$20 : Load ‘A’ with #%$20 (32)

A 1202 SEC : Set the carry flag

.A 1203 SBC #%$18 : Subtract #%$18 from the value in
LA)

41

A 1205 STA
.A 1208 LDA
A 120A STA
A 120B RTS

Here is a list

$0400 : Store the value in $0400 (1024)

#$01 : Load ‘A’ with #$01 (1)

$D800 : Store the value in ‘A’ in $D800
: Return to BASIC

of the two commands in all the addressing

modes of the 6510 (C refers to the carry flag):

ADC #8$01
ADC $21
ADC $78,Y
ADC $CBA1
ADC $2011,X
ADC $323A,Y
ADC ($56,X)

ADC ($FA),Y

SBC #88F
SBC $DC
SBC $0785
SBC $FF02,X
SBC $A023,Y
SBC ($AA,X)

: Add #%$01 to the value in ‘A’ with carry and
put the result in ‘A’.

: Add the value in $21 to the value in ‘A’ with
carry and put the result in ‘A’.

: Add the value in ‘$78+ Y’ to the value in ‘A’
with carry and put the result in ‘A’.

: Add the value in $CBA1 to the value in ‘A’
with carry and put the result in ‘A’.

: Add the value in ‘$2011+X’ to the value in
‘A’ with carry and put the result in ‘A’.

: Add the value in ‘$323A+Y’ to the value in
‘A’ with carry and put the result in ‘A’

: Add the value in the address contained in
‘$56+ X’ and ‘$57+ X’ with carry and put the
result in ‘A’

: Add the value in the ‘address+Y’ contained
in $FA and $FB with carry and put the result
in ‘A,

: Subtract the value in #$18 from the value in
‘A’ with carry and put the result in ‘A’.

: Subtract the value in $DC from the value in
‘A’ with carry and put the result in ‘A’.

: Subtract the value in $0785 from the value
in ‘A’ with carry and put the result in ‘A’.

: Subtract the value in ‘$FF02+X’ from the
value in ‘A’ with carry and put the resultin ‘A’.
: Subtract the value in ‘$A023+Y’ from the
value in ‘A’ with carry and put the resultin ‘A’.
: Subtract the value in the address contained
in ‘$AA+X and ‘$AB+X’ from the value in ‘A’
with carry and put the result in ‘A’.

42

SBC ($B0),Y : Subtract the value in the ‘address+Y’
contained in $B0 and $B1 from the value in
‘A" with carry and put the result in ‘A’.

In the 6510 all of the flags can be turned on or off by the
user. We have seen the use of ‘CLC’ and ‘SEC’ to clear the
carry flag and set it respectively. Here is a list of the other
commands for setting or clearing flags:

SED : Set the decimal mode flag. (See BCD arithmetic.)
CLD : Clear the decimal mode flag.

SEl : Set the interrupt disable flag. (See Interrupts.)
CLI : Clear the interrupt disable flag.

CLV : Clear the overflow flag.

Before we continue there is one command that | need to
cover but it does not fit into the above listing. It is ‘RTI". This
command means ReTurn from Interrupt. This command
causes control to return to the program being RUN from an
‘IRQ’ interrupt. (See Interrupts.)

Now we come to the commands that allow us to
manipulate the bits inside a register or a memory location.
The first is ‘ROR’. This command means ROtate the bits to
the Right. It follows the pattern shown in the following
diagram:

cary—- 1 0 0 0 0 1 1 0 —carry

ROR
l

o1 0 0 0 0 1 1

There is a complementary command to ‘ROR’ and it is called
‘ROL’. This command means ROtate the bits to the Left, and
it follows the pattern shown in the following diagram:

43

camry«— 0 1 1 1 1 1 0 1 <carmry

There are another two commands that do the same as the
above but do not bring the bits around. Therefore, they are
useful for sectioning off half-bytes for examining. (See BCD
arithmetic.) The first of these is ‘ASL’, which means
Arithmetic Shift Left. The following diagram shows what
happens with ‘ASL’:

camy«— 1. 1 1 0 0 1 1 1 <0

ASL
l

110 01 1 10
There is a complementary command to ‘ASL’ called ‘LSR’,
which means Logical Shift Right. It follows the pattern shown
in the following diagram:

0— 11 1 1 1 0 1 1 —>carmy

Now we have covered all the 6510 instruction set, let us go
and do something useful with the knowledge we have
gained. . .

44

SECTION TWO

This section will make use of all the knowledge gained in
Section 1 allowing the '64 do great things in machine code.
All of the programs in this section should be entered with an
assembler/monitor such as SUPERMON.

45

SCROLLING

Often in games we will want to scroll the screen, eg. see
Defender, Scramble, The Riders of Rohan, and similar
games. This really needs to be done in machine code for
reasons of speed. The following programs will scroll the
screen up, down, left and right, by both a character and a
pixel at a time.

To scroll the screen up one character square, all we are
really doing is executing the BASIC command PRINT.
However, in machine code we need to tell the computer what
to print. In this case we need to make the computer print a
carriage return (move the contents of the screen up one
position). But this will only work if the cursor is positioned on
the bottom line of the screen—thus we print 24 carriage
return characters before starting to scroll:

2009 A2 99 LDX #$99
2092 A9 @D LDA #H%QD
2004 28 D2 FF JSR &FFD2
2087 ES INX

2008 E@ 12 CPX #%12
200A DO F8 BNE %2004
200C 6© RTS

Before starting the scroll SYS 8192 ($2000) to set the
screen up.

Now, the scroll routine:

200D A9 @D LDA #%0D

209F 20 D2 FF JSR %FFD2
2012 &9 RTS

-

46

To save the above to tape, type:
S“DOWNSCROLL”,01,2000,2013

and to disk:
S“DOWNSCROLL",08,2000,2013

The reason that the last Hex number is one greater than
the last byte of program is that the save routine in the ROM
that the monitor calls saves up to but not including the last
number—therefore, it will save from $2000 to $2012.

To scroll the contents of the screen up, just type SYS 8205
(JSR $200D). The new data to be put on the screen must
now be put on the bottom line of the screen.

The following program scrolls the contents of the screen
down one character space, but does not scroll the top two
lines. The reason for this is that location 218 is set, so that we
can put information that we do not want scrolled on these two
lines and scroll the rest of the screen. Basically, a window is
created in which the top two lines are separated from the rest
of the screen.

4998 A9 13 LDA #%13
4992 20 D2 FF JSR $FFD2
4995 A9 11 LDA #s11
4007 20 D2 FF JSR $FFD2
499A A9 9D LDA #%9D
499C 20 D2 FF JSR $FFD2
490F A9 94 LDA #$94
4211 20 D2 FF JSR $FFD2
4914 A9 8@ LDA #%80
4916 85 DA STA $DA
4918 69 RTS

The above program is the same as the following in BASIC,
so any program in BASIC that contains the following lines
could be replaced by the above program to give it that extra
lift.

47

10 PRINT “[home][cud][left][inst]”
20 POKE218,128

No setting up is needed for this program, unlike the
scroll-up.

Now we come to the scrolling operation that proves most
popular in many programs. . . scrolling sideways. This is
more complex than the above as there is no way of using the
‘PRINT’ command to achieve sideways scrolling with
enough speed to be useful. It can be done in BASIC as long
as you do not want to scroll the bottom line of the screen, but
it takes so long that writing a word processing program or a
game would be pointless without machine code.

The following program scrolls the screen to the right. It is
written in a very simple manner to show exactly what is going
on. All the program does is take a character from a screen
location and put it into the one on its right.

19089 A2 26 LDX #%26

1992 BD 99 ©4 LDA %9409, X
1895 9D @1 @4 STA $9401,X
1998 BD 28 @4 LDA %0428, X
199B 9D 29 @4 STA $9429,X
199E BD 5@ @4 LDA #9450, X
19611 9D 51 @4 STA $0451,X
1914 BD 78 @4 LDA #9478, X
1917 9D 79 @4 STA $0479,X
191A BD A9 @4 LDA $94A0, X
191D 9D Al @4 STA $94A1,X
1920 BD C8 @4 LDA $04C8, X
1923 9D C9 94 STA $04C9,X
1926 BD F@ 94 LDA $94F@, X
1929 9D F1 @4 STA $94F1,X
192C BD 18 95 LDA $03518,X
192F 9D 19 @5 STA $0519,X
1932 BD 49 95 LDA %0549, X
1635 9D 41 @S STA $0541,X

48

1938 BD 48 @5 LDA %8568, X

183B 9D &9 @5 STA %0569, X
183E BD 29 @5 LDA $0590, X
1641 9D 91 @S STA $@5%1,X
1944 BD B8 @5 LDA $@5B8, X
1947 9D B9 @S STA $9SB9?, X
194A BD E@ @S5S LDA $9SEQF, X
194D 9D E1 @S STA $@5E1,X
1959 BD @8 @6 LDA #0608, X
1953 9D @9 @6 STA $8609,X
1956 BD 38 @6 LDA %9630, X
1959 9D 31 @6 STA $8631,X
185C BD 58 @6 LDA #9658, X
195F 9D 59 @6 STA $8659,X
1962 BD 89 @6 LDA #9684, X
1965 9D 81 @6 STA $89681,X
1868 BD A8 @6 LDA $86A8, X
196B 9D A9 @6 STA $P6AF, X
196E BD D@ @6 LDA $86D@, X
1971 9D D1l @6 STA $06D1,X
1974 BD F8 @6 LDA $96F8,X
1977 9D F9 @6 STA $96F9,X
197A BD 20 @7 LDA $8720,X
197D 9D 21 @7 STA $@721,X
1989 BD 48 @7 LDA #8748, X
1983 9D 49 @7 STA %9749, X
1986 BD 79 @7 LDA $@773,X
1989 9D 71 @7 STA $8771,X
128C BD 98 @7 LDA $@8798,X
198F 9D 99 @7 STA #9799, X
1992 BD CO 27 LDA $@7CO, X
1995 9D C1 &7 STA $97C1,X
1998 CA DEX

1999 E® FF CPX #$FF
169B F@ @3 BE® $10A0
199D 4C 02 1@ IMP %1092
19A0 &9 RTS

As you can see, the above program is long-winded and
takes up far more memory than is needed. Instead of lots of
‘LDA’ and ‘STA’ commands, we really only need four of

49

each. What we want to do is scroll each line by a character
space but we don’t want the end character on a line to be
moved onto the next line down. To achieve this we just add
one to the X register and carry on until the next line is
completed. When the next line is finished, we repeat the
above until the end of the screen, then we RTS to BASIC (or
Machine Code program, depending on where the routine
was called from).

The following program uses the above method to scroll the
whole of the screen to the left. You will notice that the
program is much smaller yet does the same job. Unluckily,
you may not find the way that it works as obvious when
looking at the listing as with the previous program, but it is
slightly faster and definitely neater.

1998 A9 @6 LDA #$06
1962 8D 44 @3 STA #9344
19005 A2 99 LDX #$90
1907 AQ @99 LDY #H%99
1999 BD @1 @4 LDA $9401,X
190C 9D 99 94 STA $9404d, X
190F BD F1 @4 LDA $04F1,X
1912 9D F9 @4 STA $94F@3, X
1915 BD E1 @S LDA %@5SE1,X
1918 9D E@ @5 STA $9SE@G, X
161B BD D1 @6 LDA €$06D1,X
191E 9D D@ @6 STA $96D9F, X
1921 E8 INX

1922 C8 INY

1923 Co 27 CPY #%27
1925 D@ E2 BNE %1909
1927 ES8 INX

1928 AQ 00 LDY H$Q90
162A CE 44 @3 DEC %0344
192D D9 DA BNE $1009
192F &0 RTS

50

PIXEL SCROLLING

Pixel scrolling does the same job as the scrolling programs
just mentioned, except that it moves the characters by one
pixel (or dot) at a time—therefore, giving a much smoother,
professional look to programs.

We will start with up and down scrolling as before. Pixel
scrolling on the Commodore 64 is handled mainly by
hardware (the VIC 2 chip) but does need a helping hand to
complete the scroll. By this | mean the chip will move the
entire contents of the screen by up to seven pixels. When it
reaches the eighth it cannot go any further and so goes back
to zero. We therefore have to set it back to position zero and
do a character scroll to move the screen the last bit. For up
and down scrolling the register we are interested in is 53265

Now if we just scrolled the screen without any set-up you
would notice that there would be spaces at the top and
bottom of the screen. Ideally, the display should look perfect,
so we want to get rid of these spaces. This is done by setting
the '64 into 24-row mode. This cuts off the top half character
space from the screen and the bottom half character space.
This now allows the characters to come onto the screen and
leave smoothly without any gaps.

To put the '64 into 24-row mode, type the following:

A 3009 LDA D@11
A 3993 AND HEF?
A 3095 STA D@11

A 3998 RTS

51

To get back into 25-row mode, type the following:
A 3099 LDA $D@11

A 3903 ORA H#%08
A 3095 STA S5S326S5
A 3998 RTS

The following program is a pixel scroll routine in the up
direction. It works by decrementing the value in a location
(which is where the position of the scroll is kept) and when
this value reaches #$FF it resets the counter location to
seven and performs a character scroll to move the screen
the final pixel.

4998 AD 11 D@ LDA D@11

4983 29 F7 AND #H$F?

4965 8D 11 D@ STA $D@11
4038 A9 @7 LDA #%47

499A 8D 3B 49 STA $4G3B
490D 6O RTS

49QE AD 11 D@ LDA D@11
4011 29 F8 AND H%FS8

4913 18 CLC

4914 6D 3B 49 ADC %$4@3B
4917 8D 11 D@ STA D@11
491A CE 3B 49 DEC $483B
491D AD 3B 49 LDA $403B
4228 C9 FF CMP HEFF

4922 F9 91 BEQ@ %4825
4924 69 RTS

4925 A9 97 LDA #%07

4827 8D 3B 40 STA $493B
492A AD 11 D@ LDA D@11
492D 29 F8 AND HEFS8

492F 18 cLC

4038 &9 B7 ADC #H%Q97

52

4932 8D 11 D@ STA D@11

4935 A9 @D LDA H$9D
4937 20 D2 FF JSR &FFD2
493A &9 RTS
493B 97 ??7?

Now for the pixel scroll downwards. It works in exactly the
same way as the up scroll, except that it increments the
counter until it reaches eight and then resets the counter to
zero and performs the character scroll down.

4992 AD 11 D@ LDA $D@11
4993 29 F7 AND HS$F7
4995 8D 11 D@ STA $DO11
4098 A9 90 LDA H#$0Q
499A 8D 4B 4@ STA $40Q4B
499D 69 RTS

499E AD 11 D@ LDA D@11
4911 29 F8 AND H$FS8
4913 18 cLC

4014 4D 4B 4@ ADC $494B
4917 8D 11 D@ STA $DO11
491A EE 4B 40 INC $4Q4B
491D AD 4B 49 LDA %404B
4929 C9 98 CMP #%08
4922 FO @1 BEQ@ %4925
4924 &40 RTS

4925 A9 00 LDA #$00
4227 8D 4B 49 STA $494B
492A AD 11 D@ LDA D@11
492D 29 F8 AND H$F8
492F 8D 11 D@ STA $D@11
4932 A9 13 LDA #$13
4934 28 D2 FF JSR $FFD2
4937 A9 11 LDA #$11
4939 2@ D2 FF JSR $FFD2
4@3C A9 9D LDA #%9D
493E 20 D2 FF JSR $FFD2
4941 A9 94 LDA H$94

53

4043 208 D2 FF JSR &FFD2

4@46 A9 89 LDA #%890
4948 85 DA STA $DA
40494A &9 RTS
494B 99 BRK

Scrolling to the left and the right works in exactly the same
way as the up and down scroll, except that we are using
register 53270. Here is the pixel scroll routine for left.

1908 AD 16 D@ LDA $DO16
1993 29 F8 AND HSFS8
1905 18 CLC

1996 6D SB 1@ ADC %$1@05B
1969 8D 16 D@ STA D@16
198C CE SB 1@ DEC %1©5B
189F AD SB 1@ LDA %105B
1912 C9 FF CMP #HS$FF
1914 FO @91 BEQ@ %1017
1916 69 RTS

1917 AD 16 D@ LDA D@16
191A 29 F8 AND #HEF8
191C 18 CcLC

191D &9 @7 ADC #H%Q7
191F 8D 16 D@ STA D@16
1822 A9 @7 LDA #%07
1924 8D SB 1@ STA $105SB
1927 20 2B 1@ JSR $102B
192A 68 RTS

192B A9 @6 LDA H$O6
192D 8D 44 @3 STA %0344
1939 A2 08 LDX H%Q99
1932 AQ 09 LDY #H%0Q
1234 BD @1 @4 LDA $0401,X
1937 9D @9 24 STA %9400, X
193A BD F1 @4 LDA $@4F1,X
183D 9D FO @4 STA $04F@, X
1949 BD E1 @95 LDA $95SE1,X
1943 9D E@ @5 STA %@5SEQ, X
1946 BD D1 @6 LDA $06D1,X

54

1949 9D DO @6 STA $946DG, X

124C ES8 INX
194D C8 INY
194 C@ 27 CPY #%27
1950 D@ E2 BNE %1034
1952 E8 INX
1953 AQ @0 LDY #H%00
1955 CE 44 @3 DEC %9344
1958 D@ DA BNE %1034
195A 6O RTS
195B @7 ???

The right pixel scroll is exactly the same as the left scroll,
except that we increment the counter to eight rather than
decrement it to #$FF. Here is the pixel right scroll. It uses the
same scroll routine as in the previous right character scroll
routine to show how they may be combined.

1900 AD 16 D@ LDA D@16
1963 29 F8 AND H$F8
1965 18 CcLC

1986 6D C9 19 ADC $19C?
1999 8D 16 D@ STA D@16
190C EE C9 10 INC $10C9
19@8F AD C9 1@ LDA $10C9
1912 C9 @8 CMP #%08
1914 FO @91 BEQ %1017
1916 &0 RTS

1917 A9 @9 LDA #$00
1919 8D C9 19 STA $10C?
191C AD 16 DO LDA D@16
191F 29 F8 AND #H$F8
1921 8D 16 DO STA D@16
1924 20 28 19 JSR #1028
1927 60 RTS

1928 A2 26 LDX #$26
192A BD 90 @4 LDA %0400, X
192D 9D 91 @4 STA $94091,X
1939 BD 28 @4 LDA %0428, X
1933 9D 29 @4 STA %9429, X
1936 BD S@ 94 LDA #0458, X

55

1939
193C
133F
1942
1945
1948
194B
194E
1951
1954
1957
195A
185D
1960
1863
1966
1669
186C
196F
1922
1875
1978
197B
197E
1981
1984
1987
198A
138D
1990
1993
1996
1999
199C
199F
19A2
18AS
10A8
19AB
18AE

2D
BD
9D
BD
D
BD
2D
BD
D
BD
2D
BD
@D
BD
@D
BD
D
BD
2D
BD
?D
BD
2D
BD
2D
BD
2D
BD
@D
BD
@D
BD
2D
BD
@D
BD
@D
BD
2D
BD

S1
78
79
AQ
Al
c8
co
Fg
F1
18
19
49
41
68
&9
k4]
?1
B8
B9
EQ
E1l
28
a9
30
31
58
59
80
81
A8
A9
DY
D1
F8
F9
29
21
48
49

a4
a9
a4
24
24
a4
a4
249
a9
a5
a5
a5
a5
a5
a5
a5
a5
a5
a5
a5
a5
a6
26
a6
a6
26
26
a6
a6
g6
a6
a6
a6
26
a6

-
s

az
a7
a7’

STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA

56

$0451, X
0478, X
0479, X
SPAAD, X
SPAAL, X
+04C8, X
$04CP, X
SPAFD, X
$@4F1, X
0518, X
9519, X
0540, X
$0541, X
9568, X
9569, X
0590, X
$9591, X
$9SB8, X
$95B9, X
SISED, X
$G5E1, X
$0608, X
P60, X
0638, X
$09631, X
$0658, X
$9659, X
0680, X
$0681, X
SBLAB, X
SPLAT, X
$06DF, X
$06D1, X
$G6F8, X
SPLFP, X
9720, X
9721, X
$9748, X
$09749, X
9770, X

19B1
19B4
19B7
19BA
12BD
19C@
19C1
19C3
19CS
19C8
18C9

9D
BD
2D
BD
9D
CA
EQ
Fo
4C
69
a9

a7
27
a7
a7

19

STA
LDA
STA
LDA
STA
DEX
CPX
BE®
JIMP
RTS
BRK

57

$9771, X
$9798, X
9799, X
$G7CH, X
$97C1, X

HEFF
%10C8
$102A

SPRITES

Sprites can be moved at a reasonable speed in BASIC,
but for any arcade game it is just too slow. Here is a program
that allows you to move a sprite (Sprite 2) about the screen
using the following keys:

F1 =up
F7 = down
A = left

D = right

To use the program, SYS 7172 from BASIC or JSR $1C04
from machine code.

1CP@ 4C A% 1C IMP $1CA%
1CO@3 EA NOP

1CP4 AS CS LDA CS
1C@6 C9 12 CMP #®12
1CO8 FO 11 BE® %1C1B
lcga €9 @A CMP #%0A
1COC F@ 46 BE@ $1C54
1CPE C9 @4 CMP #%04
1C19 FO 7B BE@ %1C8D
1C12 €9 @3 CMP #3003
1C14 F@ EA BEQ@ $1C0OQ
1C16 EA NOP

1C17 EA NOP

1C18 EA NOP

1C19 EA NOP

1C1A 69 RTS

1C1B A8 TAY

1C1C AD 19 D@ LDA $DO1@
ICIF 29 @4 AND #%04
1C21 €9 @4 CMP #%04

58

1€23
1€25
1c28
1C2A
1c2c
1C2D
1C30
1€31
1C34
1€37
1C39
1C3B
1C3C
1C3F
1ca@
1€43
1C46
1cas
1C4B
1€c4ap
1C59
1€51
1cs4
1€55
1cs8
1CSA
1CsC
1CSE
1C61
1C63
1C65
1C66
1C69
1C6A
1C6D
1C79
1c72
1c74
1C75
1c78

Fa
AE
E®@
F@
E8
8E
98
4C
AE
EQ
Fo
E8
8E
@8
4C
AD
a9
8D
A2
8E
o8
4C
A8
AD
29
co
Fg
AE
EQ
Fea
CA
8E
28
4C
AE
EQ
Fa
CA
8E
98

oF
@4
FF
17

a4

16
249
3F
249

24

16
19
a4
19
29
24

16

19
24
a4
oF
a4
16
a4

a4
16
a9
29
a8

a4

Do

D@

iC
D@

D@

i1C
Do

Do

D@

1C

D@

D@

Do

1C
D@

Do

BE@®
LDX
CPX
BE®
INX
STX
TYA
JIMP
LDX
CPX
BE@®
INX
STX
TYA
JIMP
LDA
ORA
STA
LDX
STX
TYA
JIMP
TAY
LDA
AND
cMP
BE®
LDX
CPX
BE®
DEX
STX
TYA
IMP
LDX
CPX
BEQ
DEX
STX
TYA

59

$1C34
$Dgd4
HEFF

$1C43

*DPJ4

$1C16
sDog4
HE3F

$1C3F

$Dgo4

$1C16
*DO19
HE04
$DO19
HEDO
$Dod4

$1C16

$DO19
#6049
HE949
$1C&6D
*DIY4q
HE16
$1C69

*DG24
$1C16
*DYG4q
HEO00

$1C7C

*Dog4

1C7?%9 4C 16 1C IJMP %1C16

1C7C AD 19 D@ LDA $DO19
1C7F 29 FB AND #s$FB

1C81 8D 19 D@ STA $D@1@
1C84 A2 FF LDX #H&FF

1C86 8E 94 D@ STX $D@P4
1C89 98 TYA

1C8A 4C 16 1C IJMP $1C16
1C8D AE ©5 D@ LDX D@GS
1C99 E@ 2E CPX H$2E

1C92 Fg 11 BE®@ %1CAS
1C?4 AD 1E D@ LDA S$DO1E
1C97 29 @4 AND #%04

1C99 C9 @4 CMP #$04

1C9B D9 @4 BNE %1CAl
1C9D 98 TYA

1C9E 4C 16 1C IJMP %1C16
1CcAl CA DEX

1CA2 8E ©5 D@ STX $DOGS
1CAS 98 TYA

1CA6 4C 16 1IC JMP %1C16
1CA9 AE @85 D@ LDX $D@@S
1CAC E@ ED CPX #HS$ED

1CAE F@ @D BE® $1CBD
1CB2 AD 1lE D@ LDA $DGILE
1CB3 29 @4 AND #%94

1CBS C9 94 CMP #%94

1CB? F@ @4 BE® %1CBD
1CB? E8 INX

1CBA 8E @5 D@ STX %DGAS
1CBD 98 TYA

1CBE 4C 16 1C JMP %$1C16

If you are using sprites in a program, the time will come when
you want to find what character the sprite is under or over.
(You might be able to see which one, but the computer can’t!
Commodore kindly made it possible for the Video chip to
detect if it has hit a character or not, but not to detect which
one.) The following program does this—it is written to detect
the character under Sprite 0. To find out which character it is,

60

use SYS 16384 from BASIC or JSR $4000 from machine
code. The character code is returned in location 828
($033C)—so to find out the character execute the routine
and PEEK or LDA (X or Y) location 828 ($033C).

4983 AD 90 D@ LDA $DOOY
4083 38 SEC

4904 E9 18 SBC #%18

40906 AA TAX

4907 AD 19 D© LDA %DO1@
4980A C9 91 CMP #3501

499C DG B3 BNE %4011
499E AE 99 DO LDX D929
4911 AD @1 D@ LDA $DOO1
4014 38 SEC

4215 E? 3A SBC #$3A

4817 A8 TAY

4918 8E 98 49 STX %4098
491B 8C 9A 49 STY %489A
491E 98 TYA

4@1F 4A LSR

49020 4A LSR

4921 4A LSR

4922 18 cLC

4923 69 91 ADC H3$01

4925 8D 9B 49 STA %$409B
4928 8A TXA

4829 4A LSR

492A 4A LSR

492B 4A LSR

492C 8D 99 49 STA %4999
492F AD 19 D@ LDA $DO10O
4932 C9 91 CMP #$01

4934 DB @9 BNE $493F
4936 AD 99 49 LDA %4099
4939 183 cLC

403A 69 1D ADC #H$1D

493C 8D 99 49 STA %4099
483F AD 9B 49 LDA $409B
4942 8D 96 49 STA %4096
4945 A9 28 LDA #%28

61

4847
494A
484D
4950
4953
4956
4959
495B
4Q05SE
4961
4062
49064
4967
406A
486C
49 6F
40971
4973
49875
4978
4979
4978
4Q87E
4980
4083
4985
4986
4989
408A
428D
498E
4999
4993
43949
4995
4996
4897
4398
4899
4Q99A
499B

8D
29
AD
&D
8D
AD
69
8D
AD
18
&9
8D
AD
85
AD
85
AQ
B1
8D
[=1%)
A9
8D
A2
4E
%9
18
6D
6A
6E
CA
D@
8D
69
(717}
29
29
21%]
[%]7]
29
[o]7]
(%]%}

24
95
94
FB
25
FC
(1"}
FB
3C

[17]
94
28

24

94

Fo
95

49
49
49
49
3%)
49
49
49
49
49

49

a3

49

492

a9

49

3]

STA
JSR
LDA
ADC
STA
LDA
ADC
STA
LDA
cLC
ADC
STA
LDA
STA
LDA
STA
LDY
LDA
STA
RTS
LDA
STA
LDX
LSR
BCC
CcLC
ADC
ROR
ROR
DEX
BNE
STA
RTS
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK

£4997
£4979
£4999
%4094
4994
4995
HE00

4995
4995

#5024
4095
$4094
$FB
$4995
$FC
H$00
($FB), Y
$0933C

HEOQD
4094
HE08
4096
$4089

%4097
4994

$4080
$£4995

62

No doubt you will want to check which character is under a
different sprite to Sprite 0. Rather than listing eight pro-
grams, one for each sprite, here is a list of what to change to
make it work for any sprite.

1: Change the first line from LDA $D000 to LDA $XXXX
(where ‘XXXX’ is the Hex location of the X co-ordinate of the
sprite that you want to test).

2: Change the line at address $400A to CMP #SXXXX
(where ‘XXXX' is the bit value of the sprite to be tested
(Sprite 0=1 through to Sprite 7=128).

3: Change the line at address $400E to LDX $XXXX (where
XXXX’ is the Hex location of the X co-ordinate of the sprite to
be tested).

4: Change the line at address $4011 to LDA $XXXX (where
‘XXXX' is the Hex location of the Y co-ordinate of the sprite to
be tested).

5: Change the line at address $4032 to CMP #$XXXX
(where ‘XXXX’ is the bit value of the sprite to be tested.

The routine checks which character is under the top left
eight bytes of the sprite (going down). For example:

1

—_ ek ko
PPN NDNDNDN
WWWLWWWWwwWwwWw

1

and so on . . . It checks the character under the 1s in the
above diagram. However, this can be altered by changing
two bytes in the program as follows.

The line at location $4004 is SBC #$18. The number after
the SBC must never be less than $18 (24), but if you add one

63

to this value for every bit across the sprite then you can alter
where on the horizontal the routine will check. (This number
must never exceed $30 (48) if the sprite is not expanded in
the X direction or $60 (96) if expanded.) Remember that if
the sprite is expanded, each dot on the sprite is two dots
wide, and therefore you will need to multiply the amount
greater than $18 by two and add it to $18, e.g. to get the
routine to check for the rightmost eight bits of an unexpan-
ded sprite make the line SBC #$30. Or, to get the routine to
check for the last seven bits to the 15th bit across in an
expanded sprite, make the line SBC #(24+7*2) which is
SBC #$26.

To alter where the routine checks on the vertical, change
the line at address $4015 (SBC #$3A). The rules for
changing are the same as for the X direction. If the sprite is
unexpanded in the Y direction then the value is $3A plus the
byte down. If the sprite is expanded then the value is $3A
plus twice the byte down. The value must never be less than
$3A (and if the sprite is unexpanded, no greater than $4f (79)
or if the sprite is expanded, no greater than $64 (100)) for the
routine to give the correct result, e.g. to make the routine
check for the botton eight bytes of the sprite when it is
unexpanded, the line is SBC #$47. Or to make the routine
check for the 10th to the 18th byte down in an expanded
sprite, the line is SBC #$3A plus 2*10 which is SBC #$4E.

64

MUSIC

All of the following programs to demonstrate sound and
music are in two parts: first the machine code and then the
data for the scale or tunes. Both are required to be typed in.
Then to save the program, you must save from the start
location of the machine code to the last data number
inclusive. (The last data number is included to fill space so
that the SAVE command in SUPERMON works correctly.)

Sound is easy to access in machine code—all it requires is
a straight conversion of the POKEs in BASIC. The following
program plays a scale using one sound channel:

8009 A9 OF LDA #H$OF
8902 8D 18 D4 STA D418
8005 A9 38 LDA #%38
8007 8D ©5 D4 STA D495
800A 8D B6 D4 STA $D4G6
800D A9 21 LDA #%21
8009F 8D ©4 D4 STA D494
8012 A2 99 LDX #H%99
8014 BD 39 8¢ LDA %8039, X
8017 8D @99 D4 STA $D409
881A BD 3A 89 LDA $8@3A, X
8¢1D 8D @1 D4 STA $D441
8020 8A TXA

8021 48 PHA

8022 A2 9O LDX #H$00
8024 AQ @O LDY #H$90
8026 ES8 INX

8927 D@ FD BNE #8026
8929 C8 INY

802A CO AL CPY HS$AQ
802C 99 F8 BCC %8026
8Q2E 68 PLA

802F AA TAX

65

8939 ES8 INX

8031 ES8 INX
8032 EO 24 CPX #%24
8034 %9 DE BCC %8014
8036 DG DC BNE %8014
8038 60 RTS

.:8039 4B 22 7E 26 34 2B C6 2D
.:8041 61 33 AC 39 BC 49 95 44
.:8049 90 68 95 44 BC 49 AC 39
.:18051 61 33 C6 2D 34 2B 7E 26
.:8059 4B 22 99 ©9 FF FF FF @0

It can be seen from the above program, all that is being
done is the reading of data stored in memory directly after
the program. This data is then stored in the registers for
channel one (54272,3).

The same method can be used to play a tune. The only

difference is that we must have data in memory for the delay
between notes. The following program demonstrates this:

8009 A9 OF LDA #H$OF

80@2 8D 18 D4 STA $D418
8005 A9 38 LDA #%38
8997 8D ©5 D4 STA $D4@S
890A 8D @6 D4 STA €D4@6
809D A9 21 LDA #3%21
890F 8D ©4 D4 STA D494
8012 A2 99 LDX #%09
8014 AQ Q9 LDY #%00
8016 BD 3E 8¢ LDA $8@3E, X
8019 8D 99 D4 STA $D4QQ
891C BD 3F 8@ LDA $8@3F, X
891F 8D @1 D4 STA D401
8022 8A TXA

66

8023 48 PHA

80924 98 TYA

8025 48 PHA

8026 B 790 89 LDA $8@79,Y
8029 AZ @9 LDX H$09
892B A8 TAY

802C E8 INX

892D D@ FD BNE $802C
8092F 88 DEY

8039 DG FA BNE $802C
8032 68 PLA

8033 ASB TAY

8034 &8 PLA

8035 AA TAX

8036 ES8 INX

8037 E8 INX

8938 C8 INY

8039 EQ 39 CPX H$30
803B 99 D9 BCC #8016
803D &0 RTS

.:803E 95 44 @90 B8 95 44 BC 49
.:8046 AC 39 99 @9 AC 32 &1 33
.:804E AC 39 61 33 C6 2D 34 2B
. 18056 99 98 34 2B C6 2D &1 33
.:805E 4B 22 7E 26 Cé6 2D 34 2B
. 18066 7E 26 4B 22 09 990 99 99
.- 8B06E 90 99 C8 C8 C8 FF FF FA
.:8076 FF E1 FA FF DC DC DC FF
.:8097E E6 FF FF FF FF FF FF FF
.:8086 FF ?F FF FF 7D FF FF FF

To make music in three channels is just as easy. The
following program plays the above scale in three voices.
Rather than using three different sets of data for the notes |
have added 10 ($0A) to the note value for Voice 2 and 20
($14) to Voice 3. This gives a much more deep sound than
that with Voice 1 but makes the sound a little bit flat.

67

8009
80a2
8005
8097
809A
894D
8019
8013
8016
8919
891B
841D
8020
8023
8026
8028
802B
892E
89390
8833
8035
8038
823B
893E
80490
8243
8045
8@48
8049
824A
804B
8Q4C
894E
8959
8951
8@53
8054
8056
8058
8059

A9
8D
A9
8D
8D
8D
8D
8D
8D
A9
A2
8D
8D
8E
A2
BD
8D
&9
8D
69
8D
BD
8D
69
8D
&9
8D
8A
48
98
48
A2
AQD
ES
D@
c8
Co
9
68
A8

OF
18
38
a5
ac
13
a6
@D
14
21
13
a4
2B
12
47}
79
29
gA
a7
9A
PE
7A
a1
2B
28
9B
aF

a9
o9

FD

AY
F8

D4

D4
D4
D4
D4
D4
D4

D4
Da
D4

89
D4

D4
D4
89
D4

D4

D4

LDA
STA
LDA
STA
STA
STA
STA
STA
STA
LDA
LDX
STA
STA
STX
LDX
LDA
STA
ADC
STA
ADC
STA
LDA
STA
ADC
STA
ADC
STA
TXA
PHA
TYA
PHA
LDX
LDY
INX
BNE
INY
CPY
BCC
PLA
TAY

68

HSOF
+D418
#$38
+D405
$D49C
$D413
$D406
$D40D
$D414
H$21
H$13
+D404
$DA4QB
$D412
HEQO
$8079, X
sDAQY
HEDA
+D4@7
H$OA
$D40E
$807A, X
+D4g1
H$0B
$D408
H$OB
$D4OF

HE00
H$00

8050

HEA0
8059

805A 68 PLA

805SB AA TAX

805C ES8 INX

895D ES8 INX

805SE E@ 24 CPX #%24

8060 99 Cé6 BCC #8028
8062 D@ C4 BNE %8028
8064 A9 @99 LDA H$99

8066 8D @9 D4 STA $D4Q9
8869 8D @1 D4 STA $D491
806C 8D @7 D4 STA $D4@7
806F 8D @8 D4 STA $D4g8
8972 8D @E D4 STA $D4QE
8975 8D ©@F D4 STA $D4@F
8078 &4 RTS

.:8@879 4B 22 7E 26 34 2B C6 2D
.:8081 61 33 AC 39 BC 49 95 44
.:8089 @99 9@ 95 44 BC 48 AC 39
.:18091 61 33 C6 2D 34 2B 7E 26
.:8999 4B 22 99 @9 FF FF FF 09

The same method can be used for playing tunes in three
channels. However, the following program plays to different
musical parts—Voice 1 plays the lead and Voices 2 and 3
play the same tune in harmony. Voice 1 has a coarse sound
created by the sawtooth waveform, Voice 2 has a triangle
waveform and Voice 3 again has a sawtooth waveform.

8008 A9 OF LDA #$0F

8002 8D 18 D4 STA $D418
8005 A9 38 LDA #%$38
8907 8D ©5 D4 STA $D4@S
899A 8D @C D4 STA $D4@4C
896D 8D 13 D4 STA $D413
8019 8D 96 D4 STA $D4Q6
8213 8D @D D4 STA $D4@D
8016 8D 14 D4 STA $D414

69

84019
891B
8Q1E
8029
8923
8925
8028
8092A
892C
8Q2F
8232
8035
8038
8093B
803E
8041
844
8047
894A
804B
894C
844D
894E
8051
8053
8954
8055
8057
8058
805A
895B
805C
895D
8@SE
8Q5SF
8069
80961
8063
8065

21
24
13
a1
21
12
o9
o9
7D
29
B1
[g
PE
7E
21
B2
a8
aF

&6
29

39

D4

D4

D4

89
D4
89
D4
D4
8@
D4
89
D4
D4

80

LDA
STA
LDA
STA
LDA
STA
LDX
LDY
LDA
STA
LDA
STA
STA
LDA
STA
LDA
STA
STA
TXA
PHA
TYA
PHA
LDA
LDX
TAY
INX
BNE
DEY
BNE
PLA
TAY
PLA
TAX
INX
INX
INY
CPX
BCC
RTS

70

#$21
D494
H$13
$D4g1
#$21
$D412
HE20
H$0Q
$897D, X
$D49QY
$80B1, X
$D407
$D4QE
$8Q7E, X
+D4g1
$89B2, X
$D498
$DAOF

$8066,Y

HE00

8054

$8054

HE30
$802C

. : 8066
. : 896E
. 18076
. :807E
. : 8086
. 1 898E
.+ 8096
. :89%9E
. : 80A6
. : 89AE
. : 89B&
. : 89BE
. :80C6
. : 80CE
. :80D6
. ¢ 89DE

cs
FaA
FF
2D
26
26
20
16
19
20
2B
o9

a7
a7z
29

cs
FF
FF
00
20
4B
D6
B1
E3
20
CcD
93
35
93
35
20

cs
DC
FF
20
20
22
1c
19
16
20
oA
28
27
o8
87
20

FF
DC
FF
cé
7E
8D
8D
8D
20

9F
F
f%]7]
B?
6C
a9

FF
DC
FF
2D
26
1E
1E
1E
00
2B
29
29
00
25
26
00

71

FA
FF
FF
34
4B
Dé
4B
D6
20
20
20
93
35
6C
B9
00

FF
Eé
FF
2B
22
1c
22
1c

o9
o9
28
a7
a6
a5
29

E1l

Cé
7E
7E
o9
E3
B1
29
72
9F
A3
A3
A3
o9
29

INTERRUPTS

Interrupts are one of the things that a computer can only do in
machine code. They occur every 60th of a second and
happen whether the computer is doing something or
not—even when RUNning a BASIC or machine code
program. This happens with all computers and microproces-
sors, but on the '64 they are specifically used to update the
clock, read the keyboard and various other ‘housekeeping’
functions. Most interesting is the fact that an interrupt can be
interrupted and a function can be added to it.

There are two main types of interrupt: the IRQ (interrupt
request) and the NMI (non-maskable interrupt). The latter is
used for the operating system and is not practical for use in
our programs. The other, IRQ, is a two-byte vector through
which a routine is called by the JMP (address) command in
machine code. The way that we intercept this vector is to
change the address contained in the vector.

The vector is addresses 788 ($0314) and 789 ($0315).
The address that will be jumped to is contained in 788 and
789 in lo-byte hi-byte format, i.e. if the address was 4096
($1000), location 789 would contain 16 ($10) which is
4096/256. Location 788 would contain the remainder of the
above division multiplied by 256. Here is another example—
to make the jump address 65490, divide 65490 by 256:

65490/256=255.8203125

So location 789 (the hi-byte) would contain 255. The
remainder is .8203125, so multiply that by 256:

.8203125*256=210
So location 788 (the lo-byte) would contain 210.
The computer would now jump to 65490 ($ffd2) every 60th

of a second. Don't try it as the computer will crash—this is
only an example.

72

When we are changing an interrupt, if either the lo-byte or
hi-byte are altered when an interrupt is being called the
computer will probably crash. We must therefore turn them
off while we change the vector. This is done with the
command ‘SEI' (which means SEt Interrupt disable flag).
When this command is encountered in a machine code
program by the processor it stops all IRQ interrupts until the
bit is cleared with the CLI command (CLear Interrupt disable
flag). This can only be done with IRQ as the NMI is
unstoppable.

There is one other essential thing that you must do when
changing an interrupt. When your routine has finished its
work, it must jump to location $EA31 by making the last
command JMP $EA31 (instead of RTS or RTI).

The following program demonstrates the use of interrupts.
It increments the border colour every 60th of a second. Not
very great you say—I know, but it serves to illustrate the
point.

7a08 78 SE1

7991 A% @D LDA #%0D

7093 8D 14 @3 STA %0314
7986 A9 79 LDA #%70

7998 8D 15 @3 STA $0315
799B 58 CLI

798C &9 RTS

798D EE 20 D@ INC $DO20
7819 4C 31 EA JMP $EA31

As you may have noticed when you have tried to use the
function keys on the '64, they don’t work! Well, that is not
strictly true because they do, except that Commodore never
provided software in ROM for using them. We may want
these keys to print a keyword, for example, whenever we hit
a function key. The best way to achieve that is to intercept
the keyboard scan routine and do our own check for these

73

keys and this can be achieved using the IRQ interrupt. The
following program does just that:

Cooe 78 SEI

Coo1 A9 190 LDA H®19
Co@3 8D 14 @3 STA $8314
Cag6 A9 CO LDA #$CO
Coe8 8D 15 @3 STA %0315
Co@B S8 CLI

CorC 68 RTS

C@2@0D EA NOP

COPE EA NOP

C@0F EA NOP

Co19 48 PHA

Co11 8A TXA

Ca12 48 PHA

Co13 98 TYA

Cg14 48 PHA

C@15 AS CS LDA %CS
Ca1? CS FB CMP &FB
Co19 F@ 51 BEQ@ $C@64C
Co1B 85 FB STA &FB
Ca1D C9 @3 CMP #H%$@3
C@1F D@ @8 BNE #C@29
C@21 A9 39 LDA #%39
Co23 8D 90 C1 STA C100
CP26 4C 4A C@ JMP $C@4A
Cg29 C? @4 CMP #%24
Co2B D@ @8 BNE $C@35
Ca2D A9 99 LDA H$QQ
Co2F 8D @9 C1 STA $C100
C@32 4C 4A CO JIJMP $%C@4A
C@35 C9 @S CMP #H$0S
Co37 D ©8 BNE $C@41
Co39 A9 19 LDA #%10
Co3B 8D 9@ C1 STA &C100
C@3E 4C 4A C@ JMP $C@4A
CP41 C9? @6 CMP #H$06
Co43 DO 27 BNE $C@64C
Co45 A9 20 LDA #$20

74

Cc@47
Cg4aA
C24D
Co4aF
C@S51
C@54
CaS56
Co59
CoSB
COSE
C@s61
Cos64
Ca6S
CP66
Caa8
Ca6A
CaaC
Co6D
CO&E
CO6F
Ca79
Ca71

8D
AD
co
Do
AD
69
8D
A2
AC
B9
?D
ES8
c8
EQ
DY
86
&8
A8
68
AA
68
4C

o9
8D
g1
28
29
28
a9
(17
a9
a1
77

o8
Fa
cé

31

Ci1

22

C1

Ci1

Ci

Ccit
a2

EA

STA
LDA
CMP
BNE
LDA
ADC
STA
LDX
LDY
LDA
STA
INX
INY
CPX
BNE
STX
PLA
TAY
PLA
TAX
PLA
JIMP

$C 100
+028D
Hso1
+CO59
$C 100
H#$08

$C 100
H$00

+C 100
$C101,Y
9277, X

H#E08
$COSE
®C6

$EA31

The above program needs data for the letters to put on the
keys. Therefore, the best way to enter the programis to use a
BASIC loader. The following program is just that. The /
characters are to fill space in the quotes as each command
must be eight characters in length. The back arrow is used to
put a carriage return onto the keys. To put different words
onto the keys just change what is inside the quotes, but
make sure that you don’t exceed eight characters, or if you
use less fill the rest with /' characters.

19 DATA 120,169,16,141,20,3,169,192,141,
21,3,88,96,234,234,234,72,138,72,152,72

15 DATA 165,197,197,251,249,81,133,251,2
91,3,208,8,169,48,141,9,193,76,74,192

2@ DATA201,4,208,8,169,9,141,0,193,76,74
,192,201,5,2908,8,169,16,141,0,193,76,74

25 DATA 192,201,6,208,39,169,32,141,0,19

75

3,173,141,2,201,1,298,8,173,0,193,105,8
32 DATA141,9,193,162,0,172,06,193,185,1,1
93,157,119,2,232, 200,224, 8, 208, 244, 134

35 DATA198,1904,168,104,178,104,76,49,234

49 FORA=49152T049267:READB:POKEA, B: NEXT
58 FORA=@TO7:READK$:FORB=1T08:L=ASC((MID
%(K$,B,1))): IFL=95THENL=13

55 IFL=47THENL=4

68 POKE49489+ (A%8) +B,L:NEXT:NEXT: POKE494
99,4:5Y549152

79 DATA"LIST&///"

89 DATA"PRINT///"

9@ DATA"RUN®////"

199 DATA"THEN////"

119 DATA"LOAD////"

120 DATA"SAVE////"

139 DATA"VERIFY//"

149 DATA"GOTO////"

The above method can be used to program the rest of the
keyboard to make one key entries as employed on the ZX
range of computers possible. The following program does
justthat; however, the keys ‘1'-'0’,'q’,'s’,'m’,"'CRSR right’ and
‘down’, and a few other keys cannot be used due to the fact
that they produce control codes that cannot be stopped
easily.

The program and the monitor dump should be typed in first
and saved as the program after them contains the data
required to put onto the keys, and it is easier to read and
change the data in data statements than a monitor display.
The monitor dump is the data for the keyboard that the
program requires before it will work.

The maximum number of characters that can be put on
each key is four. To start the program, load the machine
code into memory using the ‘LOAD"name”,device, 1’ instruc-
tion from BASIC or ‘L“name”,device (01,08)' from SUPER-
MON. Then you will need to load and RUN the data program
and type SYS 32768.

76

8909
8291
8033
8006
8008
809B
800C
899D
800E
8Q2OF
801@
8411
8012
8914
8016
8018
8019
801A
801B
891C
801D
8920
8622
8925
8927
8929
802B
802E
8030
84932
8833
8035
8037
803A
803C
803D
893E
803F
8041

78
A9
8D
A9
8D
S8
&9
48
8A
48
@8
48
AS
CS
Do
&8
A8
68
AA
&8
4C
85
AD
co
D@
A2
BD
CS
Fg
E8
EQ@
Dg
4C
86
8A
A
A
85
AA

aD
14
80
15

CS
FB
a8

31
FB
8D
a4
EF
a9
S7
FB
28

25
Fa
18
FC

FC

a3

23

EA

292

89

80

SE1I
LDA
STA
LDA
STA
CLI
RTS
PHA
TXA
PHA
TYA
PHA
LDA
CMP
BNE
PLA
TAY
PLA
TAX
PLA
JIMP
STA
LDA
CMP
BNE
LDX
LDA
CMP
BE®@
INX
CPX
BNE
IMpP
STX
TXA
ASL
ASL
STA
TAX

77

#$0D
%0314
#4890
%9315

%CS
$FB
8029

$EA31
$FB
*028D
#%04
8018
HEQO
805
%FB
+893A

N
J<

97

H#E25
$802B
%8018
%FC

$FC

8942 A6 FC LDX sFC

8044 AQ Q0 LDY #$90
8046 BD 8D 8¢ LDA 888D, X
8049 99 77 02 STA $0277,Y
894C C8 INY

804D ES8 INX

894E C@ @4 CPY #%04
8059 DG F4 BNE %8046
8052 84 Cé STY #Cé
8054 4C 18 8¢ JMP %8018

.:8057 39 28 2B 33 99 09 OE 11
.:885F 19 1E 21 26 29 2E @A 12
. 18067 15 1A 1D 22 25 2A 2D &1
.:806F OC 17 14 1F 1C 27 2F 2C
. 18077 37 94 95 @6 83 FF C6 2D

In the following listing, ‘_ is the left arrow which stands for
a carriage return and ‘ -\’ is an up arrow (a character to fill
space).

19 fora=0toS9:reada$
20 forb=1tod4:bs=mid¥(a%,b,1):ifbs="""the
nbs=chr$(g)

39 ifb%k="_"thenb%=chr$(13)
49 poke32999+a¥4+b-1,asc(b%) :b%="":next:
next

199 data"let~"
119 data"peek"
120 data"poke"
139 data"load"
149 data'"save"
150 data"ve~~"
160 data"stop"
179 data"for""
189 data"next"
199 data"read"
200 data"reT""
219 data"run_"*

78

229
239
249
259
260
279
289
299
3090
319
329
339
349
359
3690
378
380
399
409
419
428
439
449
459
469
479
489
499
=171
S1@
529
5349
S49
559
=1-17)
S79
S840
5949
609
619

data®*1I1_~"
data"list"
data"run”™"
data"if~~"
data"then"
data"goto"
data"goS*"
data"wait"
data"?pE("
data"on*"™"
datachr$"
data"asc ("
data"fre("
data"sint("
data"cos("
data"tan("
data®atn("
data"sys"™"
data"usr ("
data"open®
data"cl0~"
data"iN~""
data"get~"
data"clr”~®
data"cmd”™"
data"cont®
data"def"™"
data"dim~"
data"end”~"
data"reT"™"
data"and”™"
data"rnd ("
data"sqr("
data"step"”
data“tab("
data"val”®"
data"not"~"
data"exp”™"
data"ve~~"
data"ve_""

79

628
639
648
6580
669
679
&89
699

data"for~"
data"next"
data"read"
data"res""
data"run_"
data"11_~"
data"list"
data"run~"

The IRQ can be used for much less serious routines. The
following program plays a tune throughout the interrupt; it
plays two musical parts, one of them starting after the other.
If you listen carefully you notice that they both play the same
tune, but with different waveforms and pitch.

80090
8001
8003
8006
8008
883b
800d
8010
8012
8015
8917
8d1a
891d
89240
8823
8025
8028
802a
882c
892e
8039
8931
8032
8034
8036

78

a? 32

8d 14 @3
a? 8g

8d 15 @3
a? of

8d 18 d4
a? 13

8d 94 d4
a? 49

8d 95 d4
8d @6 d4
8d ©@c d4
8d 9d d4
a9 21

8d @b d4
a9 o9

85 fb

85 fc

85 fd

58

(=1}

aé fb

agq4 fc

bd 74 8@

sei
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
sta
sta
sta
l1da
sta
lda
sta
sta
sta
cli
rts
ldx
ldy
lda

80

HE32
0314
HE80
$9315
HEOf
$d418
#$13
$d494
H$409
$d405
$d406
$d408c
$d40d
HH21
$d40b
HE00
$fb
$fc
$fd

sfb
$fc
%8074, x

8039 8d
803c bd
803+ 8d
8042 bd
8045 8d
8048 bd
804b 8d
804e aS
8058 c9
8052 bo
8054 eé
8056 4c
8059 a9
805b 85

99
aé
a7
a’
a8
75
21
fd
da
25
fd
31
o9
fd

805d e8
805e e8
895+ c8

8060 86
8062 84
8064 e@
8066 bo
8068 4c
806b a2
806d 85
806f 85
8071 4c

. 18074
. 1807c
. : 8084
. :808c
. 18094
. 1 899c
. - 80ag4
. s 80ac
. 1 80b4
. 1 8@0bc
. :80c4
. 1 80cc
. : 80d4

d4
89
d4
80
d4
890

da

ea

fb
fc

23
31

ea

f=]%]
b
fc

31 ea

cé
7e
e
[7]%]
el
bl
o9
72
9+
a3
a3
a3
o9

26
29
16
19
o9
@b
29
27
a7
a7
o9

[]%]
29
4b
dé6
bl
e3
[~]%]
cd
@3
35
@3
35
f%]%]

sta

sta
lda
sta
l1da
sta
lda
cmp
bcs
inc
imp
lda
sta
inx
inx
iny
stx
sty
cpx
bcs
jmp
ldx
sta
sta

jimp

[%]]
o9
22
1c
19
16
2]}
da
28
o7
28
97
[2]%]

cé
e
8d
8d
8d
f=]"]
72
9+
9+
o0
b9
éc
o9

81

$d400
lda $8@0a6, x
€d497
$80a7, x
$d408
8075, x
$d491

sfd

HEGa
£8059%

sfd

$eall
HEO00

$fd

$fb
$fc

H#$30
$806b
$ea3l
HE00

%fb
$fc

$eall

26
le
le
le
[]"]
2b
a9
29
29
25
g6
o9

34
4b
dé
4b
dé
o9
29
29
23

6c
b?
o0

2b
22

22
ic

%17
o9
28
a7
26
25
o9

Still on a musical note (sorry!), here is an interrupt driven
program that allows you to use the second row of keys on the
keyboard as a simple organ. The notes are not stored but the
program could be extended to do this easily. The keys used
are:

QWERTYUIOP @™

and the space bar is used to give a space, i.e. it turns off the
music.

Ceegl A9 LF LDA HE1F
COg3 8D 14 g3 STA G314
Cggs A9 CE LDA HECE
Caes 8D 15 @35 STA $£315
CeeB A9 ©F LDA HSOF
Cee¢D 82 12 D4 STA D418
Cglg A9 21 LDA HE21
Cal2 b €4 D4 STA D494
C@1s A9 38 LDA #H%3S
Cg17 20 €5 D4 STA D405
CailA 8D @96 D4 STA D486
CglD &g CLI

CZLE & RTS

C@1F A5 CS LDA %CS
CE21 A2 9 LDX H$009
Ce23 AQ ga LDY #H$QO
Ce25 DD 43 C@ CMP $C@43, X
Ce28 Fe aAa BE@ HCa34
Ce2A ES INX

Ce2B C8 IMNY

Ce2C C8 INY

Ce20 E@ @9F CPX H$OF
CU2F DO F4 BNE $C@25
C231 4C 31 EA IMP $EA31
Ce34 BY 51 C@ LDA #C@51,Y
Ca3?” 8D @1 D4 STA $D491
CgSA B9 52 C@ LDA %C@52,Y
Ca3D 8D @9 D4 S5TA $D49¢g
Ca49 4C 31 EA IJMP $EA31

.:C@43
.:CO4B
. :C@53
. :C@SB
. :CO63
.:CO&B

Sometimes you will want text, listings, etc, to be only in
specified columns. The following program sets the screen to
40 columns but can be adjusted to provide from one to 128
columns by POKEing location 881 with twice the number of
columns that you want it to list in. All the BASIC listings in this
book were listed using this utility, with a 40 column listing
width (881 containing 80). The program works by intercept-
ing the character output vector at $0326 and $0327. What
the program does is check if the computer is at the value in
881 *2 and ifitis, then print a carriage return. It then jumps to

3E
26
13
1C
2B

29

29
29
3F
D6
34
[1%)

2E
2E
15
29
2D
A8

11
31
%A
SE
Cé
68

16 19 1E
36 3C 11
16 E3 19
22 4B 26
33 61 39
AA 68 4C

the normal routine to finish.

933C
@33F
2342
2345
2348
234A
234D
P34F
2352
2353
B35S
2357
B3SA
235D
B35SF
9362
2365
9368
P36A
236D
P36E
9371

AD
8D
AD
8D
A9
8D
A9
8D
6a
co
Fo
CE
CE
Do
20
AD
8D
A9
29
(-1
6C
59

26
72
27
73
53
26
23
27

aD
2B

-
/

74
2B
6E
71
74
2D
6E

72
CA

23
a3
a3
23
a3

23

23
23

23
23
23
23

23

LDA %0326
STA $9372
LDA %0327
STA $9373
LDA #$53
STA %0326
LDA #$03
STA $9327
RTS

CMP #$0D
BEQ@ #9362
DEC %8374
DEC %0374
BNE $@36A
JSR $O036E
LDA %8371
STA $0374
LDA #$0D
JSR $036E
RTS

JMP ($9372)
BVC $033D

83

21
25
B1
7E
AC
31

RASTER SCAN
GRAPHICS

The raster beam is the beam of light in a TV or monitor that
creates the picture. It moves down the screen one line at a
time until it reaches the bottom. It then goes back to the top
and starts again. This series of operations happens 60 times
a second.

A computer sends a signal into the TV or monitor which is
used to create the picture that you see. The Commodore 64
is one of the few computers that can control the raster beam
directly, stopping and starting it at will. This allows us to do
things that would normally be impossible. For example we
could have three different screen colours (location 53281) on
the screen at once, make the screen half text and half high
resolution, put more than eight sprites on the screen at once,
and much, much more. The reason that this is possible is
that we are able to interrupt the raster beam before it has
finished the frame and change certain things. This causes
no, or very little, flicker.

The first thing that must be done to set up a raster is to first
set up an IRQ interrupt to the start of our routine. The first line
of the interrupt must be as follows:

LDA $D019

Location $D019 (53273) is the interrupt flag register and
tells us whether an interrupt has occurred or not. This can be
seen by looking at bit zero of this register. Therefore, the next
lines of the program perform an AND #$01 on the value in A
(from 53273).

STA $D019
AND #$01
BNE main raster program
JMP $EA31
main raster program . . .

84

The reason that the second line is STA $D019 is that if a
raster interrupt has occurred, we want to turn it off. This is
done by putting a ‘1’ into the raster bit (bit zero). This resets
the register so that another interrupt can occur when we
have finished our routine. This may seem strange—turning
the bit on when we really want to turn it off—however, to turn
the bit off we must put a ‘1’ into it. This makes the bit contain
zero. Don’t ask me why, but that is how the video chip works!

The next line (BNE main. . .) checks if the value in A is not
zero, i.e. an interrupt bit has been set. If it has, it branches to
the rest of our program. If there is no bit set, it jumps to the
normal IRQ routine.

LDA #3$01
STA $D01A
CLI

RTS

The start of the program sets up an IRQ interrupt. Then we
store the value of the first interrupt into $D012 (53266)—
location $D011 is then ANDed with $7F. What this does is
reset the ninth bit of the raster so that the interrupt occurs at
the line we have specified. If we do this, the raster interrupt
will not work. Finally, we must turn the raster interrupt
on—this is done by setting bit zero of location $D01A to ‘1.

Back to the interrupt itself, we must now check the value of
the raster in location 53266 to see if it is our first or second
interrupt (in this example). The following lines achieve this:

LDA $D012

BMI $ other raster : Is the raster greater than 1287 If yes,
then GOTO the routine that resets us to
the first raster.

Now we must change the raster to the next raster position
and do the work that we require. The following lines are
those remaining needed to make up a raster to colour the
screen in two different colours.

85

Next we need to find out where the raster beam is. This is
because we must make at least two interrupts per frame: one
to reset us to the beginning and the others to do the changes
that we require. The location that we read is location 53266,
and this location when read tells us the current line that the
raster beam is on. (Itis the low eight bits of the position—the
ninth bit is bit seven of location 53265—but we only need to
use location 53266 for raster work.) When we write to it, it
sets an internal flag that makes the raster be interrupted at
the line that we wrote into location 53266.

Here is the routine that we use to set up a raster interrupt:

SElI
LDA #8$ lobyte of start
STA $0314
LDA #8$ hibyte of start
STA $0315
LDA #$§ first raster interrupt at line
STA $D012
LDA $D0O11
AND #$7F
STA $D011
LDA $D012
BMI $other
LDA #$7F
STA $D012
LDA #$00
STA $D020
STA $D021
JMP $FEBC
other LDA #$FF
STA $D012
LDA #$02
STA $D020
STA $D021
JMP $FEBC

The JMP $FEBC is the routine normally used to end a
raster interrupt. This just tidies things up for us and ends the
interrupt.

86

Here is the completed raster program that we have
gradually created above. You will notice that there is some
flicker, especially if you press a key. There is a better way of
creating a raster which we will see later.

2008 78 SEI

2081 A9 1IF LDA H$1F

20063 8D 14 @3 STA %0314
20086 A9 20 LDA #H$20

2098 8D 15 @3 STA %0315
2089B 58 CLI

200C A9 64 LDA #%64

20Q0E 8D 12 D@ STA D@12
2011 AD 11 D@ LDA D@11
2814 29 7F AND #H$7F

2016 8D 11 D@ STA D@11
2919 A9 491 LDA #%91

201B 8D 1A D& STA €DG1A
201E &9 RTS

201F AD 19 D@ LDA D@19
2022 29 91 AND #%91

2024 D@ @3 BNE %2029
2026 4C 31 EA JMP $EA31
2029 8D 19 D@ STA D@19
202C AD 12 D@ LDA D@12
202F F9 19 BEQ %2041
2031 A9 99 LDA #H%99

2033 8D 12 DO STA D@12
2036 A9 99 LDA #H%0Q

2038 8D 20 DO STA €DO20
203B 8D 21 D@ STA $D@21
203E 4C BC FE JMP &FEBC
2041 A9 644 LDA #%64

2043 8D 12 D@ STA D@12
2046 A9 @2 LDA #H$Q2

2948 8D 20 D@ STA D@20
204B 8D 21 D@ STA $D@21
204E 4C BC FE JMP $FEBC

87

Here is a raster program that puts a text and high
resolution graphics on the screen at once. To start it, type
SYS 4096. You will notice that there is some flicker—this is a
result of the way that this interrupt has been achieved.

[

1909 78 SEI

1981 A9 1IF LDA HE1F

1903 A2 19 LDX #%190

19865 8D 14 @3 STA %9314
1998 8E 1S5 @3 STX @315
1296B 58 CLI

190C A9 91 LDA #%01

190E 8D 12 D@ STA D@12
1911 AD 11 D@ LDA D@11
1914 29 7F AND H$Z7F

1916 8D 11 D@ STA D@11
1919 A9 91 LDA #$01

191B 8D 1A D@ STA $DG1A
191E &9 RTS

191F AD 19 D@ LDA $DO19
1922 29 g1 AND #%$41

1924 DO @3 BNE %1029
1926 4C 31 EA JMP $EA31
1929 8D 19 D@ STA $D@19
192C AD 12 D@ LDA D@12
192F 30 17 BMI %1048
1931 A9 96 LDA H%96

1833 8D 12 DO STA $D@12
1936 A9 47 LDA #%47

1638 8D @9 DD STA $DDOPO
193B A9 15 LDA #%15

193D 8D 18 D@ STA D@18
1949 A9 1B LDA #%$1B

1942 8D 11 D@ STA D@11
12945 4C BC FE JMP $FEBC
1948 A9 @8 LDA #$08

194A 8D 18 D@ STA $D@18
194D A9 @1 LDA #%01

194F 8D 12 D@ STA $D@12
1952 AD @9 DD LDA €DDO9

88

1955 29 FE AND #SFE

1957 8D @@ DD STA $DDOO
165SA AD 11 D@ LDA $D@11
185D @09 20 ORA ¥#$20
195F 8D 11 D@ STA $Dg11
1862 4C BC FE JMP SFEBC

Now we will see how to improve the raster routine so that
there is no flicker. The secret to this involves two factors:

1: Set bit seven of location 56333 to zero. This has the
effect of stopping the computer from performing a normal
IRQ (disabling the IRQ). Instead, only our raster interrupt will
occur. The computer would not normally function if we did
this but our new routine takes care of that problem. (As the
normal IRQ is disabled, there is no conflict between raster
interrupts and IRQ interrupts.) The raster calls the IRQ every
three interrupts, thus removing any flicker.

2: Only jump to $EA31 at every third raster interrupt. This
means that our routine must take over for the other two
interrupts and pull the register contents off the stack, and
then return from the interrupt with RTI. This is required or
you'll find that the stack will fill up and the computer will
probably crash. This is because the computer puts the
values of the registers onto the stack at each interrupt. (If we
called the IRQ every raster interrupt we would slow the
computer down quite a lot.)

Here is a program that puts text, high resolution and
multi-colour high resolution graphics on the screen at the
same time using the above method.

4980 78 SEI

4991 A9 7F LDA #%7F

4903 8D @D DC STA $DCOD
40986 A9 91 LDA #%$01

4998 8D 1A DO STA SDO1A
49@9B A9 @3 LDA #$03
490D 85 FB STA SFB

89

400F
4012
4915
4217
491 A
491D
4020
4923
4026
4928
4928
492D
4039
4931
4932
4035
4938
493A
493C
493E
4949
4942
4044
4946
4949
404C
4G4F
4952
4955
49658
495B
495E
4961
4864
4965
4867
4068
4869
496A
496B

AD
8D
A9
8D
AD
8D

8D
A9
8D
A%
8D

69
AD
8D
29

Cé
19

85
Ab6
BD
8D
BD
8D
BD
8D
BD
8D
BD
8D
8A
Fo
68
A8
68
AA
68

79
12
18
11
14
6E
15
6F
32
14
49
15

19
19
a1

FB
249
a2
FB
FB
73
21
76
11
79
16
7C
18
79
12

g6

49
D@

Do
a3
49
a3
49

a3

a3

Do
o]

49
Do
49
D@
49
D@
49
Do
49
Do

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
CLI
RTS
LDA
STA
AND
BE®
DEC
BPL
LDA
STA
LDX
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
TXA
BE®@
PLA
TAY
PLA
TAX
PLA

90

$4970
D@12
HE18

$Do11
%0314
$406E
$9315
£406F
H$32

%0314
HE40

%0315

$DO19
$DP19
HE01
$4067
$FB
+4944
HEG2
$FB

$FB
4073, X
$D921
$4976, X
$DO11
4979, X
$D216
$497C, X
$DP18
4970, X
$D@12

496D

486C 49 RTI
496D 4C 31 EA JMP $EA31

.:4979 31 AA 81 99 ©6 9@ 3B 1B
.:4978 3B 18 98 @8 18 14 18 @9
.:498¢ FF FF BF 99 5S¢ C8 C8 98

Enter the raster interrupt and start it with G 4000 or SYS
16384.

Now type in the following BASIC program. This will
demonstrate this raster program:

19 PRINT"{CLR}":FORA=1TO1@:PRINT:NEXT:PRINT"
THIS IS TEXT !'!'!'*)
69 FORA=1024T01383:POKEA, 114:NEXT:FORA=1
384T01423:POKEA, 6: NEXT

79 FORA=1664T02023:POKEA, 234: NEXT

80 FORA=395936T056295: POKEA, 13:NEXT

99 FORA=8192T7011391:POKEA,9:POKEA+48049,9
tNEXT

199 B=8192

119 H=49:C=0:FORX=0T0319:G0OSUB150: NEXT
120 H=160:C=0:FORX=0T0O319STEP2: GOSUB154:
NEXT:C=4@:FORX=1TO319STEP2: GOSUB15@: NEXT

139 C=80:FORX=0TO319STEP2:W=0:GOSUB15@:W
=1:GOSUB15@:NEXT

149 GOTO149

158 Y=INT (H+20%¥SIN(X/18+C)) :CH=INT(X/8):
RO=INT (Y/8) : LN=YANDZ

169 BY=B+RO*320+8%CH+LN:BI=ABS (7- (XAND?)
-W)

1790 POKEBY,PEEK(BY)OR(2~BI):RETURN

Finally, here is a program that does the ‘impossible’. It puts
three different border colours, three screen colours, normal
text, multi-colour text, extended colour text and 24 sprites on
the screen at the same time!!!

91

The top of the screen is blue, the border is blue and is in
multi-colour character mode. The middle of the screen is
yellow, the border is yellow and contains normal text. The
bottom of the screen is red, the border is red and is in
extended colour mode. (Each of the sections have eight
sprites in each.)

To start the program, type SYS 16384 and then SYS
16546. To see the sprites, use the following lines:

FOR A=2040 TO 2047:POKE A,13:NEXT
FOR A=832 TO 832+62:POKE A,255:NEXT

The sprites in the program are all controlled by the same
sprite data register (2040-2047) and therefore the three
leftmost sprites are the same. The program could easily be
changed to allow 24 different sprites on the screen at once
by adding another LDA, X and a STA 2040,X to change
the position that the sprite gets its data from. To see the fact
that the program actually puts three ‘clones’ of each sprite,
try the following line:

FOR A=0 TO 255:POKE 53248, A:NEXT

Enjoy yourself with the raster graphics. They are hard to
understand at first but they are worth it once you do!!

4903 78 SEI

4091 A9 7F LDA H$ZF
4983 8D @D DC STA $DCOD
4986 A9 91 LDA #$91
4988 8D 1A D@ STA $D@1A
499B A9 ©3 LDA #%93
499D 85 FB STA %FB
400F AD 76 49 LDA %4876
4912 8D 12 D@ STA D@12
4015 A9 18 LDA #%18
4917 8D 11 D@ STA &DO11

92

491A
491D
4929
4923
4926
4928
4@92B
492D
4939
4031
4a32
4935
4638
493A
4@93C
403E
4249
4942
4944
4946
4349
424C
4G4F
4952
4955
4058
495SB
49SE
40861
4864
4967
4S6A
496B
496D
49 6E
496F
4070
4871
4872
4073

AD
8D
AD
8D
A9
8D
A9
=3]
58
(=37}
AD
8D
29
Fe
Cé
19
A9
85
Ab
BD
8D
BD
8D
BD
8D
BD
8D
BD
28
BD
8D
8A
F&
68
A8
68
AA
&8
a9
4C

14
74
15
75
32
14
ag
15

31

a3
49
a3
49

a3

a3

Do
D&

49
D@
49
D@
49
D@
49
D@
49
49
49
D@

EA

LDA
STA
LDA
STA
LDA
STA
LDA
STA
CLI
RTS
LDA
STA
AND
BE®
DEC
BPL
LDA
STA
LDX
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
JSR
LDA
STA
TXA
BE®
PLA
TAY
PLA
TAX
PLA
RTI
JIMP

93

9314
£4074
$I31S
£4975
HE32

0314
HE49

%9315

$DO19
EDG19
#H$01
$406D
$FB
$4044
H$D2
$FB
$FB
4979,
$D@21
$407C,
$DO11
S407F,
$DY20

$4985, X

$DG16
%4032,
$40989
$4076,
$DG12

4873

$EAS1

X

X

.:4976 31 AF 81 ©2 97 @6 SB 1B
.:497E 1B 92 @7 96 BF 99 5@ C8
.:4986 C8 98 C8 8D @1 DY 8D @3

4989 8D @1 DG STA €DE21
498C 8D @3 DO STA $DOA3
498F 8D @5 D@ STA €DEES
4992 8D @7 DO STA $DQ@7
4295 8D 99 D@ STA D@9
4098 8D @B DO STA $DGYB
499B 8D @D D@ STA $DEGD
499E 8D OF DO STA $DOOF
40A1 69 RTS

48A2 A9 FF LDA #HEFF
49A4 8D 15 D@ STA $D@1S
49A7 A2 09 LDX #HE99
40A9 AQ OO0 LDY #HEQQ
49AB A9 32 LDA #H$32
49AD 9D ©@ DO STA $DEOY, X
49B@ ES8 INX

42B1 ES8 INX

4@B2 69 19 ADC #H%$19
49B4 EQ 10 CPX #%10
49B&6 D@ FS BNE $4@0AD
49B8 AZ 00 LDX H$Q0
49BA A9 @8 LDA #%08
49BC 9D 27 D@ STA $D@27,X
49BF 18 CLC

49CO 69 @1 ADC #%01
4@C2 ES8 INX

409C3 EQ 08 CPX #%08
49CS DO FS BNE $49BC
49C7 60 RTS

94

HIGH RESOLUTION
GRAPHICS

The Commodore 64 has probably the best graphics of any
home microcomputer around at this moment in time.
However, there are no commands in the ROM to utilise this
capability. You could write graphic routines in BASIC but
they are so slow that it would be barely worthwhile.
Contained in the pages to come is a graphics toolkit
complete with the following utilities—all in machine code.

Graph : Turns on the high resolution screen.

Nrm : Turns off the high resolution screen.

Colour : Sets the screen colour, border colour, text colour
and multi-colour colours 1, 2 and 3.

Clg : Clears and colours the high resolution screen.

Fill : Fills areas of memory with a byte, eg. the colour of
the high resolution screen.

Invert : Inverts an area on the high resolution screen or
memory, changes the byte 00010000 to 11101111.

Plot : Plots a point on the high resolution screen.

Unplot : Removes a point from the high resolution screen.

Char :Puts an eight by eight character on the screen (or

your own programmed characters).

Just to give you an example of the speed of these routines,
the CLG routine in BASIC would take 1 minute 22.71
seconds—yet in machine code CLG takes just 0.133
seconds. That's an improvement of 640 times!

All the commands presented here are accessed as ‘SYS’
commands, but in the next part of the book it will be
explained how they can be called from BASIC keywords.

Before we start I'd better explain how these commands are
able to take off variables from the BASIC text. This is done

95

using ROM routines (as was explained in the ROM dis-
assembly section) but to reiterate, they are as follows:

Routine

$AEFD : Checks if the next character in BASIC text is a
comma—if not it prints ‘SYNTAX ERROR’
message and returns to BASIC.

$ADBA : Evaluates an expression in BASIC text and puts it
in FAC.

$B7F7 : Converts the value in FAC into an integer in the
range zero to 65535 and puts the result in $14
(lo-byte) and $15 (hi-byte) and return to BASIC.

Firstly, let’s take a look at the command ‘graph’. What this
command does is switch on the high resolution screen which
is located at 24576 ($6000) and turn on the colour screen
which is located at 16384. The command stands on its own
to turn on the high resolution screen, type SYS 49152. (You
can also make the SYS calls variables, ie. GRAPH = 49152
and then type SYS GRAPH.)

CoO%8 A9 16 LDA #$16

Co@2 8D @99 DD STA $DDOQG
CP9S A9 ©8 LDA #$98

Co@”7 8D 18 DO STA $D@18
COoA AD 11 DO LDA $DO11
CoOD @9 20 ORA #H%$20

CQOOF 8D 11 D@ STA $D@11
Co12 69 RTS

Now here is the complementary command to ‘graph’. . .
‘NRM'. This turns the high resolution screen off and goes
back to the text screen, which is untouched by any high
resolution commands or operations in these routines (unlike
others). To use this command, type SYS 49171 or NRM =
49171 : SYS NRM.

CO13 A9 15 LDA #%1S5
Ca15 8D 18 D@ STA D@18
Co18 A? 1B LDA #$1B

96

Co1A 8D 11 D@ STA $D@11

C21D A9 17 LDA #$17
Co1lF 8D @9 DD STA $DD@@
Co22 &0 RTS

Now we need to clear the screen for use and the following
routine does just that. It fills the high resolution screen with
zeros and fills them with the colour specified in the command
‘colour’. The syntax for the command is SYS 49187, colour,
colour or CLG = 49187: SYS CLG, colour, colour. The two
‘colour’ instructions after the command are respectively the
foreground (dot) and the background colours. This is for 320
by 200 resolution graphics.

The command works using Indexed Indirect mode (STA
($FB),Y) to fill the 8000 bytes of the high resolution screen
with zeros and the colour between 16384 and 17383. The
colour control is as follows. . .

The high nibble (four bits) is the foreground colour and the
low nibble is the background colours in binary, eg. to get blue
lines (foreground) and a yellow background:

0111 0110
7 6
yellow blue

So, from the above example it can be seen that the byte is
binary 01110110 which is 118 in decimal. The program
calculates this and POKES the values into the colour
memory.

Co23 20 FD AE JSR $AEFD
Co26 20 8A AD JSR $ADS8A
C@29 20 F? BZ7 JSR $B7F7
Cag2C AS 15 LDA %15

CO2E F@ @3 BE@ #C@33
Co3g 4C 48 B2 JMP $B248
C@33 AS 14 LDA %14

C@35 8D 82 Co STA $C@82
Ca38 20 FD AE JSR $AEFD

97

C@3B
CO3E
co41
Ca43
c@45s
ca48
Co4A
C24B
c@4cC
ca4D
Ca4E
C@51
C@54
C@56
cas8
Cas5A
CasC
COSE
CR69
Co62
Ca63
Ca65
Co67
Co&9
CO6B
Co&D
Co79
Co72
Ca75
ca78
Co7B
CO7E
CO7F
ces1
ce82

8A
F7
15
23
48
14

AD
B?Z

B2

Ca
Cco

ca

49
41
42
43

JSR
JSR
LDA
BEQ
IMP
LDA
ASL
ASL
ASL
ASL
ORA
STA
LDA
STA
LDA
STA
LDY
LDA
STA
INY
BNE
INC
LDX
CPX
BNE
LDA
LDX
STA
STA
STA
STA
INX
BNE
RTS
BRK

$AD8A
$B7F7
%15
$C048
+B248
%14

$CP82
+CP82
H$00
$FB
H$60
$FC
H$00
HEOO
($FB), Y

SCH60
$FC

$FC
H$80
$CO6P
$CO82
H$00
$4999 , X
$41090, X
4209, X
$4300, X

®£CO72

Now, POKEing to achieve colour is a tedious operation.
Here is a routine that changes this—it allows you to enter
one command to change the border, screen, text and
multicolour 1, 2 and 3 colours. The syntax is SYS colour,

98

screen, border, text, multi1, multi2, multi3 (where ‘colour’ =
49379).

COE3 20 FD AE JSR $AEFD
COE6 20 26 C1 JSR %C126
COE9 AS 14 LDA %14
COEB 8D 21 D@ STA $D@21
COEE 20 FD AE JSR $AEFD
COF1 20 26 C1 JSR #C126
COF4 AS 14 LDA %14
COF6 8D 20 D@ STA D@20
COF9 28 FD AE JSR $AEFD
COFC 20 26 C1 JSR #C126
COFF AS 14 LDA %14
Cl101 8D 86 ©2 STA %8286
Cl@4 20 FD AE JSR $AEFD
Clo? 20 26 C1 JSR %C126
Cl9A AS 14 LDA %14
CleC 8D 22 Dg STA D@22
ClOF 28 FD AE JSR $AEFD
Cl12 20 26 C1 JSR $C126
Cl15 A5 14 LDA %14
C117 8D 23 D@ STA $D@23
Cl1A 20 FD AE JSR $AEFD
Cl11D 20 26 C1 JSR $C126
Cl120 AS 14 LDA %14
Cl122 8D 24 D@ STA D@24
Cl125 &0 RTS

C126 20 8A AD JSR $AD8A
Cl129 20 F7 B? JSR $B7F7
Cl12C AS 15 LDA %15
C12E D@ @1 BNE #C131
Cl130 &9 RTS

C131 4C 48 B2 JMP %B248

You might want to fill an area of the high resolution screen
or memory with a byte, eg. to fill the memory with NOP
commands or fill the high resolution screen with 255 (fill it in
completely). Well, here is a command that does this and the
syntax is SYS fill, start, finish, byte (where ‘fill' = 49283).

99

co83
c@86
ca89
co8cC
Co8E
Co9d
Ca92
ce94
CcCo97
Ca9A
Ca9D
CO9F
COA2
COA4
COA7
COAA
C@OAD
COBG
COB2
C@B4
C@B?
C@aB?
C9BC
C@BE
CaC1
CaC3
Cacsé
c@cs
COCB
C@CD
CoDg
ceD2
CoDS
CoD>?
C@2DA
C@DC
CODE
CODF
COE1L
COEZ2

20
29
20
AS
85
AS
85
20
20
29
AS
8D
AS
8D
29
29
29
AS
Fg
4C
AS
8D
AQ
AD
91
20
AS
CcD
Fg
4C

CD
Fa
4C
Eé
Fo
&9
E&
=1%)
69

FD

F2
14
FB
15
FC
FD

Fz
14
3C
13
3D
FD
8A
Fz
15
a3
48
14
3E
29
3E
FB
DA
FB
3C
a3
BC
FC
3D
2B
BC
FB
a1

FC

AE
AD
B7

AE
AD

23

a3

co

293

Co

a3

(o7

JSR $AEFD
JSR $AD8A
JSR ®B7F7
LDA %14
STA $FB
LDA €15
STA $FC
JSR $AEFD
JSR $AD8A
JSR €B7F7
LDA %14
STA €@33C
LDA %15
STA $833D
JSR $AEFD
JSR $ADSA
JSR $B7F7
LDA %15
BE@ $COB?
JMP %B248
LDA %14
STA $933E
LDY #H$0Q
LDA $933E
STA ($FB),Y
JSR $CODA
LDA $FB
CMP $©33C
BE®@ $COD@
IJMP %C@BC
LDA %FC
CMP %$@33D
BE®@ $CQOE2
JMP $CO@BC
INC %FB
BE@ *CODF
RTS

INC &FC
RTS

RTS

100

Say you don’t want to fill an area with a byte but you want
to invert|them for security reasons, or you want to invert a
picture turning every dot that is on to off and vice versa. Here

is just such a routine and the syntax is SYN invert, start,

finish (where ‘invert’ = 49920).
C399| 20 FD AE JSR SAEFD
€303\ 20 8A AD JSR $ADSA
C396| 20 F7 B7 JSR $B7F7
C3099| AS 14 LDA %14
C30B| 85 FB STA $FB
C30D| AS 15 LDA $15
C39F| 85 FC STA $FC
C311| 20 FD AE JSR $AEFD
C314| 20 8A AD JSR $ADSA
C317| 206 F7 B7 JSR $B7F7
C31A|AS 14 LDA 14
€c31C| 8D 3C @3 STA $033C
C31F| AS 15 LDA %15
€321|8D 3D @3 STA $@33D
C324| AP 90 LDY #%00
C326| A9 FF LDA HSFF
C328| 51 FB EOR (%FB),Y
C32A| 91 FB STA ($FB),Y
€32C| 20 43 C3 JSR $C343
C32F| AS FB LDA FB
€331/ CD 3C @3 CMP $@33C
C334|F@ @3 BEQ@ $C339
€336| 4C 24 C3 JMP $C324
C339| AS FC LDA sFC
C33B| CD 3D @93 CMP $@33D
C33E|FO OB BEQ@ $C34B
C349| 4C 24 C3 IMP $C324
C343|E6 FB INC $FB
C345|F@ @1 BEQ@ #C348
C347| 60 RTS
C348| E6 FC INC $FC
C34A| 60 RTS
C34B| 60 RTS

101

Now none of this is of any use if we cannot plot points on
the screen—the following routine will come in very useful.
The reason that the routine is fast is that it doesn’t use a lot of
loops to calculate the screen byte to POKE and the bit to set.
It does not loop at all, in fact; it uses tables of bytes to do this
and calculates the bit to turn on or off. This is what the
monitor after the disassembly is. The syntax of the command
is SYS plot,x,y (where ‘X’ is the X co-ordinate between zero
and 319, 'y’ is the Y co-ordinate between zero and 199 and
‘plot’ = 49464).

C134 A9 FF LDA #HEFF
Cl136 DO @2 BNE $C13A
C138 A9 @0 LDA #%00Q
C13A 8D E8 C1 STA $C1ES8
C13D 20 FD AE JSR $AEFD
Ci149 20 EB B? JSR %BY7EB
Cl143 E@ C8 CPX #%$(CS8
€145 B@ SE BCS #$C1AS
C147 AS 14 LDA %14
C149 C9 4¢ CMP #H$4Q
C14B AS 15 LDA %15
C14D E9 41 SBC #$01
C14F B@ 54 BCS $C1AS
C151 8A TXA

C152 4A LSR

C153 4A LSR

C154 4A LSR

C155 @A ASL

C156 A8 TAY

C157 B9 A6 C1 LDA $C1A6,Y
C15A 85 FD STA &FD
C15C B? A7 C1 LDA $C1AZ,Y
C15F 85 FE STA &FE
Cl61 8A TXA

Cle2 29 @87 AND H$97
Cl64 18 CLC

Cl165 65 FD ADC &FD
C167 85 FD STA $FD
Cl169 AS FE LDA SFE

102

Clé6B
C16D
Cl6F
c171
C123
Cl74
Cl176
c178
C179
Ci?B
C17D
Cl7F
ci181
€183
€185
c18s6
c188
C18A
c18C
C18E
C199
Cl192
C194
C197
C199
C19C
C19F
C1lAZ2
ClA4
C1AS

.:ClA6
.:Cl1AE
.:Cl1B6
.:C1BE
.:Cl1Cé6
.:CI1CE
.:C1Ds6

-3
85
AS
29
A8
AS
29
i8
65
85
AS
65
85
AS
18
69
85
AS
&9
85
A2
Al

2C
19
39
4C
19
81

69
69

.:C1DE
.:ClE6

o9
FE
14
o7

14
F8

FD
FD
FE
15
FE
FD

]
FD
FE
[-1%]
FE
29
FD
E8 C1
a6
Eg C1
A2 C1
D8 C1
FD

29 99
29 IS
299 9A
29 OF
99 14
299 19
98 1E
g2 91
FD FE

a9
49
49
49
49
49
89
7F
29

ADC
STA
LDA
AND
TAY
LDA
AND
CLC
ADC
STA
LDA
ADC
STA
LDA
CLC
ADC
STA
LDA
ADC
STA
LDX
LDA
BIT
BPL
AND
ImMpP
ORA
STA
RTS
RTS

g1 89
g6 80
2B 84
19 8¢
15 89
1A 89
48 29
BF DF
4C 48

103

HE00
SFE
%14
HE07

%14
HEF8

$FD
$FD
$FE
%15
$FE
%FD

H$00
$FD
$FE
H$60
SFE
HE0Q
($FD, X)
$C1E8
$C19F

$C1EQ, Y

$C1A2

$C1D8, Y

($FD, X)

92 Co
@7 Co
2C Co
11 C@
16 CO
1B C@
19 @8
EF F?
B2 20

23
28
2D
12
17
1C
24
FB
FD

There is a complementary command to ‘plot’. It is ‘unplot’
and it has the syntax SYS unplot,x,y (where unplot = 49460,
and ‘x’ and ‘y’ are the X and Y co-ordinates of the point to be
UNPLOTted (deleted)). It uses the same routine as the
command detailed above but with a different entry point.

Finally, we come to the last program relevant to high
resolution graphics. It is ‘char’ and allows you to put any text
character onto the high resolution screen. It works in the
same format as the text screen, ie. 40 columns by 25 rows.
The syntax is SYS char,x,y, character (where ‘character’ is
the POKE code of the character from zero to 255, ‘x’ is the X
co-ordinate of the position from zero to 39 and 'y’ is the Y
co-ordinate of the position from zero to 24 and char =
49644). Variables can be used in place of any number in any
of the above examples. If the value exceeds the allowed
amounts, then an ‘ILLEGAL QUANTITY’ error will occur.

Cl1E? 4C 48 B2 JMP $B248
Cl1EC 20 FD AE JSR $AEFD
ClEF 20 CB C2 JSR $CZ2CB
ClF2 AS 14 LDA %14
ClF4 C9 28 CMP #%28
ClFé BO F1 BCS $C1E9
C1lF8 8D F9 C2 STA &C2F9
C1FB 28 FD AE JSR $AEFD
CIFE 20 CB C2 JSR &C2CB
C201 AS 14 LDA %14
C203 C9 19 CMP #H$19
C20S BO E2 BCS #$C1E9
C207 8D FA C2 STA $C2FA
C20A AD F9 C2 LDA $C2F9%
C20D 8D F&6 C2 STA &C2F6
C219 A9 @8 LDA #%98
€212 8D F? C2 STA &C2F7
C215 20 D9 C2 JSR $C2D9
C218 AD F4 C2 LDA $C2F4
C21B 85 FB STA $FB
C21D AD FS C2 LDA $C2FS
C220 85 FC STA $FC

104

c222
Cc22S5
c228
c22A
C22D
C239
C233
C236
c239
C23C
C23E
c241
c244
c247
C24A
C24C
C24F
C259
c252
Cc254
c257
€258
C25B
C25E
C25F
C261
C2649
C265
C267
C26A
C26C
C26D
C279
c272
C274
c277
c279
c27C
C27F
cz281

AD
8D
A9
8D
28
AD
8D
AD
8D
A2
AD
6D
8D
AD
69
8D
CA
D@
A2
AD
18
&D
8D
CA
D@
AD
18
69
8D
AS
18
6D
85
AS
6D
85
20
29
AS
8D

FA
Fé
28
F7
D%
Fa
FE
FS
FF
27
Fa
FE
Fa
FS
20
FS

EC

-
s’

FS

FF
FS

F3
FS

&9
FS
FB

Fa
FB
FC
FS
FC
FD
CB
14
FC

c2
c2

c2
c2
c2
c2
c2
c2

c2
c2
c2
c2

c2

c2

c2

c2

AE
c2

c2

LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA
LDX
LDA
ADC
STA
LDA
ADC
STA
DEX
BNE
LDX
LDA
cLC
ADC
STA
DEX
BNE
LDA
CLC
ADC
STA
LDA
cLC
ADC
STA
LDA
ADC
STA
JSR
JSR
LDA
STA

SC2FA
$C2F&
HE28

$C2F7
$C2D7
$C2F4
$C2FE
SC2FS
&C2FF
HEG7

$C2F4
$C2FE
EC2F4
$C2F5S
H$00

$C2FS

$C23E
HE907
$C2FS

$C2FF
$C2FS

$C254
$C2FS

HB60
$C2FS
$FB

$C2F4
sFB
$FC
®C2FS
$FC
$AEFD
$C2CB
%14
$C2FC

105

c284
c287
C28A
€28C
C28F
C292
€295
c297
C29A
C29B
Cc29D
C29F
C2A1
C2A4
C2AS
C2A7
C2A9
C2AB
C2AD
C2AF
C2Bl1
C2B3
C2BS
C2B7
C2B9
CZBB
CZ2BE
€2C1
C2C3
C2CS
cacz
C2C9
C2CA
C2CB
C2CE
C2D1
Cc2D3
C2DS
c2D8
C2D9

FC
Fé
@8
F7
D%
Fa
FD
FS

D@
FE
a9
F8

33
a1
o9
FD
FB
FB

2
<~

FC
FD
a2
FE
F8
F8
a8
E&
37
a1

8A
F7
15
23
48

29

c2

AD

B2

LDA &CZ2FC
STA $C2F6
LDA #%08
STA $C2F7
JSR #C2D9
LDA $C2F4
STA $FD
LDA $C2F5S
cLC

ADC HEDO
STA $FE
LDA HH0Q
STA ®CZ2F8
SE1I

LDA #$33
STA 01
LDY #%0Q
LDA ($FD),Y
STA ($FB),Y
INC $FB
BNE %C2B5
INC $FC
INC %FD
BNE $C2BB
INC $FE
INC $C2F8
LDA %CZ2F8
CMP #3098
BNE $C2AB
LDA #3337
STA %01
cLI

RTS

JSR $ADSA
JSR ®B7F7
LDA $15
BE® $C2D8
JMP $B248
RTS

LDA #H&00

106

C2DB 8D F4 C2 STA $C2F4

C2DE A2 @8 LDX #$98
C2E@ 4E F6 C2 LSR $C2Fé
C2E3 99 @4 BCC $CZ2E9
C2ES 18 CLC
C2E6 6D F?7 C2 ADC $C2F7
C2E9? 6A ROR
C2EA 6E F4 C2 ROR $C2F4
C2ED CA DEX
C2EE D9 Fg@ BNE $C2E®@
C2F@ 8D FS C2 STA $C2FS
C2F3 &4 RTS
C2F4 og BRK
C2FS 99 BRK
C2F&6 2@ BRK
C2F7 29 BRK
C2F8 @9 BRK
C2F9 @g BRK
C2FA 99 BRK
C2FB @¢ BRK
C2FC ©@ BRK
C2FD 9@ BRK
C2FE o8 BRK
C2FF @9 BRK

Here is a BASIC program that demonstrates the use of the
above commands:

@ GRAPH=49152:NRM=49152+19:CLG=49152+35
10 FILL=49283:COLOUR=49379:PLOT=49464
28 UNPLOT=49460:CHAR=49644: INVERT=49920
39 SYSCOLOUR,®,9,7,1,2,3

49 SYSGRAPH

S¢ SYSCLG,@,7

55 PRINT"{CLR}HIRES GRAPHICS ''! - CIRCLES"
69 FORA=@TO39

78 SYSCHAR,A, 19,PEEK(1024+A)

8@ NEXT

99 C=110:D=100

190 FORA=@TO06.5STEPQ.Q1

107

119 X=CH*SIN(A) +16@:Y=DXCOS(A) +190
128 SYS PLOT,X,Y

138 NEXT

140 Y=@:FORX=@TO319STEP2

159 SYSPLOT,X,Y:SYSPLOT,X+1,Y
160 SYSPLOT,319-X,Y:!SYSPLOT,319-X-1,Y
178 Y=Y+1:NEXT

188 FORA=@TO319

199 SYSPLOT,A,®

200 SYSPLOT,A, 199

219 NEXT

220 FORA=0TO199

239 SYSPLOT,d,A

249 SYSPLOT,319,199-A

25@ NEXT

268 SYSINVERT, 24576, 32768

270 FORR=0TOS99:NEXT

280 SYSINVERT, 24576, 32768

299 FORA=9T0255

300 SYSFILL,16384,17383,A

319 NEXT

320 FORR=@GTOS5@0:NEXT

330 RUN

108

ADDING COMMANDS TO
BASIC

There are many ways of adding commands to BASIC, but
the method that | am going to use here is moving BASIC into
RAM and altering it to suit our purposes. This section will
explain how to add the following new commands to the
BASIC language:

GRAPH : Turns on the high resolution screen.

NRM : Turns off high resolution screen.

CLG : Clears the high resolution screen.

FILL : Fills areas of memory with a byte.

CHAR : Puts a character on the high resolution screen.

COLOUR :Changes the border, screen, text and
multi1,2,3.

PLOT :'Plots a point on the high resolution screen.

UNPLOT :Removes a point from the high resolution
screen.

APND : Loads a BASIC program into memory at a
certain address.

PROG :Goes to a BASIC program at a specified
address.

oLD : OLDS a NEWed program.

MSAVE : Saves a specified area of memory.

MLOAD :Loads a program into a specified area of
memory.

MVERIFY : Verifies a program from a specified area of
memory.

INVERT :lInverts an area of memory.

OFF : Turns off NEW BASIC and returns to normal
BASIC.

Before we start altering anything, though, we must copy
the BASIC ROM to the RAM directly behind it. This is far too
slow in BASIC, so use the following machine code program:

Coo8 AQG 09 LDY #%$00
Cod2 A9 9O LDA H$QOQ

109

C294 85 FB STA &FB

Cogsée A9 AQ LDA HS$AQ
C@e8 85 FC STA $FC
COoA Bl FB LDA (%FB),Y
CPeC 91 FB STA ($FB),Y
COOE C8 INY

COOF D@ F9 BNE $CO0OA
C@11 E6 FC INC &FC
C@13 AS FC LDA &FC
Ca1S C9 CO CMP H$CO
Co17 99 F1 BCC $COOA
Ca19 &0 RTS

To make the necessary changes for the computer to
operate in the RAM BASIC, all that is required is to switch out
ROM BASIC and switch RAM BASIC in. This is done if you
POKE 1,54.

A BASIC keyword is stored as ASCII characters, with the
last character having bit seven set to tell the computer that
the end of the keyword has been reached, eg. the command
‘END’ is stored in memory like this:

69 e
78 n
196 D (ASClliofd+ 128)

Therefore, to make our keyword work we must change the
values in these locations; we must also keep the keyword the
same length and set bit seven of the last letter. To change
the command ‘END’ to ‘CLG’ the following values must
replace the above:

67 c
76 I
199 G (ASCllofg+ 128)

The keywords are stored in the BASIC ROM from
locations $AQ9E to $A19D, and the vectors for the routines
that they jump to are located from $A00C to $A09D. They list
as follows:

110

KEY- LOCATION OF

WORD KEYWORD VECTOR STORED AT ROUTINE
enD 41118-41120 40972-40973 43056
foR 41121-41123 40974-40975 42817
nexT 41124-41127 40976-40977 44317
datA 41128—41131 40978-40979 43255
input# 41132-41137 4098040981 43940
inpuT 4113841142 40982—40983 43966
diM 41143-41145 40984—-40985 45184
reaD 41146-41149 40986-40987 44037
leT 4115041152 40988-40989 43428
gotO 41153-41156 4099040991 43167
ruN 41157-41159 40992—40993 43120
iF 4116041161 4099440995 43303
restorE 41162-41168 4099640997 43036
gosuB 41169-41173 4099840999 43138
returN 4117441179 4100041001 43217
reM 4118041182 41002—41003 43322
stoP 4118341186 4100441005 43054
oN 41187-41188 4100641007 43338
waiT 41189-41190 41008—41009 47148
loaD 41193-41196 4101041011 57703
savE 41197-41200 4101241013 57685
verify 41201-41206 4101441015 57700
deF 41207-41209 4101641017 46002
pokE 41210-41213 4101841019 47139
print# 41214-41219 4102041021 43647
prinT 4112041124 41122-41123 43679
conT 4112541128 41024-41025 43094
lisT 41129-41132 4102641027 42651
clR 4123341235 41028-41029 42589
cmD 41236—41238 41030—41031 43653
syS 4123941241 4103241033 57641
opeN 4124241245 41034-41035 57789
clost 4124641250 41036—41037 57798
geT 41251-41253 41038-41039 43898
neW 4125441256 4104041041 42561
tab(41257-41260 4104241043 48185
tO 41261-41262 41044-41045 48332
fN 4126341264 4104641047 48216
spc(41265-41266 4104841049 784
theN 4126941272 41050—41051 45949
noT 4127341275 41052—41053 45982
steP 4127641279 41054—-41055 49009

To change the address that the command goes to when
executed, all you need to do is to change the address in

111

lo-/hi-byte order in the locations stated above. For example,
we will change the ‘END’ command (now ‘CLG’) to go to
49152. The lo-byte of 49152 is zero and the hi-byte is 192
(0+256*192 = 49152).

The vector for the ‘END’ command is at locations 40972
and 40973 ($A00C and $A00D). Therefore, to make the
‘END’ command go to 49152 when called, you must POKE
(or LDA/STA) 40972 with zero and 40973 with 192. Now
when you type ‘END’ (or ‘CLG’ if you have changed the
command), the computer will jump to 49152. (Remember to
turn on the NEW BASIC with POKE 1,54.)

To demonstrate this, we will now add our first command to
BASIC. . .GRAPH. I will demonstrate this by going through
every step. (This procedure should not be necessary for
each command.)

Firstly write the code. We will use the same code for SYS
GRAPH as in the high resolution graphics section. The only
change needed to any of the commands in the previous
section is that we miss out the first comma (check if there is
one). The code is therefore as follows:

A CO29 LDA #H$16
A CPQE2 STA $DDOO
A CO9S LDA #%08
A CO9@” STA $D@18
A COOA LDA $DE11
A COOD ORA HE29
A COOF STA $D@11

A C@12 RTS

112

Now we need to replace a command with the command
‘GRAPH’. The command that we replace the ROM com-
mand with must be the same length or greater than our new
command. For this example, we will use the command
‘CLOSE'. The data for this keyword is stored from locations
41246-41250. Therefore, we replace the characters with the
following data:

71
82
65
80
200

TO ® ~@

Now we need to change the address that the command
goes to when called; these addresses, according to the
above chart, are 41036 and 41037. So we put the lo-byte
(zero) into 40136 and the hi-byte (192) into 40137.

Now, if you type ‘GRAPH’ the high resolution screen will
be turned on. To get back to the text screen, type SYS
49152+19 if you have the ‘norm’ machine code in memory
(otherwise, press Run/Stop and Restore).

Let us now add a command that needs parameters—for
example, ‘CLG’. | will replace the command ‘DEF’ with
‘CLG'. ‘DEF is located from locations 41207-41209, so we
POKE the following values into 41207-41209:

67 ¢
76 |
199 G (71+128)

Now we need to change the values in the vector that the
command is called from. These values are located from
41016-41017. The CLG routine is located at 49187, so we
POKE 41016 with 35 (the lo-byte) and 41017 with 192 (the
hi-byte), ie. 49187256 = 192.1337. So the hi-byte is 192.
Now multiply the remainder by 256, i.e. .1337*256 = 35.

113

The SYS CLG routine starts with a ‘JSR $AEFD’ com-
mand. This is just to separate the number after the SYS from
the parameters coming after. As the commands we are using
have no numbers in their keywords, we do not need this
comma check. The CLG routine is as follows:

Ce23 20 8A AD JSR $ADSBA
Co26 20 F? B?7 JSR $B7F7
C@29 AS 15 LDA %15
Co2B FO &3 BEQ $C@39
C@2D 4C 48 B2 JMP $B248
CO38 AS 14 LDA %14
Co32 8D 7F C@ STA $C@7F
CO35 20 FD AE JSR &AEFD
C@38 20 8A AD JSR $ADBA
C@3B 20 F? B7 JSR &B7F7
CO3E AS 15 LDA %15
Co49 F@ @3 BE@ $C©@45
C@42 4C 48 B2 JMP %B248
Co45 AS 14 LDA %14
Ca47 GA ASL

co48 @A ASL

Co49 @A ASL

Co4A ©A ASL

Co4B 9D 7F C@ ORA $C@7F
CO4E 8D 7F C@ STA $CO7F
COS1 A9 @9 LDA H$Q9
C@OS3 85 FB STA &FB
C@S5 A9 &9 LDA #$60
C@g57 85 FC STA &FC
COS9 AQ 99 LDY #H$00
COSB A9 09 LDA #$00Q
COSD 91 FB STA ($FB),Y
COSF C8 INY

Co&Qd DO FB BNE $C@S5SD
C@62 E6 FC INC &FC
C@64 A6 FC LDX $FC
Co66 EQ 8O CPX #%80
Co&68 DG F3 BNE $C@5D
CO6A AD 7F C@ LDA $C@7F
Co6D A2 09 LDX H%90

114

CO&6F 9D 99 49 STA 44000, X

Co72 9D 99 41 STA %4100, X
Co75 9D @@ 42 STA %4200, X
Ce78 9D @@ 43 STA $4309, X
CoP7B ES8 INX

Co7C DO F1 BNE $C@&F
CO7E 69 RTS

To clear the screen using ‘CLG’, type CLG background
colour, line colour (where the colours are the usual Commo-
dore numbers, i.e. 0=black, 7=yellow, etc.)

Now we will add the rest of the commands as one, and use a
short BASIC program to enter the commands and their
vectors into RAM. The BASIC will also contain the ROM to
RAM routine shown earlier in this section. The way to type
this in is to type in all the machine code into the computer and
save itusing SUPERMON. Then type in and save the BASIC
program. Now, RUN the BASIC program. The program will
load the machine code from tape or disk depending upon
which you specify by altering the line number in line 0.

Co08 A9 16 LDA #%16
Co@2 8D @6 DD STA $DDOQ
Co@S A9 @8 LDA #%08
Ce@? 8D 18 DO STA D@18
CooA AD 11 DO LDA $DO11
Co@D @9 20 ORA #%$20
CooF 8D 11 D@ STA D@11
Ca12 &0 RTS

Cg13 A9 1S LDA #%15
C@15 8D 18 DY STA $Dg@18
Co18 A9 1B LDA #%1B
C21A 8D 11 D@ STA $D@11
Co1D A9 17 LDA #%17
C@1F 8D @9 DD STA $DDOQY
Co22 &9 RTS

Ce23 20 8A AD JSR $AD8A
Co26 20 F?7 BZ JSR $B7F?7
Co29 AS 1S LDA %15
CO2B F@ 93 BEQ $C@30

115

Co2D
Co39
Co32
C@3S
Ce38
CO3B
CO3E
co49
coa42
c@4S
Cca47
c@a48
Ca49
C@4A
Co4B
CO4E
C@S1
Co53
C@55
CcCos57
Ca59
C@5SB
C@5SD
COSF
Co60
Co62
Cas64
Co66
Cas8
CO6A
C@6D
CO6F
Co72
Ca7s
cazs8
Ca7B
ce7C
C@7E
CO7F
Co8d

4C
AS
8D
29
29
29
AS
Fo
4C
AS
BA
gA
A
A
2D
8D
A9
85
A9
85
AQ
A%
?1
c8
Do
Eé
A6
EQ
Do
AD
A2
@D
9D
2D
2D
E8
D@
69
o9
29

48
14
7F
FD
8A

-
s

15
23
48
14

FB
FC
FC
8g
F3
7F
29
29
929
29
o9

F1

8A

B2

Co
AE
AD
BZ

B2

co
co

Co

49
41
42
43

AD

JImP
LDA
STA
JSR
JSR
JSR
LDA
BE®
JIMP
LDA
ASL
ASL
ASL
ASL
ORA
STA
LDA
STA
LDA
STA
LDY
LDA
STA
INY
BNE
INC
LDX
CPX
BNE
LDA
LDX
STA
STA
STA
STA
INX
BNE
RTS
BRK
JSR

116

$B248
%14

SCA7F
$AEFD
$AD8BA
EB7F7
%15

$CP45
%B248
%14

SCH7F
SCO7F
H$OO
$FB
H$60
$FC
HEOO
HEOQ
($FB), Y

SCHSD
SFC

$FC
#$80
$CESD
SCO7F
HE00
$40900, X
$4100, X
4200, X
4309, X

$CO6F

$AD8A

Cc@83
co8es
co8s
CO8A
ca8C
C@8E
Co91
ce94
Co97
Ca99
Ca9C
CO9E
COAL
CoA4
COA7
COAA
COAC
COAE
C@B1
C@B3
C@B6
CoB8
CoPBB
C@BD
CoCo
cec2
CaCS
cecz
CBCA
c@cc
COCF
C@D1
C@D4
CaD6
CoD8
CoD9
CoDB
CeDC
CoDD
COEQ

20
AS
85
AS
85
29
20
29
AS
8D
AS
8D
290
29
29
AS
FQ
4C
AS
8D
AQ
AD
?1
29
AS
CD
Fa
4C
AS
CD
Fo
4C
Eé
Fo
=Y}
Eé
=Y}
69
20
AS

F?
14
FB
15
FC
FD
8A
F7
14
3C
15
3D
FD
8A
F?
15
a3
48
14
3E
299
3E
FB
D4
FB
3C
a3
Bé&
FC
3D
2B
B&
FB
a1

FC

1D
14

B?

AE

AD

B7

a3

a3

AE

AD

B7

B2

a3

a3

(947

a3

(o4 7]

a3

cg

(08 §

JSR
LDA
STA
LDA
STA
JSR
JSR
JSR
LDA
STA
LDA
STA
JSR
JSR
JSR
LDA
BE®
JIMP
LDA
STA
LDY
LDA
STA
JSR
LDA
CHMP
BE@
JIMP
LDA
CMP
BEQ@
IMP
INC
BE®
RTS
INC
RTS
RTS
JSR
LDA

117

$B7F7
$14
$FB
%15
$FC
$AEFD
$ADSA
$B7F7
%14
+033C
$15
$@3I3D
$AEFD
$ADSA
$B7F7
$15
$COB1
+B248
%14
$@3I3E
H$00
$@IIE
($FB), Y
+COD4
$FB
$933C
$COCA
#COB6
$FC
$@3I3D
$CODC
$CPB6
$FB
$CODY

SFC

$C11D
%14

CoE2
CBES
COES
COEB
COED
COFQ
COF3
COF6
CoF8
COFB
COFE
Cio1
C183
Clo6
Cl1a9
Cl1aC
Cl10E
ci11
Cl14
c11?
Cl119
c11cC
C11D
C129
Cc123
C125
c127
c128
C12B
C12D
Cl12F
C131
C134
C137
C139
C13B
C13D
C13F
C141
€143

8D
20
29
AS
8D
20
20
AS
8D
29
29
AS
8D
20
20
AS
8D
29
29
AS
8D
69
29
28
AS
Do
1-1%]
4C
A9
D@
A9
8D
20
E@
B@
AS
co
AS
E?
B@

21
FD
1D
14
29
FD
iD
14
86
FD
1D
14
22
FD
1D
14
23
FD
1D
14
249

8A
Fz
15
a1

a8
FF
o2
o9
DC
EB
cs
SE
14
4@
15
o1
54

Do
AE
Ci1

D@
AE
Ci1

a2
AE
C1
D@
AE
C1
D@
AE
C1
D@

AD

B2

ci1
B?

STA
JSR
JSR
LDA
STA
JSR
JSR
LDA
STA
JSR
JSR
LDA
STA
JSR
JSR
LDA
STA
JSR
JSR
LDA
STA
RTS
JSR
JSR
LDA
BNE
RTS
JIMP
LDA
BNE
LDA
STA
JSR
CPX
BCS
LDA
CMP
LDA
SBC
BCS

$Do21
$AEFD
$C11D
%14

$DO20
$SAEFD
$C11D
%14

9286
$AEFD
$C11D
%14

€D@22
$AEFD
$C11D
%14

$DP23
SAEFD
$C11D
%14

D224

$AD8A
$B7F7
%15

%C128

%$B248
HEFF
%C131
HEOQ
$C1DC
$B7EB
HEC8
$C199
%14
HE49
%15
HE01
$C199

118

€145
Cl146
€147
ci148
€149
C1l4A
Ci14B
Cl4E
C150
C153
C155
C156
c138
C159
C15B
C15D
C15F
Cl61
C143
C165
Cle7?
C168
Clé6A
C16C
C16D
C16F
C1271
C173
C17S
C177
Cc129
C17A
c17C
Cl7E
c189
c182
€184
c186
c188
C18B

8A
qA
4A
4A
2A
A8
B9
85
B9
85
8A
29
18
65
85
AS
&9
85
AS
29
A8
AS
29
18
65
85
AS
65
85
AS
18
&9
85
AS
&9
85
A2
Al
2C
10

A
FD
9B
FE

FD
FD
FE
o9
FE
14
a7

14
F8

FD
FD
FE
15
FE
FD

o9
FD
FE
&9
FE
299
FD
DC
1.

C1

C1

Ci1

TXA
LSR
LSR
LSR
ASL
TAY
LDA
STA
LDA
STA
TXA
AND
CLC
ADC
STA
LDA
ADC
STA
LDA
AND
TAY
LDA
AND
cLC
ADC
STA
LDA
ADC
STA
LDA
CLC
ADC
STA
LDA
ADC
STA
LDX
LDA
BIT
BPL

$C19A,Y
$FD
$C19B, Y
$FE

HEO7

%FD
SFD
SFE
HEOQ
$FE
%14
HEG7

%14
HEF8

$FD
%FD
SFE
%15
$FE
%FD

HEOD
$FD
$FE
HS6D
$FE
HEGD
($FD, X)
$C1DC
$C193

119

c18D
C190
C193
C196
Cc198
C199

.:C19A
.:Cl1A2
.:ClAA
.:C1B2
.:C1BA
.:C1C2
.:C1CA
.:C1D2
.:C1DA

C1iDD
ClE®@
C1E3
C1ES
ClE?
ClE9
ClEC
ClEF
CiF2
CiF4
ClFé
C1lF8
Cl1FB
CIiFE
c201
C203
C206
C209
c209C

39
4C
19
81
&9
(-1

4C
29
AS
c9o
B@
8D
29
29
AS
co
BO
8D
AD
8D
A9
8D
20
AD
85

2]
a9
<]
29
o9
o9
29
a2
FD

D4 C1i
%6 C1
CCc Ci1

FD

a8
BC
14
28
Fa
EA
FD
BC
14
19
ES
EB
EA
E7
o8
E8
CA
ES
FB

o8 49
25 48
2A 49
OF 49
14 4@
19 44
1E 80
21 7F
FE 20

c2

c2
AE
c2

c2
c2
c2

c2
c2
c2

AND €C1D4,Y

JMP $C196

ORA $C1CC,Y

STA
RTS
RTS

g1 8@
@6 84O
2B 808
19 80
15 8¢
1A 89
49 20
BF DF
4C 48

ImMP
JSR
LDA
cMP
BCS
STA
JSR
JSR
LDA
CMP
BCS
STA
LDA
STA
LDA
STA
JSR
LDA
STA

120

($FD, X)

22 Cg
a7 Co
8C Co
11 Co
16 Co®
1B C@
19 @8
EF F?
B2 20

%B248
$C2BC
%14
#$28
$C1DD
$C2EA
$AEFD
$C2BC
%14
HE19
%C1DD
$C2EB
$C2EA
$C2E7
H$08
$C2ES8
$C2CA
$C2ES
$FB

a3
a8
2D
12
17
1C
a4
FB
BC

C2€¢E
c211
CZ213
C216
c219
C21B
C21E

0

o000
M
NS

@)
=)

9] OoO0O0O0n
Jaddboddsd DWW WNNNNR
caMNMOYOUNW~ODOOW®MMNT >

o000
NNMNNNMNMNNMNNRNNRNNRNRNRDNNRFNNRDR

OO0O0O000 00

4]

AD
85
AD
8D
A9
8h
29
AD
8D
AD
8D
A2
AD
6D
8D
AD
&9
=3)
CA
Do
A2
AD
18
sD
8D
CA
Do
AD
18
69
8D

18
6D
85
AS
&D
85
20
2¢

Eé
FC
EB

-
s

28
ES8
CA
ES
EF
Eé
Fg
a7
ES
EF
ES

29
E&

EC
a7
Eé

Fa

F3
E&

1-Y7]
Eé
FB

ES
FB
FC
E&
FC
FD

EC

0
M

0

0
VI

0Oon

]

O
NN MNNRN

0oon
M

AE
c2

LDA
STA
LDA
STA
LDA
S5TA
JSR
LDA
STA
LDA
STA
LDX
LDA
ADC
STA
LDA
ADC
STA
DEX
BNE
LDX
LDA
CcLC
ADC
STA
DEX
BNE
LDA
CcLC
ADC
5TA
LDA
CLC
ADC
STA
LDA
ADC
STA
JSR

JSR

121

HESQ
$C2E6
%FB

HSC2ES
+FB
$FC
*C2E6
$FC
$AEFD

£C2BC

v 0000 00w W
O ANAQMOW

222220
O bR M

OO0 00000000000 0a0n0n
NN R NNNNNNPN f“g MON N NN MNNRNR
9]

>
M

85
A9
8D
78
A9
85
Ag
El
21
Es
Do
Es

D& o

E&
EE
AD
c?
De

85

58

20
20
AS
Fo
4c

14
ED
ED

joj<]
FE
“@a
E9

33
@1
o9
FD
FB
FB
g2

Oonon
AV

[N

F-
cz2

AD
B?

LDA %14
STA $C2ED
LDA $C2ED
STA $C2EV
LDA #3098
STA $C2EE
JSR $C2CA
LDA $CZES
STA $FD
LDA $C2ES
CLC

ADC HEDE
STA $FE
LDA HE@@
STA $C2E?
SEI

LDA #H%33
STA %91
LDY HE9QG
LDA (&FD),Y
STA ($FB),Y
INC &FE
BME $C2A6
INC $%FC
INC sFD
EME $C2AC
INC $FE
INC $C2E®
LDA $C2E?
CMP HEG38
BNE $C29C
LDA #%37
STA $41
CLI

RT3

JSR $ADSA
JSR $B7F7
LDA %15
BEQ $C2C?
JMP $B248

122

Cc2C?
C2CA
cz2cc
C2CF
C2D1
c2Dh4
C2Dé&
c2Db7
C2DA
C2DB
C2DE
C2DF
C2E1
C2E4
C2ES
C2Eé&
C2E?
C2ES
C2E®9
C2EA
C2EB
C2EC
C2ED

C2EE ¢

CZEF
C2F@
C2F1
C2F4
C2F7
C2F9
C2FB
C2FD
C2FF

C382 2

C39S
C388
C3@A
C36D
C30F
C312

[93%]
ES
a8

-
s

a4

ES

ES

Fa

c2

AD

AE
AD
BY

RTS
LDA
STA
LDX
LSR
BCC
cLC
ADC
ROR
ROR
DEX
BNE
STA
RTS
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
BRK
JSR
JSR
LDA
STA
LDA
STA
JSR
JSR
JSR
LDA
S5TA
LDA
S5TA
LDY

123

HEGD
FC2ES
#5038
SC2EY
$C2DA

$ADSA
$B7F7
%14
SFE
$15
$FC
$AEFD
SADSA
$B7F7
%14
$@33C
%15
$@3I3ID
H$00

€314 A9 FF LDA #HSFF
C31% S1 FB EOR (&FB),Y
€318 91 FB STA ($FB),Y
C31A 28 31 C3 JSR $C331
C31D AS FB LDA %FB
C31F €D 3C @3 CMP $@33C
C322 F9 @3 BEQ %C327
€324 4C 12 C3 JMP $C312
C327 AS FC LDA &FC
€329 CD 3D &3 CMP $@33D
C32C F@ @B BE@ $C339
C32E 4C 12 C3 IMP $C312
C331 E& FB INC $FB
C333 Fg &1 BRE®@ $C3386
C335 &© RTS

C335 ES FC INC %FC
C338 &€ RTS

C339 &9 RTS

C33A A9 37 LDA H$37
C33C 85 g1 STA %01
C33E &@ RTS

C33F A9 FF LDA H&FF
C341 AQ 41 LDY #$91
€343 91 2B STA ($2B) .Y
€345 20 33 AS JSR $A533
€348 AS 22 LDA %22
C34A 18 CLC

C34B 69 @2 ADC #H$Q2
€34Dp 85 2D STA $2D
C34F AS 23 LDA %23
C351 69 @94 ADC H$9Q9
C353 &5 2E STA $2E
C355 4C SE A6 IMP $A&65E
C3598 2¢ D4 Et JSR $E1D4
C3SB 24 FD AE JSR $AEFD
C35E 2€ 8A AD JSR $ADSA
C361 28 F7 B7 JSR $BVFY
C364 AS 14 LDA %14
C366 48 PHA

C367 AS 1S5 LDA %15

124

C369
C36A
C36D
C379
€373
C375
C327
c378
C37A
C37B
C37D
C37F
c382
c384
C38s8
€389
C38B
c38D
C39@9
C393
C39s5
C399
C39B
C39D
C39F
C3AZ
C3AS
C3A8
C3AA
C3AC
C3AE
C3B1
C3B2
C3E4
C3B&
C3B?
C3BC
C3BE
C3Co
C3C3

85

FD
8A
F7
14
15

FC

NN
mo

)]

AE
AD
B

El

El
AE
AD

E1l
AE
E1l

El

BD
AS

BD
AS

PHA
JSR
JSR
JSR
LDX
LDY
PLA
STA
PLA
STA
LDA
IMpP
LDA
STA
JIMP
LDA
STA
J5R
JSR
JSR
JSR
LDA
LDX
LDY
JIMP
JSR
JSR
LDA
LDX
LDY
JIMP
NOP
LDA
LDX
JSR
ImMpP
LDA
LDX
JSR
ImMpP

HAEFD
$ADBA
EBYFY
%14
%15

$FC

&FE
HEFB
$E15F
HED1
EOA
$C38D
HEOO
$OA
$E1D4
$AEFD
EADEA
$B7F 7
E0A
%14
%15
$EL7S
EAEFD
$E1D4
HEO
2
E2E
$E17S

S2E
$2D
$EDCD
HAS33
$2E
&2D
$BDCD
HASI3

125

¢ ifx=@thenx=1!load"basicode",8,1
1¢ a=8

29 readb!ifb=-1thenl130

38 poke32768+a,b

4¢ a=atligotol2@

?@ data 160,4,15689,8,133,251
8¢ data 169,166,133,252

99 data 177,251,145,251,200
198 data 208,249,239,252
118 data 165,252,201,192
12¢ data 144,241,96,-1

138 sys32768

149 reada,b:ifa=-1then299
159 hi=int(b/258):10=((b/256)-hi) ¥256
160 pokea,lo:pokea+l, hi

178 gotoldg

208 reada,a$

205 ifa=-1then399

219 forb=itolen(as)

2290 c=ascimid${a$,b, 1))

239 pokeatb-1,c

240 next

259 goto299

389 print"new basic enabled"
310 pokel,Sd4:end

1988 rem graph = input

1916 data 49982,49151

1920 rem nrm = dim

1438 data 49984,49178

1648 rem clg = let

19560 data 940988,49186

1869 rem +ill = save

1870 data 41612,49279

1988 rem colour = print#
1990 data 41029,49372

116@ rem plot = wait

11109 data 410998,49454

1120 rem unplot = input#
1138 data 49989,49459

1148 rem char = cont

126

11508
1169
1178
1180
1198
126¢
1219
1224

12348
1249
1258
1260
1279
1289
1299
13ea
1319
1329
133@
1509
1519
1529
153508
1549
15509
15690
1570
15808
1599
1660
1610
1620
1630
1649
1659
1668

data 41624,495631
rem invert = verify
data 416814,49994
rem off = run

data 49992,49977
rem old = de+t

data 41016,49982
rem msave = print
data 41922, 59907
rem mload = close
data 41936,500956
rem mverity= restore
data 4€0996,359949
rem apnd = tab(
data 41042,59981
rem prog = stop
data 41094,5901487
data -1,-1

data 41138, "grapH"
data 41143, "nrm"
data 41150, "cl1G"
data 41197,"filL"
data 41214, "colouR"
data 41189, "ploT"
data 41132, "unploT"
data 41225, "chaR"
data 41281, "inverT"
data 41157, "ofF"
data 41207,"olD"
data 412249, "msavE"
data 41246, "mloaD"
data 41162, "mverifY"
data 41257, "apnD"
data 41183, "proG"
data-1,-1

127

Once you have RUN the BASIC program the new
keywords will be in place and ready for use. Here is a list of
all the commands, what they are used for and what their

syntax is.

GRAPH
NRM
CLG

FILL
COLOUR

PLOT

UNPLOT

CHAR

INVERT

OFF
OoLD

: Turns on the high resolution screen (syntax. . .
GRAPH).

: Turns off the high resolution screen (syntax. ..
NRM).

: Clears and colours the high resolution screen
(syntax ... CLG background colour, foreground
colour).

: Fills memory with a byte (syntax . . . FILL start,
finish, byte).

: Sets the screen, border, text and multi1, 2 and
3 colours (syntax . . . COLOUR screen, border,
text, multi1, multi2, multi3).

: Plots a point on the high resolution screen
(syntax...PLOT X,Y—where ‘X’ is from zero to
319 and 'Y’ is from zero to 199).

: Removes a point from the high resolution
screen (syntax . . . UNPLOT X,Y—the same
restrictions apply as with PLOT).

: Puts an eight by eight character on the high
resolution screen in the text format (syntax . . .
CHAR XY, character—where ‘X’ is from zero to
39, 'Y’ is from zero to 24 and ‘character’ is the
POKE code of the character from zero to 255).
Inverts an area of memory (EORs it with
#$FF). On the high resolution screen this turns
every ‘on’ pixel off and every ‘off pixel on
(syntax ... INVERT start, finish).

: Turns off NEW BASIC and returns to normal
BASIC (syntax . . . OFF).

- Restores a BASIC program inadvertently
NEWed. This will only work if no variables have
been defined before the NEW, and no program
lines have been entered (syntax . . . OLD).

128

MSAVE : Saves an area of memory onto tape or disk.
This can be loaded with the ‘MLOAD’ command
or LOAD“name”, device,1 (syntax...
MSAVE“name”, device, 1, start, address+1).

MLOAD :Loads a program from disk or tape into
memory starting at the location specified
(syntax . . . MLOAD“name”, device, 1, start).

MVERIFY : Verifies a program on tape or disk with the one
in memory starting with the location specified
(syntax . . . MVERIFY“name”, device, 1, start).

APPEND : This routine allows you to load a number of
BASIC programs into memory at once and
using the ‘PROG’ command, access each one
individually. The program raises the bottom of
memory each time the next program is called.
To find out the address use the ‘PROG’ com-
mand to find the start address of the program
and POKE 43 with the lo-byte and 44 with the
hi-byte (syntax . . . APPEND“name”, device,0).

PROG : This command tells you the starting address of
the BASIC program just loaded into memory. It
must also be used before RUNning a BASIC
program in memory as it tells you the address of
the BASIC program and re-chains the BASIC
lines so that the computer can understand what
the lines mean.

If you press the Run/Stop key and the RESTORE key
together at any time and you want to use the new commands
again, you must type POKE 1,54,

Here are a couple of programs that demonstrate the use of
the new commands. The first one is a demo, and the second
allows you to draw a picture on the screen. instructions are
included within the programs.

Type them in exactly as listed with the new BASIC in
operation. Some of the commands (especially ‘MSAVE’)
look as if their syntax could be wrong in the listing. Don’t
panic—this is because the program was listed with the new

129

BASIC in operation and ‘MSAVE’ is ‘PRINT’ in normal
BASIC.

19 POKE1,S55:MSAVE" (CLR3"

20 MSAVE:MSAVE:MSAVE"DEMO OF NEW BASIC C
OMMANDS "

32 POKE1,54

49 FORA=@TO15:FORB=@T015

5@ COLOURA,B,@,1,1,1

68 NEXTB, A

65 COLOUR 1,3,2,1,1,1

7@ OFF:MSAVE" {CLR3}":POKE1,54
89 FILL 1024,2023,81

99 FORA=@TO255STEP4

198 FILL 55296,56295,A

116 NEXT

120 OFF:MSAVE"{CLR}":MSAVE:MSAVE

125 MSAVE"{CUR RT} HIRES GRAPHICS !!'!*
138 MSAVE"THE SCREEN CAN BE ANY OF 255 C
OLOUR COMBINATIONS"

140 :MSAVE:MSAVE:MSAVE"WATCH" : FORR=0T020
B9 NEXT

158 POKE1,54

168 GRAPH:FORA=@TO15:FORB=8TO015

179 CLGB,A:NEXTB,A

189 COLOUR ©,2,7,1,1,1

199 CLG 9,7

298 OFF:MSAVE" (CLR3}CIRCLES,SINES AND LINES'"
:{GY 131,54

219 FORA=@TO39:CHAR A, 1,PEEK(1@24+A) :NEX
T:OFF:MSAVE"{CLR}NOW YOU SEE IT!'"

232 POKE1,54:FORA=@T015:CHARS+A, 18, PEEK (
1824+A) :NEXT

240 FORA=@TO319:PLOT A,84:NEXT

250 FORR=@TO01090:NEXT

268 FORA=@TO319:UNPLOT A,84:NEXT

279 OFF:MSAVE"(CLR}NOW YOU DON’T!!t!®

280 POKE1l,54:FORA=@TO15:CHARS+A, 19, PEEK (
1924+A) :NEXT

299 FORR=QTO100@:NEXT

130

399 COLOUR1,3,2,1,1,1

319 CLG1,2

320 C=119:D=100

330 FORA=0TO06.SSTEP®.01

340 X=CH*¥SIN(A) +16@:Y=DXCOS(A) +100

350 PLOTX,Y

360 NEXT

370 FORR=0TO1000:NEXT

380 INVERT24576,32768

399 FORR=GTO1800:NEXT

499 INVERT24576,32768

4109 FORR=GT02000:NEXT

42¢ NRM:OFF :MSAVE* (CLR}"

423 MSAVE:MSAVE:MSAVE*{(CUR RT3}{CUR RT3";

425 MSAVE"I HAVE JUST NEWED THE PROGRAM.
TO CONTINUE"

43¢ MSAVE"THE PROGRAM TYPE OLD AND GOTO

asg

44@ POKE1,S4:NEW

45@ OFF:MSAVE" {CLR3}THANK YOU'":POKE1,S4

46@ FORR=GTO1000:NEXT:GRAPH

479 C=110:D=100

480 FORA=0T06.SSTEP®.91

490 X=CH¥SIN(A)+16@:Y=DXCOS(A) +100

508 UNPLOTX,Y

S10 NEXT:NRM

520 OFF:MSAVE" (CLR3}(CUR DN3}{CUR DN3{CUR RT}";

525 MSAVE"DO YOU WANT TO SEE THE DEMO AG

AIN?"

530 GRAPHAS: IFAS$="N"ORA$="Y" THENS5@

549 GOTOS539

550 OFF

IFDX=1THEN2429
IFDX=2THEN2430
UNVAR=1:MV=1:X=140:Y=100
POKE1, 54

COLOUR 1,3,2,1,1,1

OFF

POKE&59, 128

UL UNR~E

131

19
20
W
39
49
S9
69
70
ou
80
YED
4]
ISP
199
LP
119
129
139
149
150
169
165
179
180
199
195
200
219
229
239
249
250
260
279
280
299
300
3109

MSAVE"{CLR}"

MSAVE" THIS PROGRAM ALLOWS YOU TO DRA
PICTURES ON THE SCREEN"

MSAVE"USING THE FOLLOWING KEYS"

MSAVE
MSAVE" Z = LEFT X = RIGHT"
MSAVE" 3§ = UP / = DOWN"

MSAVE:MSAVE"PRESS F1 TO PLOT AND F7 T
NPLOT"
MSAVE"IN PLOT MODE A 1 WILL BE DISPLA
IN TEH TOP LEFT OF THE SCREEN"
MSAVE"IN UNPLOT MODE A ZERO WILL BE D
LAYED"

MSAVE"PRESS € (BACK ARROW FOR THE HE
LIST"

MSAVE"PRESS A KEY TO BEGIN®"
POKE198,0:PLOT198, 1

MSAVE"(CLR2"

GRAPH"SCREEN COLOUR";S

GRAPH"BORDER COLOUR";B

GRAPH"LINE COLOUR";L

POKE1,54

COLOUR S,B,L,1,1,1

CLGS,L

GRAPH

POKE 16384, 16%S+L

CHAR®,d, 49

REM MAIN LOOP

GETA$: IFA$="¢"THEN10929
IFA$="Z"THENX=X-MV

IFAS="X" THENX=X+MV

IFAS="; "THENY=Y-MV
IFA$="/"THENY=Y +MV
IFA%$="8"THENUNVAR=1:CHAR®, @, 49
IFA%="THENUNVAR=@:CHAR®, @, 48
IFUNVAR=1THENPLOTX, Y
IFUNVAR=@THENUNPLOTX, Y

GOT0220

1998 NRM:OFF
1019 MSAVE"(CLR}"

132

1920 MSAVE"OPTIONS"

1938 MSAVE"1: CLEAR SCREEN"

1942 MSAVE"2: CHANGE COLOURS"

1960 MSAVE"3: SAVE SCREEN®

1978 MSAVE"4: LOAD SCREEN"

1989 MSAVE"S: INVERT SCREEN"

1990 MSAVE"&: QUIT"

1995 GETA%: IFA%=""THEN199S

1188 IFVAL (A%) <@ORVAL (A%) >7THEN1@210
1119 ONVAL (A$) GOTO2000, 2199, 2309, 2400, 25
08, 2600

1120 GOTO1910

2090 POKE1l,S54:CLGS,L

2919 GRAPH:GOT0229¢

210@ GRAPH"SCREEN COLOUR";S

2119 GRAPH"BORDER COLOUR";B

212¢ GRAPH"PLOTTING COLOUR";L

2139 POKE1,54:COLOUR S,B,L,1,1,1:FILL 16
384,17384,L%16+S

2149 GRAPH:GOT022¢

2392 GRAPH"DEVICE" ;DN

2319 POKE1l,S4

2320 MSAVE"SCREEN1",DN,1, 14384, 17383
2330 MSAVE"SCREEN2",DN, 1,24576,32768
2342 GRAPH:GOT02290

2498 GRAPH"DEVICE" ; DN

2419 POKE1l,54:DX=1:MLOAD"SCREEN1",DN, 1,1
6384

2420 DX=2:MLOAD"SCREEN2",DN,1,24576
243¢ GRAPH:GOT0220

2599 POKE1,S54: INVERT24576, 32768

2510 GRAPH:GOT0220

2600 GRAPH"ARE YOU SURE";S$

2610 IFLEFT$(S$,1)="Y"THENEND

2628 GOTO10900

133

SECTION 3

ROM ROUTINES AND
THE KERNAL

This section covers the ROMs inside the '64. It explains what
and where the routines are and if they can be used in a user’s
program, how to use them and what function they perform,
and what values they return.

We will start with the BASIC ROM, which is located from
$A000 (40960) to $BFFF (49151).

135

THE BASIC ROM

The format for each explanation is as follows:

Label, Location in Hex . . .

BCOLD $A000-$A001

BWARM $A002-$A003

STMDSP $A004-$A00B

FUNDSP $A00C-$A051

OPTAB $A052-$A079

RESLST $A080-$A09D

Description and usage.

: BASIC cold start vector. These
two bytes contain the value for a
cold start—they jump to $E394
(58260). To do a cold start from
BASIC, type SYS 53260 and
from machine code JMP $E394.
: BASIC warm start vector.
These two bytes contain the
value for a warm start—they
jump to $e37B (58235). Todo a
warm start from BASIC, type
SYS 58235 and from machine
code JMP $E37B.

: Data for computer. Unfortu-
nately, this is of little use to the
programmer.

: BASIC command vector table.
This area holds the jump vectors
for BASIC commands in lo-byte/
hi-byte order. For usage see
Section on adding commands to
BASIC.

: BASIC function vector table.
This area holds the jump vectors
for the BASIC functions in lo-/hi-
byte order. For the addresses,
see the memory map.

: BASIC operator vector and
priority table. This area holds the
jump addresses and the priority
values for the BASIC operators.

136

MSCLST $SAQ9E-$A13F

OPLIST $A140-$A14C

FUNLST $A14D-$A19E

ERRTAB $A19F-$A327

ERRPTR $A328-$A363

OKK $A364-$A389

FNDFOR $A38A-$A3B7

BLTU $A3B8-$A3B7

BLTUC $A3B8-$A3FA

GETSTK $A3FB-$A407

: BASIC command table. This
area holds the data for the key-
words. For use, see the section
on adding commands to BASIC.

: BASIC operator table. This
area holds the data for the oper-
ators.

: BASIC function table. This area
holds the data for the BASIC
functions.

: Error messages. This area
holds the data for the error mes-
sages.

: Error message pointers. This
area holds the pointers for the
error messages—it points to
where the data for each error
message is stored.

: Non-error messages. This area
holds the data for the non error
messages: ‘OK’, ‘ERROR’, ‘IN’,
‘READY.’ and ‘BREAK'.

: Finds FOR entry on the stack
or skip, and finds the GOSUB
entry when called by RETURN.

: Checks if there is sufficient
memory to move a block of
memory up and then. . .

: Moves the block from the value
in LOWTR to HIGHTR-1uptoa
new block that ends at HIGHDS-
1.

: Checks the stack for space to
accommodate a value in A
(accumulator) *2 entries.
PRINTS an error ‘OUT OF
MEMORY’ message if there is
not enough room.

137

REASON $A408-$A434

OMERR $A435-$A436
ERROR $A435-$A468

ERRFIN $A469-$A473

READY $A474-$A47F
MAIN $A480-$A4A1

MAINI $A4A2-$A4A8

INSLIN $A4A9-$A529

FINI $A52A-$A532

LNKPRG $A533-$A55F

INLIN $A560-$A578

: Checks the address in A and
Y(A LO,Y HI) is lower than the
bottom of string space. If not,
then prints the ‘OUT OF
MEMORY’ error message.

: Prints the ‘OUT OF MEMORY’
error message.

: Prints the error message indi-
cated by the value in X, then. . .

: Prints the ‘ERROR'’ or ‘BREAK’
message if entered from
STPEND.

:BASIC re-start-prints the
‘READY’ message and then. . .

;Inputs a line. Identifies a
BASIC line or command.

. If a BASIC line, then gets the
line number and converts key-
words in the line to tokens.

:Inserts text from the BASIC
buffer into program. Puts the line
number into LINNUM on entry.
The line must have the key-
words changed to tokens and
the length of the line in Y. If
BBUFF = 0 then the line will be
deleted. The routine exists to
MAIN.

: After inserting a new line into
BASIC text, place into RUNC,
LNKPRG and re-enter to MAIN.

: Re-chains BASIC lines by re-
building BASIC text link pointers.

:Inputs a line into the BASIC
buffer and places a zero at the
end (a zero indicates the end of
a BASIC line).

138

CRUNCH $A579-$A612

FNDLIN $A613-$A617

FNDLNC $A617-$A641

SCRATH $A642-$A658

SCRTCH $A659—

RUNC $A659-$A65D

CLEAR $A65E-$A65F

CLEARC $A660-$A676

LDCLR $A677-$A68D

STXPT $A68E-$A69B

LIST $A69C-$A716

QPLOP $A717-$A741

:Changes the keywords to
tokens from line in BBUFF to line
length. Sets TXTPTR to BBUFF-
value in Y. Sets TXTPTR to
BBUFF-1 on exit.

: Searches BASIC text from the
start for a line number in LIN-
NUM.

: Searches BASIC text from a
valuein AandY (a=lo, y=hi) for
the line number in LINNUM. If
found, sets C and LINPTR
points to the start of the line. Else
clears C.

: The NEW command enters
here. Checks syntax and then. ..
: Resets the first byte of text to
zero. Sets VARTAB to
TXTTAB+2 and then. . .

: Resets execution to the start of
the program (STXPTR) and then
goes to CLEARC.

:CLR enters here. Checks
syntax and then. . .

:Sets FRETOP to MEMSIZ.
Aborts /O and sets ARYTAB to
VARTAB and then. . .

: Does RESTOR. Resets
TEMPPT. Resets the stack.

: Sets TXTPTR to TXTTAB-1 to
reset execution to the start of the
program.

: Entry point for the LIST com-
mand.

: Handles the LIST character. If
non-token (<128) or token in
quotes, then print it. Otherwise
expand the token and print it.

139

FOR $A742-$A7AD

NEWSTT $A7AE-$A7C3

CKEOL $A7C4-$A7E0D

GONE $A7E1-$A7EC

GONES3 $A7ED-$A81C

RESTOR $A81D-$A82B

STOP $A82C-$A82E

END $A82F-$A833

FINID $A834—-$A840

STPEND $A841-$A856

CONT $A857-$A870

RUN $A871-$A882

: Entry point for the FOR com-
mand. Stores TXTPTR, CURLIN
and the final value on the stack,
and then. . .

: Checks for the STOP key, then
handles the next BASIC state-
ment from text.

: Checks that the end of the line
is also the end of the text.
Otherwise, gives the next line
parameters.

: Executes a statement within a
line.

: Enter a BASIC command and
execute it.

: Entry point for the RESTORE
command. Resets DATPTR to
the start of BASIC.

: Entry point for the STOP com-
mand. Clears the carry (for the
‘BREAK’ message’) and then
jumps to the END routine.

: Entry point for the END com-
mand. Sets the carry and then. ..

:If not in direct mode, then
stores TXTPTR in OLDTXT and
then. ..

: Stores CURLIN in OLDLIN and
exits to READY (if carry set:
END) or ERRFIN (if carry clear:
STOP).

: Entry point for the CONT com-
mand. Restores TXTPTR and
CURLIN unless OLDTXT is
zero, then prints the ‘CAN'T
CONTINUE’ error message.

: Entry point for the RUN com-
mand. Does CLR then GOTO.

140

GOSUB $A883-$A89F

GOTO $ABAD-$ABA2

GOTOC $A8BA3-$A8D1

RETURN $A8D2-$A8D3

RTC $A8D4-$AF7

DATA $A8F8-$A905

DATAN $A906—$A90A

SERCHX $A90B-$A92A

IF $A92B-$A93A

REM $A93B-$A93F

DOCOND $A940-$A94A

: Entry point for the GOSUB
command. Stores TXTPTR,
CURLIN and GOSUB flag ($8D)
on the stack, then GOTO.

: Entry point for the GOTO com-
mand. Reads a number from
BASIC text into LINNUM and
then. . .

: Scans for the end of the current
line. Searches for the LINNUM
line and sets TXTPRT when
found.

: Entry point for the RETURN
command. Checks the syntax
and then. . .

: Clears the stack up to the first
GOSUB entry. Then sets
TXTPRT and CURLIN from the
stack.

: Entry point for the DATA com-
mand. Scans the text for an end
of statement. Updates TXTPRT
to ignore.

: Sets a scan for a statement
delimitor (colon for zero byte)
and then carries out a search. . .
: Searches the text for a value in
X or zero byte. Exit with Y set to
the number of bytes to delimitor.

: Entry point for the IF command.
Evaluates the expression, per-
forms a REM if zero (FALSE).

: Entry point for the REM com-
mand. Scans for a zero byte and
increments TXTPTR.

. If the condition is not zero
(TRUE) then carries out the
command or GOTO as approp-
riate.

141

ONGOTO $A94B-$A96A : Entry point for the ON com-

LINGET $A96B-$A9A4

LET $A9A5-$A9C3

PTFLPT $A9C4-$A9D5
PUTINT $A9D6-$A9E2

PUTTIM SA9E3-$AA2B

GETSPT $AA2C-$AATF

PRINTN $AA80-$AA85

CMD $AA86—-$AA99

STRDON $AA9A-$SAA9F

PRINT $AAAQ-$AAB7

mand. Gets a number from the
text and scans for a line number.
Carries out a GOTO or GOSUB.
: Reads an integer from text into
LINNUM. An error will result if
the value is not in the range zero
to 63999.

: Entry point for the LET com-
mand. Finds the target variable
in the variable space and sets
FORPNT to point at it. Evaluates
the expression then goes to
PUTINT, PTFLPT, PUTTIM or
GETSPT as appropriate.

: Puts FAC into the variable
pointed to by FORPNT.

: Puts the integer in FAC+3 into
the variable pointed to by
FORPNT.

: Sets TI$ from a string. Sets
INDEX1 to point the string and A
to six (string length).

: Puts the string descriptor poin-
ted to by FAC+3 into the string
variable pointed to by FORPNT.
: Entry point for the PRINT#
command. Carries out CMD
then restores default I/O. (Unlis-
ten IEEE if device number>3.)

: Entry point for the CMD com-
mand. Sets CMD output device
from table then calls PRINT.

: PRINT routine. Prints a string
and checks for the end of print
statement.

: Entry point for the PRINT com-
mand. Identifies PRINT
parameters (SPC, TAB, etc) and
evaluates expressions.

142

VAROP $AAB8-$AABB

: Output variable. If a number
converts to a string, output
string.

NUMDON $AABC-$AADSG : PRINT routine. Prints numeric.

CRDO $AAD7-$AAE7
COMPRT $AAE8-$AB1D

STROUT $AB1E-$AB20

STRPRT $AB21-$AB23

OUTSTR $AB24-$AB3A
OUTSPC $AB3B-$AB3E

PRTSPC $AB3F-$AB41
OUTSKP $AB42-$AB44
OUTQST $AB45-$AB46
OUTDO $AB47-$AB4C
TRMNOK $AB4D-$AB7A

GET $AB7B-$ABA4

INPUTN $ABA5-$ABBE

INPUT SABBF-$ABE9

BUFFUL $ABEA-$ABF8
QINLIN $ABF9-$ACO05

: OUTPUT CRI/LF. If CHANNL
>127 then output CR only.

: Prints tabs or spaces for com-
ma delimitor.

: Prints the string pointed to by
A/Y (lo/hi) until the zero byte is
found.

: Prints the string pointed to by
FAC+3 until the zero byte is
found.

: Prints the string pointed to by
INDEX1 of length A.

: Prints a space. (Cursor right if
to the screen.)

: Prints a space always.

: Prints the cursor always.

: Prints a question mark.

: Prints the value in A.

: Handles error messages for
GET, INPUT and READ.

: Entry point for the GET com-
mand. Checks that it is not direct
(illegal), identifies if it is GET#
and gets one character.

: Entry point for the INPUT#
command. Sets the input device.
Inputs the unlisten IEEE if the
device >3.

: Entry point for the INPUT com-
mand. Outputs a prompt mes-
sage if any. Carries out the input.
: Reads the input. If BBUFF is
zero (no input string) then skip.
: Prints a *?’ and inputs data into
the BBUFF buffer.

143

READ $AC06-$AC0OC

INPCON $ACOD-$ACOE

INPCO1 $ACOF-$AC34

RDGET $AC35-$AC42
RDINP $AC43-$ACB7

DATLOP $ACB8-$ACFB

EXINT $SACFC-$AD0B

TRYAGN $ADOC-$AD1D

NEXT $AD1E-$AD60

DONEXT $AD61-$AD89

: Entry point for the READ com-
mand. Sets the READ flag ($98)
in INPFLG. Sets X and Y (lo/hi)
to BUF.

: Entry point to READ for the
INPUT command. Sets the
INPUT flag ($00) in INPFLG.
Sets X and Y (lo/hi) to BUF.

: Entry point to READ for the
GET command. Sets the GET
flag ($40) in INPFLG. Sets X and
Y to (lo/hi) BUF.

: Part of the READ routine which
gets a byte.

: Part of the READ routine which
INPUTs. Uses RDGET.

: Part of the READ routine which
reads DATA values. Uses
RDGET.

: ASCII string “2EXTRA
IGNORED<CR>'". (<CR>is a
carriage return.)

: ASCIl string ‘'?REDO FROM
START<CR>".

: Entry point for the NEXT com-
mand. Gets NEXT’'s variable
and confirms that the corre-
sponding FOR is on the stack.
Calculates the next loop variable
value.

. If the loop counter is valid then
sets CURLIN and TXTPTR from
the stack and re-enters the FOR
loop.

FRMNUM $AD8BA-$ADSC : Evaluates a numeric expres-

sion from BASIC text. Enters
FRMEVL, then enters
CHKNUM.

144

CHKNUM $AD8D-$ADSE : Tests VALTYP for a numeric

CHKSTR $AD8F-$AF9D

FRMEVL $AF9E-$AE82

EVAL $AE83-$AEA7

PIVAL SAEA8-SAEAC
QDOT $AEAD-$AEF0

PARCHK $SAEF1-$AEF6

result from FRMEVL. Exits to
READY with ‘TYPE MISMATCH
ERROR’ if a string is found.

: Tests VALTYP for string result
from FRMEVL. Exits to READY
with ‘TYPE MISMATCH
ERROR' if a numeric is found.
:Inputs and evaluates any
expression in BASIC text. Sets
VALTYP ($00 if numeric), $FF if
string) and INTFLG ($00 if float-
ing point, $80 if integer). If the
expression is a numeric floating
point, the result is returned in
FAC. If the expression is a
numeric integer then the result is
returned in FAC+3 in hi/lo for-
mat. If the expression is a string,
then a pointer to the string des-
criptor is returned in FAC+3
(this is wusually a copy of
VARPNT). If the expression is a
variable, then VARNAM will be
set to point to the first byte of the
name. If an error is found in the
expression, then the routine
exists to READY with ‘'SYNTAX
ERROR'.

: Evaluates a single term in an
expression. Identifies functions
PI, TI, TIS, etc.

: Floating point value of PI
(8.1415965).

: Evaluates the non-variable
term in an expression.

: Evaluates the expression
within parenthesis in an expres-
sion.

145

CHKCLS $AEF7-$AEF9

CHKOPN $SAEFA-$AEFC

: Checks that the character poin-
ted to by TXTPTR is a right
parenthesis. If not, print
‘SYNTAX ERROR'.

: Checks that the character poin-
ted to by TXTPTR is a left
parenthesis. If not, print
‘SYNTAX ERROR'.

CHKCOM $AEFD-$AEFE: Checks that the character poin-

SYNCHR $AEFF-$AF07

SYNERR-$AF08-$AF0C

DOMIN $SAFOD-$AF13

RSVVAR $AF14-$AF27

ISVAR $AF28-$AF47

TISASC $AF48-$AFA6

ISFUN $SAFA7-$AFB0

STRFUN $AFB1-$AFDO

ted to by TXTPTR is a comma. If
not, print ‘SYNTAX ERROR'.

: Checks that the character poin-
ted to by TXTPTR is the same as
in the Accumulator. If not, print
‘SYNTAX ERROR'.

:Prints the error message
‘SYNTAX ERROR'’ and returns
to BASIC.

: Creates a monadic minus or
NOT for use in evaluation.

: Sets the carry if the variable
pointed to by FAC+3 is a re-
served variable (ST,TI,TI$).

: Finds a variable named in the
BASIC text. Sets VARNAM to
point to the name in tables if
found. Places numeric values in
FAC and the string pointer in
FAC+3.

: Converts Tl to an ASCII string
and sets FAC+3 to point to the
string.

: Evaluates a function. Returns a
numeric value in FAC and the
string value as a pointer in
FAC+3.

: Stores the string descriptor of a
string function on the stack and
evaluates it.

146

NUMFUN $AFD1-3$AFE5 : Evaluates the argument of a

OROP $AFE6-$AFES8

ANDOP $AFE9-$B015

DOREL $B016-$B01A

NUMREL $B01B-$B02D

STRREL $B02E-$B080
DIM $B081-$B08A
PTRGET $B08B-$B0OE6

ORDVAR $B0OE7-$B112

ISLETC $B113-$B11C

NOTFNS $B11D-$B127

NOTEVL $B128-$B193

numeric function and calculates
the function value.

: Perfforms an OR command.
Sets the OR flag and uses
ANDOP to evaluate it.

: Performs an AND command
and then converts floating point
values to a fixed point. Carries
out an AND (or OR if the OR flag
is set) and then converts it back
to floating point.

: Performs the mathematical rel-
ations ‘<>’ or ‘=’ if a numeric
expression uses NUMREL or if a
string expression uses

STRREL.

: Performs a numeric compari-
son.

: Performs a string comparison.
: Performs a DIM.

: Identifies a variable named in
the BASIC text and places the
name, not the pointer, to the
name in VARNAM.

: Finds the variable whose name
is in VARNAM and sets
VARPNT to point to it. If neces-
sary, uses NOTFNS to create a
new variable.

: Sets the carry if the character in
the Accumulator is a letter.

: Creates a new variable with a
name (as in VARNAM) unless
PTRGET is called by ISVAR.

: Creates a new variable with a
name (as in VARNAM) and sets
VARPNT to point to it.

147

FMAPTR $B194-$B1A4

N32768 $B1A5-$B1A9
FACINX $B1AA-$B1B1

INTIDX $B1B2-$B1BE

AYINT $B1BF-$B1D0

ISARY $B1D1-$B217

FNDARY $B218-$B260

IQERR $B248-B24C
NOTFDD $B261-$B30D
INLPN2 $B30E-$B34B

UMULT $B34C-$B37C

FRE $B37D-$B390

CIVAYF $BC91-$B39D

POS $B39E-$B3A1

: Sets ARYPNT to the start of an
array and places a number of
array dimensions in COUNT.

: Floating point value of 32768 in
FLPT format.

: Converts FAC to an integer in
AYY (lo/hi).

: Evaluates an expression in the
BASIC text as an integer in the
range —32768 to +32767.

: Evaluates an expression in the
BASIC text as an integer in the
range zero to +32767.

: Gets the array parameters from
the BASIC text and pushes them
on the stack.

: Finds an array whose name is
found in VARNAM. Parameters
read by ISARY.

: Prints ‘ILLEGAL QUANTITY’
error and returns to BASIC.
:Creates an array from
parameters on the stack.

: Sets VARPNT to point at an
element within an array.

: Calculates the number of bytes
in subscript Y of an array starting
at VARPNT.

: Entry point for the FRE func-
tion. Carries out garbage collec-
tion and sets the function value
to FRETOP-STREND.

: Converts an integer in Aand Y
(lo/hi) to a floating point in FAC
within the range zero to 32767.
: Entry point for the POS func-
tion. Returns the value of CPOS
in FAC.

148

SNGFT $B3A2-$B3A5

ERRDIR $B3A6-$B3B2

DEF $B3B3-$B3E0
GETFNM $B3E1-$B3F3

FNDOER $B3F4-$B422

SETFNV $B423-$B464

STRD $B465-$B474

STRINI $B475-$B486

STRLIT $B487-$B4D4

PUTNW1 $B4D5-$B4F3

GETSPA $B4F4-$B525

: Converts Y to floating point
format in FAC within the range
zero to 255.

: Prints ‘ILLEGAL DIRECT error
if in direct mode, i.e. CURLIN =
$FF.

: Entry point for the DEF func-
tion. Creates the FN function.

: Checks the syntax of FN,
locates the FN descriptor and
sets DEFPNT to point to it.

: Entry point for the FN function.
Gets the FN descriptor and
then. . .

: Puts TXTPTR onto the stack.
Sets TXTPTR to start at FN in
text, evaluates the expression
and then resets TXTPTR from
the stack.

: Entry point for the STR$ func-
tion. Evaluates the expression
and converts to an ASCI! string.
: Creates space for a string
whose descriptor is in FAC+3
and length in A. Exits with a new
descriptor in DSCTMP and a
pointer to an old descriptor in
DSCPNT.

: Scans the string starting at the
location held in A and Y (lo/hi),
and creates a descriptor. Exits
with FAC+3 pointing to the des-
criptor. The string is expected to
end with a null byte or ™.

: Sets the descriptor on the des-
criptor stack and updates the
pointer.

: Sets FRETOP and FRESPC
for a new string whose length is
in A.

149

GARBAZ2 $B526-$B5BC

DVARS $B58D-$B605

GRBPAS $B606—-$B63C

CAT $B63D-$B679

MOVINS $B67A-$B6A2

FRESTR $B6A3-$B6DA

FRETMS $B6DB-$B6EB
CHRD $B6EC-$B6FF
LEFTD $B700-$B72B
RIGHTD $B72C-$B736
MIDD $B737-$B760

PREAM $B761-$B77B

LEN $B77C-$B781

: Carries out garbage collection.
Closes up the space in a string
(space used by discarded
strings).

: Searches the variable and
array tables for the next string
descriptor to be saved by gar-
bage collection.

: Moves a string up to overwrite
unwanted strings in garbage col-
lection.

: Concatenates two strings in an
expression, then continues to
evaluate the expression.

: Transfers a string whose des-
criptor is pointed to by STRNG1.
: Confirms string mode then per-
forms string housekeeping (dis-
card unwanted string). Enters
with a pointer to the string des-
criptor in FAC+3 and exits with
length in A and INDEX1 pointing
to the start of the string.

: Updates the string descriptor
stack pointer.

: Entry point for the CHR$ func-
tion.

: Entry point for the LEFT$ func-
tion.

: Entry point for the RIGHT$
function.

: Entry point for the MID$ func-
tion.

: Pulls from the stack string des-
criptor pointer and stores it in
DSCPNT. Pulls the string
parameter to A.

: Entry point for the LEN func-
tion.

150

LEN1 $B782-$B78A

ASC $B78B-$B79A

GTBYTC $B79B-$B7AC

VAL $B7AD-$B7B4

STRVAL $B7B5-$B7EA

GETNUM $B7EB-$B7F6

GETADR $B7F7-$B80C

PEEK $B80D-$B823
POKE $B824-$B82C
WAIT $B82D-$B848

FADDH $B849-$884F
FSUB $B850-$B852

FSUBT $B853-$B861
FADDS5 $B862-$B866

: Carries out string housekeep-
ing, then forces numeric mode.
Exits with string length in Y.

: Entry point for the ASC func-
tion. Gets the first character in
the string and converts it to
floating point format.

: Evaluates an expression in the
BASIC text. Validates that the
answer is in the range zero to
255, otherwise prints ‘ILLEGAL
QUANTITY’ error. Returns the
value in X.

: Entry point for the VAL func-
tion. Confirms that the argument
is a string and then . . .

: Converts the string starting at
INDEX1 of length A to a floating
point value in FAC.

: Reads parameters from the
BASIC text for POKE or WAIT.
Puts the first integer into
INDEX1 and the second integer
into INDEX2.

: Converts FAC to an integer in
INDEX1 in the range zero to
65535.

: Entry point for the PEEK com-
mand.

: Entry point for the POKE com-
mand.

: Entry point for the WAIT com-
mand.

: Add 0.5 to the value in FAC.

: Floating point subtraction . . .
FAC=MFLPT at A’Y — FAC.

: Entry point for subtraction . . .
FAC=argument-FAC.

: Part of the ‘addition normalisa-
tion’ routine.

151

FADD $B867-$B869
FADDT $B86A-$B97D

OVERR $B97E-$B983

MULSHF $B984-$B9BB
FONE $B9BC-$B9C0

FVAROS $B9C1-$B9E9

LOG $B9EA-$BA27

PMULT $BA28-$BA2F

PMULTT $BA30-$BA58

MLTPLY $BA59-$BA8B

CONUPK $BA8C—-$BAB6

MULDIV $BAB7-$BAD3

MLDVEX $BAD4-$BAE1

MUL10 $SBAE2-$BAF8
TENC $BAF9-$BAFD

: Floating point addition . . . FAC
= MFLPT at A’Y + FAC.

: Entry point for addition . . . FAC
= argument + FAC.

:Prints the ‘OVERFLOW
ERROR’ message and return to
BASIC.

: Multiply by a byte.

: Constant ‘1.0’ in floating point
format.

: Various constants used for
series evaluation of functions.

: Performs the LOG function.
Checks that the argument is
positive, then carries out a
series evaluation of the function.
: Multiplies FAC by the floating
point number pointed to by A/Y
(lo/hi) and puts the resultin FAC.
: Performs the ‘floating point
multiply’ routine. Multiplies FAC
by AFAC and the answer is
placed in FAC.

: Multiplies FAC by a byte and
places the answer in RESHO.

: Loads AFAC with the floating
point value pointed to by A/Y
(lo-hi).

: Multiplication subroutine to test
FAC and AFAC for underflow or
overflow.

. If there is an overflow, prints
the ‘OVERFLOW ERROR'’ mes-
sage. If there’s an underflow
then FAC is zeroed.

: Multiplies FAC by 10 and puts
the answer in FAC.

: Constant ‘10.0’ in floating point
format.

152

DIV10 $BAFE-$BB06

FDIVF $BB07-$BB0E

FDIV $BBOF-$BB11

FDIVT $BB12-$BBA1

MOVFM $BBA2-$BBC6

MOV2F $BBC7-$BBC9
MOV1F $BBCA-$BBCF
MOVXF $BBD0-$BBD3

MOVMF $BBD4-$BBFB

MOVFA $BBFC-BC0B
MOVAF $BC0OC-$BC1A
ROUND $BC1B-$BC2A
SIGN $BC2B-$BC38

SGN $BC39-$BC3B
ACTOFC $BC3C-$BC43
INTOFC $BC44-$BC57

ABS $BC58-$BC5A

: Divides FAC by 10 and places
the answer in FAC.

: Divides AFAC by the floating
point number pointed to by A/Y
(lo-hi) (sign in X) and puts the
answer in FAC.

: Divides AFAC by the floating
point value pointed to by A/Y
(lo-hi) and puts the answer in
FAC.

: Performs floating point division
routine . . . AFAC is divided by
FAC and the answer is placed in
FAC. On entry, A = FACEXP.

:Loads FAC with the floating
point number pointed to by A/Y
(lo-hi).

: Stores FAC in TEMPF2.

: Stores FAC in TEMPF1.

: Stores FAC in the location
pointed to by FORPNT.

: Stores FAC in the location
pointed to by X/Y (lo-hi).

: Loads FAC from AFAC.

: Loads AFAC from FAC.

: Rounds off FAC.

: Finds the sign of FAC and
places the result in A. ($01 =
positive, $00 = zero and $FF =
negative.)

: Performs the SGN function.

: Stores A in FAC.

: Stores the integer in FAC+1 as
a floating point number in FAC.
On entry, X should contain $90.

: Performs the ABS function.

153

PCOMP $BC5B-$BC9A

QINT $BC9B-$BCCB

INT $BCCC-$BCF2

FIN $BCF3-$BDB2

FLCNST $BCB3-$BDCH1
INPRT $BDC2-$BDCC
LINPRT $BDCD-$BDD6

FACOUT $BDD7-$BDDC
FOUT $BDDD-$BDDE

FYOUT $BDDF-$BE67

FOUTIM $BE68-$BF10

ASCIFT $BF11-$BF70
SQR $BF71-$BF7A

: Compares FAC with the float-
ing point number pointed to by
A/Y (lo-hi). The result is returned
in A. ($01 means that FAC > by
floating point number, $00 =
equal to and $FF = FAC is less
than the floating point number.)
: Converts the floating point
number in FAC to a four byte
integer in FAC+1 in hi-lo form.
: Performs the INT function . . .
converts FAC to a four byte
integer in FAC+1, then converts
it back to floating point in FAC.

: Converts an ASCII string, poin-
ted to by TXTPTR in the BASIC
text, to floating point format in
FAC.

: Floating point constants used
in ASCII string conversion.

: Prints ‘IN’, followed by the cur-
rent line number in CURLIN.

: Prints the current line number
from CURLIN.

: Prints FAC as an ASCII string.
: Converts FAC to an ASCII
string starting at STACK and
ending with a null byte. Note this
routine corrupts $FF, which
would otherwise have been a
spare zero page location.

: Converts FAC to an ASCII
string starting at STACK—-1+Y.
: Converts Tl to an ASCII string
starting at STACK and ending
with a null byte.

: Floating point constants used
in ASCII conversion.

: Performs the SQR function.

154

FPWRT $BF7B-$BFB3 : Performs exponation (raise to
the power of)—AFAC to the
power of FAC, and places the
answer in FAC.

NEGOP $BFB4-$BFBE : Negates FAC and places the
answer in FAC.

EXPCNT $BFBF-$BFEC : Floating point constants for the
EXP function.

EXP $BFED-$BFFF : Evaluates the EXP function.

155

THE OPERATING
SYSTEM ROM

EXPCNT $E000-$E042

POLYX $E043-$E08C

RNDCST $SE08D-$E096

RND $E097-$EOF8
BIOERR $E0F9-$E10B

BCHOUT $E10C-$E111

BCHIN $E112-$E117

BCKOUT $E118-3E11D

BCKIN $E11E-$E123

BGETIN $E124-$E129

: Final part of the EXP function
(continued from the BASIC
ROM).

: Evaluates series for functions.
On entry, A/Y (lo-hi) points to a
single byte integer which is one
less than the number of con-
stants which follow. Converts
the argument to the range zero
to 0.999999999.

: Floating point constants for the
RND evaluation.

: Performs the RND evaluation.

: Handles the INPUT/QUTPUT
error within BASIC.

: BASIC output character rou-
tine. Uses the ‘KERNAL
CHROUT routine.

: BASIC input character routine.
Uses the ‘'KERNAL CHRIN’ rou-
tine.

: BASIC open output channel
routine. Uses the ‘KERNAL
CHKOUT routine.

: BASIC open channel for input
routine. Uses the ‘KERNAL
CHKIN’ routine.

: BASIC get character routine.
Uses the ‘'KERNAL GETIN' rou-
tine.

156

SYS $SE12A-$E155

SAVET $E156-$E15E

SAVER $E15F-$E164

VERFYT $E165-$E167

LOADT $E168-$E174

LOADR $E175-$E1BD

OPENT $SE1BE-$E1C0

OPENR $E1C1-$E1C6

CLOSET $E1C7-$E1C9

CLOSER $E1CA-$E1D3

: Performs the SYS function.
Puts values from SYSA, SYSX,
SYSY and SYSS (780-783)
before entering the machine
code routine. Puts the values
from the registers back into the
above routines on return to
BASIC.

: Performs the SAVE command.
Fetch the parameters from the
BASIC text before calling the
‘KERNAL’ routine (name, de-
vice, secondary address).

: Saves RAM to a specified de-
vice by jumping to the ‘KERNAL
SAVE'’ routine.

: Performs the VERIFY com-
mand. Fetches the parameters
from the BASIC text before call-
ing the ‘KERNAL' routine.

: Performs the LOAD command.
Fetches the parameters from the
BASIC text before calling the
‘KERNAL' routine.

: Loads RAM from a specified
device by jumping to the ‘KER-
NAL’ routine.

: Performs the OPEN command.
Fetches the parameters from the
BASIC text before calling the
‘KERNAL' routine.

: Opens a specified file by jump-
ing to the ‘KERNAL'’ routine.

: Performs the CLOSE com-
mand. Fetches the parameters
from the BASIC text before call-
ing the ‘KERNAL' routine.

: Closes a specified file by jump-
ing to the ‘KERNAL'’ routine.

157

SLPARA $SE1D4-$E1FF

COMBYT $E200-3$E205

DEFLT $E206—$E20D

CMMERR $E20E-$E218

OCPARA $E219-$E263

COS $E264-$E26A

SIN $E26B-$E2B3
TAN $E2B4-$E2DF

Pl2 $E2E0-$E2E4
TWOPI| $E2E5-$E2E9
FR4 $E2EA-$E2EE

SINFLT $E2EF-$E30D

ATN $E30E-$E33D
ATNCNT $E33E-$SE37A

: Gets the parameters from the
BASIC text for LOAD/SAVE/
VERIFY. Calls this routine
before calling the ‘KERNAL' rou-
tine.

:If TXTPTR points to a comma,
then it reads a byte from the

"BASIC text.

. If the end of statement is found,
goes to the ‘stack calling’ routine
and exits with default param-
eters set.

: Verifies that TXTPTR pointing
to comma is not followed by a
colon or null byte. Prints the
‘SYNTAX ERROR’ message if it
is followed by a colon or a null
byte.

: Fetches the parameters from
the BASIC text for the OPEN
and CLOSE routines and sets
defaults.

: Evaluates the COS function.
Add Pl/2 to FAC and then . ..

: Evaluates the SIN function.

: Evaluates the TAN function by
computing SIN/COS.

: Floating point constant for P1/2.
: Floating point constant for P1*2.

: Floating point constant for
0.25.

: Floating point constants for the
SIN function evaluation.

: Evaluates the ATN function.

: Floating point constants for the
ATN function evaluation.

158

BASSFT $E37B-$E393

INIT $E394-$E396

INITNV $E397-$E3A1

INITAT $E3A2-$E3B9

RNDSED $E3BA-$E3BE

INITCZ $E3BF-$E446

BVTRS $E447-$E452
INITV $E453-$E45F

WORDS $E460-$E472
FREMES $E473-$E497

:BASIC warm start routine
called by BREAK if the BRK
instruction is encountered or
Stop/Restore pressed. Closes
channels and restores default
1/0. Resets the stack and exits
through IERROR with X=$80.

: Initialises BASIC on reset (cold
start or SYS 64738), and then
calls INITV to set the BASIC
vectors in $0300 to $030b and
then. . .

:Calls INITCZ to set up the
BASIC variable in block zero of
RAM. Calls INTMS and then
exits to BASIC ‘READY".

: CHRGET routine master copy.
Copied down to page zero by
INITCZ.

: Floating point constant
0.811635157, used as the initial
seed for random number gener-
ation.

: Initialises the BASIC RAM.
Sets USRPOK, ADRAY1 and
ADRAY2 and copies INITAT and
RNDSED to CHRGET and
RNDX. Sets TXXTAB and FRE-
TOP to LORAM and HIRAM.
Sets first byte in the BASIC text
area to zero.

: ROM copies of BASIC vectors.

: Copies BVTRS to RAM block
zero.

: Text ‘BYTES FREE'.

:Text “* COMMODORE
BASIC V2 ***. And XXXXX
BASIC bytes free.

159

IOBASK $E500-$E504

SCRNK $E505-$E509

PLOTK $E50A-$E517

INITIO $E518-$E565

HOME $E566-$E56B
PLOTR $E56C-$E599
PANIC $E59A-$E5A0Q
DFLTIO $E5AQ-$E5A7
VICINT $SE5A8-$E5B3
KBGET $E5B4-$E5C9

KBINP $E5CA-$E631

KSINP $E632—-$E639

:Returns in A/Y (lo-hi) the
address of 6526 Complex Inter-
face Adaptor (CIA) chip used by
the IRQ routines (and the key-
board routines). This is part of
the ‘IOBASE KERNAL' routine.
: Returns the screen organisa-
tion. X contains columns and Y
contains rows. Entry through
‘SCREEN KERNAL' vector.

: Sets/returns the cursor posi-
tion: screen row through X and
columns through Y. Sets the
cursor if the carry is clear.
Returns the cursor position if the
carry is set on entry. Entry
through ‘PLOT KERNAL'’ vector.
. Initialises the input/output. This
routine is called by the IOBASE
KERNAL' routine.

: Home cursor and reset screen
line link table.

: Moves the cursor to TBLX,
PNTR.

: Resets the default I/O, includ-
ing VIC Il chip registers.

: Resets the default /O and
then. . .

: Restores the default values of
the 6567 (VIC Il) chip registers.
: Gets the characters from the
keyboard buffer. GETIN routine
comes here if DFLTN is equal to
zero.

. Inputs character (not GET).
KSINP comes here if CRSW =
0.

: Inputs character from the key-
board or the screen. CHRIN
comes here if DFLTN = 0.

160

SCINP $E63A-$E683

TGLQT $E684-$E690

SCPUT $E691-$E715

SCNPNT $E716-$E8A0Q

CKDECL $E8A1-$E8B2
CKINL $E8B3-$E8CA

CKCOLR $E8CB-$E8D9
SCNTAB $ES8DA-$EBE9

SCROLL $ES8EA-$EA30
IRQK $EA31-$EA86

SCNKYK $EA87-$EB78

KBDTBL $EB79-$ED08

TALKK $ED09-$EDOB

:Inputs character from the
screen. KSINP comes here if
CRSW = 3.

: Toggle quote flag (QTSW).
During input, stops tokenisation
of keywords within quotes.

: Prints A to the screen. Used by
SCNPNT

:Prints a character to the
screen. Interprets cursor con-
trols, colour changes, case
changes, etc.

: Checks for decrement of the
line counter.

: Checks for increment of the
line counter.

: Checks the colour.

: Table used for decoding
screen.

: Screen scrolling routines.

: The main IRQ handling routine.
(CINV vector points here.)

: Keyboard scan routine.
Checks for a key depression and
places characters in the key-
board queue. This is the routine
pointed to by the KERNAL vec-
tor, SCNKEY.

: Keyboard matrix tables. Used
by SCNKEY to convert key de-
pression to ASCIl characters.
Tables exist for the various shift
modes.

:ORs A to convert a device
number to a TALK address for
the IEEE bus and transmits this
as acommand. This is the 'KER-
NAL'’ routine pointed to by TALK.

161

LSTNK $EDOC-$EDB8

SCNDK $EDB9-$EDC6

TKSA $EDC7-$EDDC

CIOUTK $SEDDD-$EDEE

UNTLKK $EDEF-$EDFD

UNLSNK $EDFE-$EE12

ACPTRK $EE13-$EEBA

NMICNT $SEEBB-$EF05

RSWRT $SEF06-$EF58
RSBLD $EF59-$F0BC

:ORs A to convert a device
number to a LISTEN address for
the IEEE bus and transmits this
as acommand. This is the ‘KER-
NAL’ routine pointed to by LIS-
TEN.

: Converts A and transmits it as
aLISTEN secondary address on
the IEEE bus. This is the ‘KER-
NAL routine called by
SECOND.

: Converts A and transmits it as
a TALK secondary address on
the IEEE bus. This is the ‘KER-
NAL'’ routine called by TKSA.

: Transmits a byte on to the IEEE
bus. The character is buffered
so that ‘hand-shaking’ can be
carried out. This in the ‘CIOUT
KERNAL' routine.

: Transmits an UNTALK com-
mand on the IEEE bus. This is
the ‘KERNAL’ routine which is
addressed by the UNTALK vec-
tor.

: Transmits an UNLISTEN com-
mand on the |IEEE bus. The
UNLSN vector comes here.

: A byte is ‘hand-shaken’ off the
IEEE bus and placed in A. This is
the ‘ACPTR KERNAL'’ routine.

: Continuation of the main ‘NMI
interrupt’ routine used for RS232
devices.

: Outputs a byte to the RS232
channel 2.

: Part of the ‘NMI interrupt’ rou-
tine which builds the individual
bits, coming from the RS232
channel, into a byte.

162

KMSGTX $FOBD-$F12A
KMESSG $F12B-$F13D

GETINK $F13E-$F156

CHRINK $F157-$F1C9

CHROTK $F1CA-$F20D

CHKINK $F20E-$F24F

CKOUTK $F250-$F290

CLOSEK $F291-$F32E

CLALLK $F32F-$F332

: Text of the KERNAL error and
control messages is stored here.

: Prints the KERNAL message to
the screen.

:Gets a character from the
channel and returns itin A. If no
character has been sent, then it
returns a zero. This is the ‘KER-
NAL GETIN'’ routine.

:Inputs a character from the
buffer into A. This is the ‘KER-
NAL CHRIN’ routine.

: Outputs the byte in A to the
output channel. This is the
‘CHROUT KERNAL' routine.

: Allocates the file specified by X
as the input channel. This is the
routine used by the ‘CHKIN
KERNAL'’ routine.

: Allocates the file specified by X
as the output channel. Thisis the
routine used by the ‘CHKOUT
KERNAL'’ routine.

: A specifies the file to be closed.
The details are removed from
the device tables (LAT, FAT and
SAT). Output files are tidied up.
This is the ‘CLOSE KERNAL'
routine.

: This routine aborts all current
I/0. The number of open files
(contained in LNTND) is set to
zero and any IEEE files are
UNTALKed or UNLISTENed.
The routine does not close ‘out-
put’ files properly so may only be
safely used with input (use
CLOSE for output files). This is
the ‘CLALL KERNAL'’ routine.

163

CLRCHK $F333-$F349

OPENK $F34A-$F49D

LOADK $F49E-$F5DC

SAVEK $F5D-$F69A

UDTIMK $F69B-$F6EC

STOPK $FE6D-$F6FA

: De-allocates the input/output
channels and restores the
default devices (DFLTN = 0 and
DFLTO = 3). This is the ‘KER-
NAL CLRCHN' routine.

: Opens the file whose specifica-
tion is stored in FNLEN, LA, FA,
SA and FNADR, by inserting the
details in the LAT, FAT and SAT
tables and carrying out the
appropriate procedures for files
on tape or disk. This is the
‘KERNAL OPEN’ routine.

:Loads the file specified in
FLEN, LA, FA, SA and FNADR,
and the argument which speci-
fies whether the file is to be
re-loaded from whence it was
saved or relocated elsewhere.
This is the ‘KERNAL LOAD’
routine.

: Saves the specified RAM
(STAL and MEMUSS) onto the
specified file (FNLEN, LA, FA,
SA and FNADR). This is the
‘KERNAL SAVE' routine.

: Part of the IRQ interrupt which
updates the real time jiffy clock.
It also stores the current key-
board matrix value in STKEY,
which enables STOP to function.
This is the ‘UDTIM KERNAL'
routine.

: Checks the value stored in
STKEY and returns with the Z
flag set if the value stored rep-
resents the STOP key. This is
the ‘KERNAL STOP’ routine.

164

KERROR $F6FB-$F72B

THEADR $F72C-$F80C
TCNTL $F80D-$F92B

TREAD $F92C-$FA6F
TBYT $FA70-$FBAS

TWRT $FBA6-$FCE
COLD $FCE2-$FE42

NMIXCT $FE43-$FF48
INTRPT $FF48-$FF80

: Errors detected by the ‘KER-
NAL’ routines enter this routine
to output the appropriate error
message.

: Finds and reads the header
block on tape.

: Tape control routines. These
routines undertake functions
such as switching cassette
motors on and off, timing, etc.

: Tape reading routines.

: Byte handling routines for tape
reading.

: Tape writing routines.

: Cold start routine. Normally
accessed when the computer is
initially switched on. It is the
routine which is pointed to by the
vector at $FFFC. Memory is
initialised and all input/output
devices are set up. The first part
of the routine checks if a cart-
ridge is plugged in by looking at
the bytes from $FD10-$FD14. If
the bytes are the same, then the
routine jumps to the cartridge for
initialisation. If these bytes are in
RAM then the routine also jumps
to the location specified to start.
The jump addresses are stored
as vectors: the start vector at
$8000 and $8001; and the vector
for when the Run/Stop key is
pressed is at $8002 and $8003.
: NMl interrupt control.

: This routine is entered when an
interrupt occurs. Registers are
saved and the source of the
interrupt is determined—IRQ or
BRK instruction. Appropriate
actions are then taken.

165

KERNAL JUMP TABLE

As calling all the KERNAL routines is done by JSR
command, | will only specify the start address of these

routines.

CINT $FF81

IOINIT $FF84
RAMTAS $FF87

RESTOR $FF8A

VECTOR $FF8D

SETMSG $FF90

SECOND $FF93

. Initialises the screen editor and 6567
video chip. This routine should be the first
routine called by a cartridge. To use, call
this routine (JSR $FF81).

: This routine initialises all input/output
devices. To use, call this routine.

: This routine tests RAM and sets the top
and bottom of memory pointers. It also
clears locations $0000 to $0101 and
$0200 to $033f. To use, call this routine.
: This routine restores the default values
of all vectors used by BASIC and the
KERNAL. To use, call this routine.

: This routine is used to change the
values contained in the vectors. To read
the vectors, set the carry. Load X and Y
(lo-hi) with the address in memory where
to put the vectors. Then change the ones
that you want and clear the carry. Set X
and Y to the address that the list is now
located and call this routine to put the
new list in the correct place in memory.

: This routine controls the printing of error
messages. To use, load A with $40 to
turn on control messages (eg. press play
on tape); $80 to turn on error messages
(eg. file not found); and $00 to turn off all
messages.

: Sends a secondary address to an /O
device. To use, load A with the secon-
dary address to be sent and call this
routine.

166

TKSA $FF96

MEMTOP $FF99

MEMBOT $FF9C

SCNKEY $FF9F

SETTMO $FFA2

ACPTR $FFA5

: Sends a secondary address after TALK.
To use, call the ‘TALK’ routine and then
load A with the secondary address, and
call this routine.

: This routine reads/sets the top of
memory. To read the top of memory, call
this routine with the carry bit set. The top
of memory will be loaded in the X and Y
registers in lo-hi byte order. To set the top
of memory clear the carry bit, and load X
and Y with the top of memory in lo-hi byte
order. Then call this routine.

: This routine reads/sets the bottom of
memory. To read the bottom of memory,
call this routine with the carry bit set. The
bottom of memory will be loaded in the X
and Y registers in lo-hi byte order. To set
the bottom of memory clear the carry bit,
and load X and Y with the bottom of
memory in lo-hi byte order. Then call this
routine.

: This routine reads the keyboard. If akey
is held down then its ASCIl value is
placed in the keyboard buffer. To use,
call this routine.

: This routine sets the IEEE timeout. This
routine is used only by an IEEE card. To
use, load A with $00 and call this routine
to set the timeout flag. To clear the
timeout flag, load A with $80 and call this
routine.

: This routine gets a byte from the serial
bus using full handshaking. To use, get
the ‘TALK’ and ‘TKSA KERNAL' routines
to set a device to send data. Call this
routine. Now store or do otherwise with
the data.

167

CIOUT $FFA8

UNTLK $FFAB

UNLSN $FFAE

LISTEN $FFB1

TALK $FFB4

READST $FFB7

SETLFS $FFBA

SETNAM $FFBD

: Outputs a byte to the serial bus. To use,
do LISTEN and SECOND, then load A
with the byte to be sent. Now call this
routine.

: This routine tells the devices on the
serial bus to stop sending data. To use,
call this routine.

: This routine tells the devices on the
serial bus to stop receiving data. To use,
call this routine.

: This routine tells a device on the serial
bus to prepare to receive data. To use,
load A with the device number of the
device that you want to listen to (0-31)
and call this routine.

: This routine tells a device on the serial
bus to send data. To use this routine,
load A with the device number of the
device that you want to send data (0-31)
and call this routine.

: This routine returns the current status of
the 1/0 devices in A.

: This routine sets the logical file number,
device address and the secondary
address for other KERNAL routines. To
use, load A with the logical file number, X
with the device number (0 = keyboard, 1
= tape, 2 = RS232C, 3 = CRT display,
4/5 = serial bus printer, 8/9 = serial bus
disk drive) and call this routine.

: This routine sets up the file name
required for OPEN, SAVE and LOAD. To
use, load A with the length of the file
name, and X and Y with the address of
the file name in lo-hi byte order. If no file
name is required then load A with zero.
Now call this routine.

168

OPEN $FFC0

CLOSE $FFC3

CHKIN $FFC6

CHKOUT $FFC9

CLRCHN $FFCC

CHRIN $FFCF

CHROUT $FFD2

LOAD $FFD5

: This routine is used to OPEN a logical
file. To use, call SETLFS and SETNAM,
and then call this routine.

: This routine CLOSEs a logical file. To
use, load A with the logical file to be
closed and call this routine.

: This routine opens a channel for input.
To use, open the logical file with OPEN
and load X with the number of the logical
file to be used. Then call this routine.

: This routine opens a channel for output.
To use, open the logical file with OPEN
and load X with the logical file to be used.
Then call this routine.

: This routine clears all open channels
and restores the I/O channels to their
original default values. To use, call this
routine.

: This routine gets a byte of data from an
input channel. To use this routine, call
OPEN and CHKIN, and then call this
routine and store the data received in A.

: This routine outputs a character to an
already opened channel. To use, call
OPEN and CHKOUT, and then call this
routine with the byte to be output in A. If
the characters are to be sent to the
screen, then load A with the character
and call this routine. No preparatory
routines are required in this case.

: This routine loads or verifies RAM from
a device. To load, A must be set to zero.
To verify, A must be set to one. To use,
call SETLFS and SETNAM, and then call
this routine.

169

SAVE $FFD8

SETTIM $FFDB

RDTIM $FFDE

STOP $FFE1

GETIN $FFE4

CLALL $FFE7

UDTIM $FFEA

: This routine saves RAM to a device. To
use, call SETLFS and SETNAM. Load
two consecutive locations in zero page
with the start address of the save in lo-hi
byte format. Load A with the zero page
offset of the save start address (if the
save address is stored in $FB and $FC,
then load A with $FB). Load X and Y with
the end address +1 of the save in lo-hi
byte format and call this routine.

: This routine sets the system clock. The
clock is three bytes long and is stored as
jiffies’ (60ths of a second). To set the
clock, load A with the most significant
byte of the time, load X with the middle
byte and load Y with the least significant
byte. Then call this routine.

: This routine reads the system clock. To
use, call this routine. A contains the most
significant byte, X contains the next most
significant byte and Y contains the least
significant byte when the routine returns.

: This routine checks if the Stop key is
pressed. To use, call UDTIM, and then
call this routine and test for the zero flag.
If the flag is set then the Stop key was set.

: This routine gets a character from the
keyboard buffer. To use, call this routine.
If A contains zero then the buffer is
empty, otherwise the data for the key
pressed can be used.

: This routine closes all open files. To
use, call this routine.

: This routine updates the system clock. It
is called by the normal ‘IRQ’ routine
every 60th of a second. To use, if you are
using your own interrupt controller, call
this routine.

170

SCREEN $FFED : This routine returns the format of the

PLOT $FFF0

IOBASE $FFF3

screen, ie. 40 in X and 25 in Y. To use,
call this routine.

: This routine reads or sets the current
cursor position. To read the current
cursor position, set the carry and call this
routine. The X co-ordinate will be in X and
the Y co-ordinate in Y. To set the position
of the cursor, clear the carry and load X
with the X and Y with the Y. Then call this
routine.

: This routine defines the address of the
memory section where the memory
mapped 1/O devices are located. To use
this routine, call the routine and the X and
Y registers will contain the address of the
I/O start in memory in lo-hi byte format.

KVCTRS $FFFA-$FFFB : NMI vector address.
RSTVEC $FFFC-$FFFD : Reset vector address.
IRQVEC $FFFE-$FFFF :IRQ interrupt vector address.

171

APPENDICES

APPENDIX A

Here are all the necessary abbreviations for the BASIC
keywords. You will find that most of the Commodore 64
BASIC keywords can be abbreviated when typing in

programs. They are as follows:

Looks like Looks like
Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
ABS A Bl s Al END 3 svirt Y e
Ao AN AL EXP e G x E
Asc AEmEs A[Y FN NONE FN
ATN A B v A FOR 3 swiFt el F)
chrs c EmEH c[] FRE F EE R P
cose cE@o o[GET c D ¢ ¢ &
CLR c B < GET# NONE GET#
cmo c E@r N cosus GOEMERs Go[V]
cont c @@o c[] coro cEmo o [J
cos NONE cos IF NONE IF
patA 0 ElER A D (4] INPUT NONE INPUT
DEF O suiet |3 o 3 ineUT# (SR N)
DIM o BE N INT NONE INT

173

Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
terts e (MR F te [RIGHTS R ([EED ! RN]
LEN NONE LEN RND LY it JEN R /]
LET W svir1 | L RUN rEm U R[4
usT W shirr t K] save s G A S
a0 L E@Eo [son sEm e s[
LOG ~ NONE LOG SIN s B ! sK]
mios mEED ! N secc s ENER P s
NEW NONE NEW SQR s BE @ s i@
NEXT N CED ¢ N STATUS ST ST
notT NEGBo N[ster STRED ¢ Sim
ON NONE ON stor s ER T s [
oreN O P o] siRs sTEERR ST
OR NONE OR SYS sE@m Y s[]
PEEK P EIGED ¢ P TAB(|l sHiFT J T[4
POKE X sHiFT Je) P [TAN NONE TAN
POS NONE POS THEN T (R T[]
PRINT 2 ? TIME T T
PRINT# P (AR R P] TIMES s Ti$
READ R £ R |use v B s u [v)
REM NONE REM VAL VEmR A v
ResTORE RE [EHED S RE [¥] veriy v (GG € v
RETURN Re [CIED T Re([] (war w D A w4

174

APPENDIX B

The following table contains the values for the screen
display codes. (The values used for POKEing characters
onto the screen and the values PEEKed from the screen.)

To change from character set 1 to set 2 and vice versa,
press the Shift and Commodore keys simultaneously.

SCREEN CODES

SET 1 SET2 POKE | SET 1 SET2 POKE | SET1 SET 2 POKE
@ 0 c c F f 6
A a 1 D d G g
B b 2 E e 5 H h 8
! i 9 % 37 A 65
J i 10 | & 3 (] B 66
K k 11 ' 3 |H ¢ &7
L [12 (90 | o e8
M m 13) 41 | B E 69
N n 14 . @2 | d 7
o} 0 15 + 3 | [J & n
P p 16 . 44 | [H 72
Q q 17 - s | K] | 73
R r 18 : 6 | [N 74
S s 19 / a7 | P] Kk 75
T t 20 0 48 O L 76
U u 21 1 49 N M 77
v v 22 2 so |] N 78
w w 23| 3 st 1 [0 o 79

175

POKE

o
@®

-
@©

N
©

@
@

<
@

wn
@

©0
@®

~
@

@©
@®

o2}
@

8

-~ «
o o

117
118
119

120

N oY WO KN
N N N N NN
- - - v v v v

SET 1

“loa o ®+- D> %X >N
la B
mDHQEEﬁm&Q@m@mmm AEODO0EMAR S
fe 238858883 c883 885882z
I N
ElY 2 e~ @ o viooa o NOEMBGBOEEESa
Y32 8KRR8588388 338858385883
mxv.z EN

=
X >N — o — o« R s [*[1 |m{m]m]::1m]s:

Codes from 128-255 are reversed images of codes 0-127.

176

APPENDIX C

The following table contains ASCII values for the characters
and control codes. The values are those returned by the

ASC function and the characters printed by the CHR$
function.

PRINTS CHRS$ PRINTS CHRS PRINTS CHRS PRINTS CHRS

0 17 " 34 3 51

LY . 18 # 35 4 52

2 |19 19 $ 36 5 53

3 20 | % 37 6 54

4 21| & 38 7 55

B 5 2| . 39 8 56
6 23 (40 9 57

7 24) 41 58

oisasees [EIIR Q8 25 . 42 . 59
ENABLES [C:] 26 + 43 < 60
10 27 , 44 = 61

1 m 28 - 45 > 62

12 29 . 46 ? 63

13| B 30 / 47 @ 64
14 | B 3 0 48 A 65
15 32 1 49 B 66

16 ! 33 2 50 c 67

D 68 97 | M 126 | FH 155

E e | [[] o | N 127 | g 156

Foo | B 99 128 | E@ 157

G n |83 100 120 | [158

H 2 | & 101 130 | BB 159

' B e w02 131 160

177

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS
J 74 |] 103 132 D s
K 5 | [] 104 | 133 162
L 76 | NJ 105 | 13 134 | [] 163
M 77 | [N 106 | 15 135 L] 164
N o7 [P) o7 | m 1ee| [1es
o) 77 | O 108 | f2 137 B 166
P o | N 109 | 14 138 (] 167
Q 8t | 110 | 16 139 B 168
R 82 | [m | 18 140 | P 169
S 83 |] 112 | OO 41 (1 170
T 84 113 142 | (B 17
U 85 |] 114 143 (W 172
v 86 | (V] 15 | [144 Y 173
W g7 | [116 145 | RJ] 174
X 88 | (4 17 | B 146 - 175
Y 89 | X 118 147 | [0 176
z 9 | O 119 | @ 18| B
[91 120 | [J 9| B s
e 92 | 21| X 10| H 17
] 93 | (¢ 122 151 [l 180
1 4 | HH 123 152 | [181
- 95 | Bl 12a | [53| (B 182
H 9% [125 | @ 54| O 183
™ 184 | [J 186 | (™ 188 | M 190
e 185 | @] 187 | H] 189 | Mg 191
CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

178

APPENDIX D

The following diagrams contain the locations of character
and colour RAM.

As an example, to put an ‘A’ in the top left of the screen in
yellow, type the following:

POKE 1024,1
POKE 55296,7

The following charts list which memory locations control
placing characters on the screen, and the locations used to
change individual character colours, as well as showing
character colour codes.

1024 ——=
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

SCREEN MEMORY MAP

COLUMN
0 10 20 30 39
1063
1 0
I {
t '
11 i I |
C i | ! i .
11 ; ! | ; : ; i
1% T, | | T !
[e b
1] T i I‘ i
T ! ! N
; Pl Pl 10
! BN |
SSESEEEENNENE b
ceed | :
; L i |
IBEEE ' -
l:; ;i 1A]
! X
+ I
I :i
1 20
24
t
2023

179

MOY

The actual values to POKE into a colour memory location
to change a character’s colour are:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 Light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE

7 YELLOW 15 GRAY3

For example, to change the colour of a character located
at the upper left-hand corner of the screen to red, type:
POKE 55296,2.

COLOUR MEMORY MAP

COLUMN
0 10 20 30 39

55335

55296 — 0
55336
55376
55416
55456
55496 :
55536 ——
55576 e
55616
55656 i

55696 HBEE
55736 !

55776
55816
55856
55896 ‘
55936 !
55976
56016 i
56056
56096 20
56136
56176
56216
56256 2u

Moy

t
56295

180

APPENDIX E

The following table contains the values for musical notes.

The table contains the note, octave, decimal value of the
frequency, the hi-byte (to be POKEd into the hi-frequency
registers) and the lo-byte (to be POKEd into the lo-frequency
registers).

MUSICAL NOTE OSCILLATOR FREQ
NOTE OCTAVE DECIMAL Hi LOow
0 C-0 268 1 12
1 C#-0 284 1 28
2 D-0 301 1 45
3 D#-0 318 1 62
4 E-0 337 1 81
5 F-0 358 1 102
6 F#-0 379 1 123
7 G-0 401 1 145
8 G#-0 425 1 169
9 A-0 451 1 195
10 A#-0 477 1 221
1 B-0 506 1 250
16 C-1 536 2 24
17 C#-1 568 2 56
18 D-1 602 2 90
19 D#-1 637 2 125
20 E-1 675 2 163
21 F-1 716 2 204
22 F# -1 758 2 246
23 G-1 803 3 35
24 G#-1 851 3 83
25 A-1 902 3 134
26 A#-1 955 3 187
27 B-1 1012 3 244
32 Cc-2 1072 4 48

181

MUSICAL NOTE

OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI Low
33 C#-2 1136 4 12
34 D-2 1204 4 180
35 D#-2 1275 4 251
36 E-2 1351 5 71
37 F-2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 6 71
40 G#-2 1703 6 167
41 A-2 1804 7 12
42 A# -2 1911 7 119
43 B-2 2025 7 233
48 C-3 2145 8 97
49 C#-3 2273 8 225
50 D-3 2408 9 104
51 D#-3 2551 9 247
52 E-3 2703 10 143
53 F-3 2864 n 48
54 F#-3 3034 N 218
55 G-3 3215 12 143
56 G#-3 3406 13 78
57 A-3 3608 14 24
58 A#-3 3823 14 239
59 B-3 4050 15 210
64 C-4 4291 16 195
65 C#-4 4547 17 195
66 D-4 4817 18 209
67 D#-4 5103 19 239
68 E-4 5407 21 31
69 F-4 5728 22 96
70 F#—4 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49
74 A#—-4 7647 29 223
75 B-4 8101 31 165
80 Cc-5 8583 33 135
81 C#-5 9094 35 134

182

MUSICAL NOTE

OSCILLATOR FREQ

NOTE OCTAVE DECIMAL Hi Low
82 C-0 9634 37 162
83 C#-0 10207 39 223
84 D-0 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190
91 B-5 16203 63 75
96 C-6 17167 67 15
97 C#-6 18188 71 12
98 D-6 19269 75 69
99 D#-6 20415 79 191

100 E-6 21629 84 125

101 F-6 22915 89 131

102 F#-6 24278 94 214

103 G-6 25721 100 121

104 G#-6 27251 106 115

105 A-6 28871 112 199

106 A# -6 30588 119 124

107 B-6 32407 126 151

112 c-7 34334 134 30

13 C#-7 36376 142 24

114 D-7 38539 150 139

115 D#-7 40830 159 126

116 E-7 43258 168 250

117 F-7 45830 179 6

118 F#-7 48556 189 172

19 G-7 51443 200 243

120 G#-7 54502 212 230

121 A-7 57743 225 143

122 A# -7 61176 238 248

123 B-7 64814 253 46

183

The following table lists the filter settings for the SID chip.

FILTER SETTINGS
Location Contents
54293 Low cut-off frequency (0-7)
54294 High cut-off frequency (0-255)
54295 Resonance (bits 4-7)

Filter voice 3 (bit 2)
Filter voice 2 (bit 1)
Filter voice 1 (bit 0)
54296 High pass (bit 6)
Bandpass (bit 5)
Low pass (bit4)
Volume (bits 0-3)

184

APPENDIX F

The following table contains a diagrammatic listing of the
function of the VIC Il chip and the individual bits.

Register #
Dec Hex | DB7 |DB6 |DB5 | DB4 | DB3 | DB2 | DB1 | DBO
0 0 | SOX7 SO0X0 [SPRITEO X
Component
1 1 Soy7 SOYO0 |SPRITEQOY
Component
2 2 | S1X7 S1X0 |SPRITE1X
3 3 | S1y7 S1Y0 |SPRITE1Y
4 4 | S2X7 S2X0 |SPRITE2X
5 5 | 8S2Y7 S2Y0 |SPRITE2Y
6 6 | S3X7 S3X0 |SPRITE3 X
7 7 | S3y7 S3Y0 |SPRITE3Y
8 8 | S4x7 S4X0 |SPRITE4 X
9 9 | S4v7 S4Y0 |SPRITE4Y
10 A | S5X7 S5X0 [SPRITE5S X
1 B | S5Y7 S5Y0 |SPRITES Y
12 (o} S6X7 S6X0 |SPRITE6 X
13 D |[SeéY7 S6Y0 [SPRITE6Y
14 E S7X7 S7X0 [SPRITE7 X
Component
15 F S7Y7 S7Y0 |[SPRITE7Y
Component
16 10 | S7X8 |S6X8 |S5X8| S4X8 | S3X8| S2X8 | S1X8 | SOX8 |MSBof X
CO-ORD.
17 11 | RC8 [ECM [BMM | BLNK | RSEL|YSCL2|YSCL1|YSCLO|Y SCROLL
MODE
18 12 | RC7 [RC6 |RC5 | RC4 | RC3 | RC2 | RC1 | RCO [RASTER
19 13 | LPX7 LPXO0 [LIGHT PEN X
20 14 | LPY7 LPYO |LIGHT PENY

185

Register #

Dec

Hex

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DBO

21

22

23

24

25

26

27

28

29

30

31

15

1E

1F

SE7

SEO

SPRITE
ENABLE
(ON/OFF)

N.C.

N.C.

RST

MCM

CSEL

XSCL2

XSCL1

XSCLO

X SCROLL
MODE

SEXY7

SEXYO0

SPRITE
EXPAND Y

VS13

VS12

VS11

V§10

CB13

CB12

CB11

N.C.

SCREEN
Character
Memory

IRQ

N.C.

N.C.

N.C.

LPIRQ

ISSC

ISBC

RIRQ

Interupt
Request's

N.C.

N.C.

N.C.

N.C.

MLPI

MISSC

MISBC

MRIRQ

Interupt
Request
MASKS

BSP7

BSPO

Background-
Sprite
PRIORITY

SCM7

SCMo

MULTI-
COLOUR
SPRITE
SELECT

SEXX7

SEXX0

SPRITE
EXPAND X

SSC7

SSCo

Sprite-
Sprite
COLLISION -

SBC7

SBCO

Sprite-
Background
[COLLISION

186

32 20 0 0 BLACK EXT1 EXTERIORCOL

33 21 1 1 WHITE BKGDO

34 22 2 2 RED BKGD1

35 23 3 3 CYAN BKGD2

36 24 4 4 PURPLE BKGD3

37 25 5 5 GREEN SMCO SPRITE
MULTICOLOURO

38 26 6 6 BLUE SMC 1 1

39 27 7 7 YELLOW S0COL SPRITEOQ
COLOUR

40 28 8 8 ORANGE S1COL 1

41 29 9 9 BROWN S2coL 2

42 2A |10 A LTRED S3COL 3

43 2B |11 B GRAY 1 S4COL 4

44 2C |12 C GRAY 2 S5COL 5

45 2D |13 D LTGREEN |S6COL 6

46 2E |14 E LTBLUE S7COL 7

15 F GRAY 3
LEGEND:

ONLY COLOURS 0-7 MAY BE USED IN MULTICOLOUR CHARACTER MODE

187

APPENDIX G

The following table contains the Commodore 64 BASIC

equivalents of mathematical functions.

INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

FUNCTION BASIC EQUIVALENT

SECANT SEC(X)=1/COS(X)

COSECANT CSC(X)=1/SIN(X)

COTANGENT COT(X)=1/TAN(X)

INVERSE SINE ARCSIN(X)=ATN(X/SQR(—X*X+1))

INVERSE COSINE ARCCOS(X)=—ATN(X/SQR
(=X*X+1))+7/2

INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X*X~1))

INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X—1))
+(SGN(X) - 1*7/2

INVERSE COTANGENT ARCOT(X)=ATN(X)+n/2

HYPERBOLIC SINE SINH(X)=(EXP(X)—EXP(-X))/2

HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(-X))/2

HYPERBOLIC TANGENT TANH(X) =EXP(— X)/(EXP(x)+ EXP
(=X))"2+1

HYPERBOLIC SECANT SECH(X)=2/(EXP(X)+EXP(—X))

HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)— EXP(-X))

HYPERBOLIC COTANGENT COTH(X)=EXP(~X)/(EXP(X)
—EXP(=X))*2+1

INVERSE HYPERBOLIC SINE ARCSINH(X)=LOG(X+SQR(X*X+1))

INVERSE HYPERBOLIC COSINE ARCCOSH(X)=LOG(X+SQR(X*X—1))

ARCTANH(X)=LOG((1+X)/(1-X))/2
ARCSECH(X)=LOG((SQR
(= X*X+1)+1/X)
ARCCSCH(X)=LOG((SGN(X)*SQR
(X*X+1/x)
ARCCOTH(X)=LOG((X+1)/(x=1))/2

188

APPENDIX H

The following pages contain the pin-out information for
connecting external equipment to the Commodore 64.

1) Game I/0 4) Serial I/O (Disk/Printer)
2) Cartridge Slot 5) Modulator Output
3) Audio/Video 6) Cassette

7) User Port

Control Port 1
Pin Type Note
JOYAQ T2 3 4
JOYAI © o o o
JOYA2
JOYA3
POT AY

BUTTON A/LP
+5V MAX. 50mA
GND
POT AX

owm

o 0
~ O
® O
© 0

VO ® NO UL & LN

Control Port 2
Pin Type Note
1 JOYBO
JOoysi L
JOYB2
JOYB3
POT BY
BUTTON B
+5v MAX. 50mA
GND
POT BX

VO ® N UL aEaWN

189

Cartridge Expansion Slot

Pin Type
12 BA
13 DMA
14 D7
15 D6
16 D5
17 D4
18 D3
19 D2
20 D1
21 DO
22 GND
Pin Type N
N A9

[A8

R A7

S Ab

T AS

u A4

\ A3
w A2

X Al

Y A0

z GND

ZYXWVUTSRPNMLKUJHFEDCE BA

2221201918 17161514131211109 8 7 6 5 4 3 2 1

Pin

Type

- O 0 ® N O U & WWwN —

GND
+5Vv
+5Vv

RQ

RIW

Dot Clock
/01

>
]

T T RSSITTMTMOoON® >

Audio/Video
Pin Type Note
1 LUMINANCE
2 GND
3 AUDIO OUT
4 VIDEO OUT
5 AUDIO IN
Serial VO
Pin Type
| SERIAL SRQIN
2 GND
3 SERIAL ATN IN/OUT
4 SERIAL CLK IN/OUT
5 SERIAL DATA IN/OUT
L6 RESET

190

Cassette

Pin

Type

A-1
B-2
C-3
D-4
E-5
F-6

GND

+5V

CASSETTE MOTOR
CASSETTE READ
CASSETTE WRITE
CASSETTE SENSE

User 1/O

>
5

Type Note

® NO O AW -

N~ -0 9o

+5V MAX. 100 mA
RESET

CNTI

SPI

CNT2

SP2

PC2

SER. ATN IN
9 VAC MAX. 100 mA
9 VAC MAX. 100 mA
GND

Type Note

zZZ-rxoeImmonow>F

GND
FLAG2
PBO
PB1
PB2
PB3
PB4
PBS
PB6
PB7
PA2
GND

1 23 456 7 8 9 101112

— Al AR EanEaERS
T e T W T T W W Ewww

A BCDEFHUJIKLMN

191

123 458

A BCDEHTF

APPENDIX |

The following pages list all the error messages generated
by the Commodore 64 and the reason for them appearing.

BAD DATA String data was received from an open file, but
the program was expecting numeric data.

BAD SUBSCRIPT The program was trying to reference an
element of an array whose number is outside of the range
specified in the DIM statement.

CAN’'T CONTINUE The CONT command will not work,
either because the program was never RUN, there has been
an error, or a line has been edited.

DEVICE NOT PRESENT The required I/O device was not
available for an OPEN, CLOSE, CMD, PRINT#, INPUT# or
GET#.

DIVISION BY ZERO Division by zero is a mathematical
oddity and not allowed.

EXTRA IGNORED Too many items of data were typed in
response to an INPUT statement. Only the first few items
were accepted.

FILE NOT FOUND If you were looking for a file on tape, an
END-OF-TAPE marker was found. If you were looking on
disk, no file with that name exists.

FILE NOT OPEN The file specified in a CLOSE, CMD,
PRINT#, INPUT# or GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the
number of an already open file.

FORMULA TOO COMPLEX The string expression being
evaluated should be split into at least two parts for the
system to work with, or a formula has too many parentheses.
ILLEGAL DIRECT The INPUT statement can only be used
within a program, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a
function or statement is out of the allowable range.

LOAD There is a problem with the program on tape.
NEXT WITHOUT FOR This is caused by either nesting

192

loops incorrectly or having a variable name in a NEXT
statement that doesn’t correspond with one in a FOR
statement.

NOT INPUT FILE An attempt was made to INPUT or GET
data from a file which was specified to be for output only.
NOT OUTPUT FILE An attempt was made to PRINT data
to a file which was specified as input only.

OUT OF DATA A READ statement was executed but there
is no data left unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for
program or variables. This may also occur when too many
FOR loops have been nested, or when there are too many
GOSUBs in effect.

OVERFLOW The result of a computation is larger than the
largest number allowed, which is 1.70141884E +38.
REDIM’'D ARRAY An array may only be DIMensioned
once. If an array variable is used before that array is DIMd,
an automatic DIM operation is performed on that array
setting the number of elements to 10, and any subsequent
DIMs will cause this error.

REDO FROM START Character data was typed in during
an INPUT statement when numeric data was expected. Just
re-type the entry so that it is correct, and the program will
continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was
encountered, and no GOSUB command has been issued.
STRING TOO LONG A string can contain up to 255
characters.

?SYNTAX ERROR A statement is unrecognizable by the
Commodore 64. A missing or extra parenthesis, misspelled
keywords, etc.

TYPE MISMATCH This error occurs when a number is
used in place of a string, or vice versa.

UNDEF’'D FUNCTION A user-defined function was
referenced, but it has never been defined using the DEF FN
statement.

UNDEF’'D STATEMENT An attempt was made to GOTO,
GOSUB or RUN a line number that doesn’t exist.

VERIFY The program on tape or disk does not match the
program currently in memory.

193

APPENDIX J

6510 MICROPROCESSOR CHIP
SPECIFICATIONS

DESCRIPTION

The 6510 is a low-cost microcomputer system capable of
solving a broad range of small-systems and peripheral-
control problems at minimum cost to the user.

An eight-bit bi-directional 1/0 port is located on-chip with
the output register at address 0000 and the data-direction
register at address 0001. The I/O port is bit-by-bit programm-
able.

The three-state 16-bit address bus allows Direct Memory
Accessing (DMA) and multiprocessor systems sharing a
common memory.

The internal processor architecture is identical to the MOS
Technology 6502 to provide software compatibility.

FEATURES OF THE 6510. ...

Eight-bit bi-directional 1/0 port

Single +5 volt supply

N-channel, silicon gate, depletion load technology
Eight-bit parallel processing

56 instructions

Decimal and binary arithmetic

Thirteen addressing modes

True indexing capability

Programmable stack pointer

Variable length stack

Interrupt capability

Eight-bit bi-directional data bus
Addressable memory range of up to 65K
Direct memory access capability

Bus compatible with M6800

Pipeline architecture

1 MHz and 2 MHz operation

Use with any type or speed memory

194

PIN CONFIGURATION

z o
12 - _M [=] - N ™ < ") © ~ o -
] @ g & @& @© @& @O o - o r oz
c § & o o o o o 60 © o & o 2 & o @ <« « o
BIHEBRRBRRBRBRRBRBRBEREBE
< ™ ™ @ ™ ™ Lol ™ (] ™ ™ N ~N o~ o~ ~N ~N o~ o~ ~N
o
-
n
({e]
HEBEERNEREEEEEEEEEEE
— - o~ @ o - «
zZ x _m _M S 8§ &£ <« & < & & & < < < 2 Z M <
- - Z < >
s

195

A!ﬂ
An
A"
A‘!

SRR REN

>

AEC

S O S B B

THREE-STATE ADDRESS BUFFER

r DATA
k::> DIRECTION Py---P,
REGISTER T
PERIPHERAL PERIPHERAL
K ouiPUT INTERFACE
REGISTER BUFFER
AES IRQ NMI
- (] T [woex E INTERRUPY
REGISTER LOGIC
— | GO S
- INDE X
REGISTER
X
— ‘—
o
©
<
STACK
— " POINT
&) REGISTER
s 1S) L
— <
z
a
i INSTRUCTION|
- == DECODE
ALU
= Oy ouT
—
p t
I
— |3
;, ACCUMULATOR TIMING
Y [conTRoL
z e
— z
w
! T
= k= pCL
i V | g IN
— —— PCH |
I
PROCESSOR
il = ks STATUS
- REGISTER
INPUT
DATA
L LATCH
- oL 4
§ l_. AW
— |
OATA BUS INSTRUCTION
U REGISTER
—H U U =
1.
LEGEND > 0.
> O,
ﬂ - BBITUINE > 3' g:;‘
» 0,
} = 1BITUINE 0.
o,

6510 BLOCK DIAGRAM

196

6510 CHARACTERISTICS

MAXIMUM RATINGS

RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Vee —0.3to +7.0 Voe
INPUT VOLTAGE Vin —0.3t0 +7.0 Voe
OPERATING TEMPERATURE Ta 0to +70 °C
STORAGE TEMPERATURE Ts1e —55to +150 °C

NOTE: This device contains input protection against damage due to high static volt-
ages or electric fields; however, precautions should be taken to avoid application of
voltages higher than the maximum rating.

ELECTRICAL CHARACTERISTICS
(VCC =50V 5%, VSS =0, T, = 0° to +70°C)

CHARACTERISTIC SYM- MIN. [TYP. MAX. UNIT
BOL

Input High Voltage

b1, Daim Vin {Vee — 0.2 — |Vee + 1.0V| Vpe
Input High Voltage
RES, Py-P; IRQ, Data Vss + 2.0 — — Voc
Input Low Voltage
d)n d’z(im Vi [Vss = 0.3 | — | Vgs + 0.2 | V¢
RES, Py-P; IRQ, Data — — | Vss + 0.8 | Vpc
Input Leakage Current

(Vin = 010 5.25V, Ve = 5.25V)

Logic lin —_ —_— 2.5 A

1. Dain — — 100 WA
Three State (Off State) Input Current
(Vin = 0.4 10 2.4V, Vge = 5.25V)

Data Llines lysi — — 10 HA
Output High Voltage
(lon = —100Ape, Vee = 4.75V)

Data, AO-A15, RIW, Py-P, Vou |Ves + 2.4 | — — Voc

197

CHARACTERISTIC SYM- MIN. [TYP. MAX. UNIT
BOL
Out Low Voltage
(IOL =].6mADc, VCC = 4.75V)

DO'G, A0~A‘5, R/W, Po-P-, VOL —_— _ VSS + 0.4 VDC
Power Supply Current lee — 125 mA
Capacitance C : pF

Vin = 0, Ty = 25°C, f = 1MHz)

Logic, Py-P; Cin — — 10

Data — — 15

AO-A15, R/W Cout — — 12

&, Co, — 130 50

b, Co, — |50 80

. CLOCK TIMING .
e Teve -
: I~ _PWHo, ~ : .
o1 IN /i Vec-02v \ /; Vec-02V
~To E‘ To N r E
Vcc—osz : :
2 IN | | ; : | —] E
=T iR e
- Taws - ’t . i THRW “1 I"
__ | o0V T 2.0V
RIW . / - i ’ I—\
| i !
B |
| S T B,
ADDRESS
FROM 2o ><
MPU .
n Taos ~F Taew =
! |
P
L Teon o, i
DATA r 25337—1—
FROM ; i | >—
MEMORY . O'BH
" AcC Tosu ~ Tur
Teosy — -
PERIPHERAL 3
DATA |
ITAES
‘r—r oy

ADDRESS Vee-0.2v

ENABLE

CONTROL TIMING FOR READING DATA FROM

MEMORY OR PERIPHERALS

198

CLOCK TIMING

|‘ Teve - - -
le PWHo,

-]
A Vec-0.2v \ J Vec - 0.2V
61N : CcC CcC
.2V

- Tp e TD_.I e

Vee-0.2v
o9 IN 0.2V
Tk =7 PWHo,

* Trws ’{

AN

RIW _dBV
[« Tagw -z - +-of
ADDRESS N Twe:
2.0v
FROM >< Py
MPU
] 05y
DATA ADS 2.0V
FROM j—/
MEMORY 0.8v
—Tmos—* el THW

e— Trow
PERIPHERAL
DATA
TA_EE,
ADDRESS Voo 02V
ENABLE
CONTROL

TIMING FOR WRITING DATA TO
MEMORY OR PERIPHERALS

199

su 0S — — 00} nsa; pouad swi| Ajiqes eyeq

su 00€ — — S.S — — ooV} aWl|| SS90y peay Alows|

su oSt 001 — | ooe 001 — savy 80G9 wouj dwi] dn-}og ssaippy

su 051 00} — oog 00} — SME | 80G9 woujawi| dn-18S slipm/pesy

SLINN | XV | "dAL | 'NIN | XV || "dAL | ‘NIWN|[TOSWAS OILSIH3LOVHVHO

ONIWNILZHW Z ONINILZHI | (LL1 =AavO1) ONIWIL ILIHM/AVIH

su — — 0 — — 0 ar (A2'01e painsespy)

SYJ0|) usamiag awli| >m_wO

su Sl — — o1 — —| HL4l (A2'0—9°A 01 AZ"0 WOy painsesy)

awij asiy ‘swiy |e4

su — — Gee — — 0L¥| 2dHMd 2% (A2’ 0—>°A 1E painsespy)

su — — Gie — — oey| LPHMJ kb UIPIM BSINd %0010

su — — 00S — — | 0001 OA9] awn] w__96

SLINN | 'XVIN | ‘dAL | 'NIN | XYW | ‘dAL | 'NIN|TO8WAS OILSIHILOVHVHO
ONIWILZHW 2 ONIWILZHIN ONINIL¥D201D

(2:02=00 = Y1 ‘A O = SSA ‘“%GF A G = °°A) SOILSIHILOVHVHO 1vII410313

SOILSIH31LOVHVHO JV

200

su 09 09 $3vy awi] dn-}ag 8|qeu3 ssaippy
su — — 00€ nsad) awi] dn-}ag ejeq jesaydusd
sn 1 — — mad) pieA ejeq [esayduad 0}
uonisues) aaebau go ‘awn] Aejag

su — — o€l g uolisuel} aApsod géd o}
uonisuel} aaiebau pvY ‘swi) AejeQ

su — — 00€ nsay uolisuel} aanebeu
2d o1pieaeleq ‘swiy Aejpg

su G6€ — — H03) SNQ uo pifeA ereq o}
uonisuel) aanisod g¢ ‘swi) Aejag

su — — 08l M3v) uolisuel} aansod ¢
0} pijeA ssalppy ‘awi] Aejaqg

su o¢ ot — og (o]} MeH | dwi] pIoH M/H
su o€ ol — (0 ol VH) awil] p|oH ssaIppy
su (0]0]8 SL — 00¢ 0S1 - San) 0159 woyjawn) dn-1ag ejeq
su og (0]} — (01 ot MH) SlM-8WI] P|OH eleq
su — — uH) peay-awi] p|oH eleq

201

SIGNAL DESCRIPTION

Clocks (¢1, ¢2)

The 6510 requires a two-phase non-overlapping clock that
runs at the V¢ voltage level.

Address Bus (Ay—A,s)

These outputs are TTL compatible, capable of driving one
standard TTL load and 130 pf.

Data Bus (D,-D;)

Eight pins are used for the data bus. This is a bi-directional
bus, transferring data to and from the device and peripher-
als. The outputs are tri-state buffers capable of driving one
standard TTL load and 130 pf.

Reset

This input is used to reset or start the microprocessor from
a power down condition. During the time that this line is held
low, writing to or from the microprocessor is inhibited. When
a positive edge is detected on the input, the microprocessor
will immediately begin the reset sequence.

After a system initialisation time of six clock cycles, the
mask interrupt flag will be set and the microprocessor will
load the program counter from the memory vector locations
FFFC and FFFD. This is the start location for program
control.

After V¢ reaches 4.75 volts in a power-up routine, reset
must be held low for at least two cycles. At this time the R/'W
signal will become valid.

When the reset signal goes high following these two clock
cycles, the microprocessor will proceed with the normal
reset procedure detailed above.

202

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence
begin within the microprocessor. The microprocessor will
complete the current instruction being executed before
recognising the request. At that time, the interrupt mask bit in
the Status Code Register will be examined. If the interrupt
mask flag is not set, the microprocessor will begin an
interrupt sequence. The Program Counter and Processor
Status Register are stored in the stack. The microprocessor
will then set the interrupt mask flag high so that no further
interrupts may occur. At the end of this cycle, the program
counter low will be loaded from address FFFE, and program
counter high from location FFFF, therefore transferring
program control to the memory vector located at these
addresses.

Address Enable Control (AEC)

The address bus is valid only when the ‘address enable
control’ line is high. When low, the address bus is in a
high-impedance state. This feature allows easy DMA and
multiprocessor systems.

I/O Port (Pe—P,)

Eight pins are used for the peripheral port, which can
transfer data to or from peripheral devices. The output
register is located in RAM at address 0001, and the data
direction register is at address 0000. The outputs are
capable at driving one standard TTL load and 130 pf.

Read/Write (R/W)

This signal is generated by the microprocessor to control
the direction of data transfers on the data bus. This line is
high except when the microprocessor is writing to memory or
a peripheral device.

203

APPENDIX K

- c|v]ea as| svle[viav[z[z]ev] w V=W val
|||||| €90z NS dWNr (z 614 3ag) usr
|||||| S Jog oy '0071 M3N OL dWNr dWr
—_———— A Z A=L+A ANI
—— e — A 4 X1 +X XNI
—_——— - - 34{z |9 S [93[€ |9 (33 W=L+W ONI
[——— ¢ |v|es|c|r]as € [sv av|z [z |ev] W V~WAY H03
— e e A 2z A1 —A A30
J——— z X=1-X x30
- — .~ 39 z s |9o[€ |9 |39 W-i-W 230
— e — A~ AR EBEEEEER W-A AdD
[zic|v3fe[v 03]z |2 |03 W-X Xd2
[€|v]ea ag Zle|sole|vafz |z 6o W W-v dWO
0 — — — — — 1le A=0 A0
R ——— N 1-0 o
-0 — — — — (W4 a-0 a1
[—— N 2-0 210
|||||| 2 loz 2) | =A NO HONVHS]
|||||| 05 2) 0=A NO HONVHE ong
——) - == (1 ‘613 23g) Nu8
|||||| Z lov @ 0 =N NO HONVHS 148
|||||| loa @) 0=Z NO HONVHE 3INg
|||||| ot @) & =N NO HONVYHE e
W— — — ~ I vz 02| Wvv 18
|||||| 04 @) 1+ =Z NO HONVHE o3s
IIIIII 08 @ 1 =3 NO HONVHE S08
|||||| 06 (2) 0= NO HONVHE 208
R cle]3]fz]e 90|€ |9 (30] o0 -0 sv
—_—— . — clvi(6ElE|v|aEjC Y sZ|e|v|az|z|c (62| W V=-=WVV ANV
——a c|viecfe]v]afz]r sofe[v]asfz|zles] W) v-O+w+v oav
AQ I DZN N |dO| 4of # [N |do]# [N [do] # do| # | N |dO| # | N |40 do
$3000 NOILIGNOD 1oenpul | eauwew | Asay | xsav |x obeg o107 SNOILONUISNI

‘diyo 0159 8y} Joj sanjea Buiwi ayy urejuod sajqe} buimoyjo ey

204

205

S31A8 ON # 77 1InS34 0437 403 GINDIHD 38 LSNW HOLYINWNIIY

S310AD ON N HO 3AISNTOX3 A Y3INIOd ¥OVLS Hid AHOWIW GITVANI S O¥13 Z 300 TYWIDIA NI 31 (v

9 118 AHOW3IN *W "0 A SS3YOQY 3A1193333 BId AUONIW W MOHHO8 = LON AHHYD ()
1 118 AHOW3IN ‘W aNY vV HOLVINWNDOY Vv 39vd IN343341Q O1 SHNOD0 HONYHE 31 .N.. Ol Z Qv

03141A0N 1ON — 10vueians - A X3ONI A '39Vd 3WVS Ol SBNDD0 HONVHSB J1 .N.. O1 | OQV)

a3id100n_~ oav + X X30NI X 03SSOHD SI AHYONNOB 39vd 31 ..N.. 01 1 AaV (i)

————a L{zes V=4 VAL
- = === L[z |ve S—Xx Sx4
————sa L[z |ve V=X VX1
————s- L[z |ve X=S XS1
—-_———— s~ v{z[ev A~V AVL
-———— s V|2 vy XV XV1
-——— === Z|v|v6 z(c|v8|c | |08 W—A ALS
- —————|2|v|9% z|cfosle|v |38 W—X X1S
_————— cls|esfc[saslz[v|s6]z]|9[16]z]|9 18 z|c|s8l¢e v |as] W=V V1S
- — | = = — Lj2 s ' 13
- == == L[2 (83 a-1 a3s
- — =y - = vz |se o1 23S
A= =)~ ~ €|v|edfcfviasjz (v (sd|z|s [id|z[9 13 Z|e|s3aje|via3fz [z |63 w V=2-W-V 08S
- - — == BERL) NS NYlY (2 613 3ag) Sid
(03401S3u) L{9jov AINI NH1Y (1 613 33g) 1y
———Aas €|s]aez]o faz L [2 |ve]z s |9o]€ 9|39 [— 6 oY
—-———n s €{|3¢t|z |9 o€ V2 fveje s [92]c|9]32 [o) o Y oy
(03401534) vy |82 d—Sw S—1+s did
—— - = & - Lfvie9 v—SW S~1+S vid
R — L€ |80 s—i-s Sw—d dHd
-_——— - Ve ey S—-1-S Sw~—v VHd
—_———— -~ clv|6Le|rviaijz v |SH|2[S [L4]2 |9 [10 z|e|sole|¥oofz |2 [60 V—WAY vHO
—_————— 1|2 |v3 NOILVH3dO ON dON
—— =2~ 0 €lef3s|zfofes vz wefz s ov|c |9 [3v o0 -0 us1
= - - - ~ ci{voglz]|vra zjcrvje|rpviz |z jov] W A=W AQ1
— — — — ~ ~|z|v|98] € |v[39 zlcovje|rBvjz fzjev] w X=—W X071

>o_UNz-z&o.zco-zao-zTo.zno.zao.zao.zuo.zno.zno-zmo.z_ao.zao o] d W

$3000 NOILHONOD| A ‘080g 2| 12espu) | eapmey | A'sqy | x'sav |x'o8eg2| a(pu) | X(Pu) | perdwi | ‘wnddy [eBey oiez v i SNOILONUYLSNI

APPENDIX L

Finally, here is a memory map of the Commodore 64 and
then a table containing all the input/output assignments for
the Commodore 64 (SID, VIC I, CIA and 6510) and the

function that their bits perform.

COMMODORE 64 MEMORY MAP

206

HEX DECIMAL
LABEL ADDRESS | LOCATION | DESCRIPTION
D6510 0000 0 6510 On-Chip Data-
Direction Register
R6510 0001 1 6510 On-Chip Eight-Bit
Input/Output Register
0002 2 Unused
ADRAY1 0003-0004 | 34 Jump Vector: Convert
Floating—Integer
ADRAY2 00050006 | 56 Jump Vector: Convert
Integer—Floating
CHARAC | 0007 7 Search Character
ENDCHR | 0008 8 Flag: Scan For Quote At
End Of String
TRMPOS | 0009 9 Screen Column From Last
TAB
VERCK 000A 10 Flag: 0 = Load, 1 = Verify
COUNT 000B 11 Input Buffer Pointer/
Number Of Subscripts
DIMFLG 000C 12 Flag: Default Array DI-
Mension
VALTYP 000D 13 Data Type: $FF = String,
$00 = Numeric
INTFLG 000E 14 Data Type: $80 = Integer,
$00 = Floating
GARBFL 000F 15 Flag: DATA Scan/LIST
Quote/Garbage Coll
SUBFLG 0010 16 Flag: Subscript Reference/
User Function Call
INPFLG 0011 17 Flag: $00 = INPUT, $40 =
GET, $98 = READ
TANSGN | 0012 18 Flag: TAN Sign/Compari-
son Result
0013 19 Flag: INPUT Prompt
LINNUM 0014-0015 | 20-21 Temp: Integer Value
TEMPPT 0016 22 Pointer: Temporary String
Stack

HEX DECIMAL

LABEL ADDRESS | LOCATION | DESCRIPTION

LASTPT 0017-0018 | 23-24 Last Temporary String
Address

TEMPST 0019-0021 | 25-33 Stack For Temporary
Strings

INDEX 0022—-0025 | 34-37 Utility Pointer Area

RESHO 0026—002A | 38—42 Floating-Point Product Of
Multiply

TXTTAB 002B—-002C | 43-44 Pointer: Start Of BASIC
Text

VARTAB 002D—-002E | 4546 Pointer: Start Of BASIC
Variables

ARYTAB 002F—0030 | 47-48 Pointer: Start Of BASIC
Arrays

STREND 0031-0032 | 49-50 Pointer: End Of BASIC
Arrays (+1)

FRETOP 00330034 | 51-52 Pointer: Bottom Of String
Storage

FRESPC 0035-0036 | 53-54 Utility String Pointer

MEMSIZ 0037-0038 | 55-56 Pointer: Highest Address
Used By BASIC

CURLIN 0039-003A | 57-58 Current BASIC Line
Number

OLDLIN 003B-003C | 59-60 Previous BASIC Line
Number

OLDTXT 003D-003E | 61-62 Pointer: BASIC Statement
For CONT

DATLIN 003F-0040 | 63-64 Current DATA Line

Number

DATPTR 0041-0042 | 6566 Pointer: Current DATA
Item Address

INPPTR 0043-0044 | 6768 Vector: INPUT Routine

VARNAM | 0045-0046 | 69-70 Current BASIC Variable
Name

VARPNT 0047-0048 | 71-72 Pointer: Current BASIC
Variable Data

FORPNT 0049-004A | 73-74 Pointer: Index Variable
For FOR/NEXT

004B-0060 | 75-96 Temp Pointer/Data Area

FACEXP 0061 97 Floating-Point Accumu-
lator #1: Exponent

FACHO 0062—-0065 | 98-101 Floating Accumulator. #1:
Mantissa

FACSGN | 0066 102 Floating Accumulator #1:
Sign

SGNFLG 0067 103 Pointer: Series Evaluation
Constant

BITS 0068 104 Floating Accumulator #1:
Overflow Digit

ARGEXP | 0069 105 Floating-Point Accumu-

207

lator #2: Exponent

HEX DECIMAL
LABEL ADDRESS | LOCATION | DESCRIPTION
ARGHO 006A-006D | 106—-109 Floating Accumulator #2:
Mantissa
ARGSGN | 006E 110 Floating Accumulator #2:
Sign
ARISGN 006F 111 Sign Comparison Result:
Accumulator #1 vs #2
FACOV 0070 112 Floating Accumulator #1.
Low-Order (Rounding)
FBUFPT 0071-0072 | 113-114 Pointer: Cassette Buffer
CHRGET | 0073—-008A | 115-138 Subroutine: Get Next Byte
Of BASIC Text
CHRGOT | 0079 121 Entry To Get Same Byte Of
Text Again
TXTPTR 007A-007B | 122-123 Pointer: Current Byte Of
Basic Text
RNDX 008B—008F | 139-143 Floating RND Function
Seed Value
STATUS 0090 144 Kernal I/0 Status Word:
ST
STKEY 0091 145 Flag: STOP key/RVS key
SVXT 0092 146 Timing Constant For Tape
VERCK 0093 147 Flag: 0 = Load, 1 = Verify
C3PO 0094 148 Flag: Serial Bus—Output
Character Buffered
BSOUR 0095 149 Buffered Character For
Serial Bus
SYNO 0096 150 Cassette Sync Number
0097 151 Temporary Data Area
LDTND 0098 152 Number Of Open Files/
Index To File Table
DFLTN 0099 153 Default Input Device (0)
DFLTO 009A 154 Default Output (CMD)
, Device (3)
PRTY 009B 155 Tape Character Parity
DPSW 009C 156 Flag: Tape Byte-Received
MSGFLG 009D 157 Flag: $80 = Direct Mode,
$00 = Program
PTR1 009E 158 Tape Pass 1 Error Log
PTR2 009F 159 Tape Pass 2 Error Log
TIME 00A0—00A2 | 160-162 Real-Time Jiffy Clock
(approx) 1/60th Sec
00A3-00A4 | 163-164 Temporary Data Area
CNTDN 00A5 165 Cassette Sync Countdown
BUFPNT 00A6 166 Pointer: Tape I/O Buffer
INBIT 00A7 167 RS-232 Input Bits/Cassette
Temp
BITCI 00A8 168 RS-232 Input Bit Count/
Cassette Temp
RINONE 00A9 169 RS-232 Flag: Check For

208

Start Bit

HEX DECIMAL

LABEL ADDRESS | LOCATION | DESCRIPTION

RIDATA 00AA 170 RS-232 Input Byte
Buffer/Cassette Temp

RIPRTY 00AB 171 RS-232 Input Parity/
Cassette Short Cnt

SAL 00AC—-00AD | 172-173 Pointer: Tape Buffer/
Screen Scrolling

EAL 00AE—-Q0AF | 174-175 Tape End Addresses/End
Of Program

CMPO 00B0-00B1 | 176-177 Tape Timing Constants

TAPE1 00B2-00B3 | 178-179 Pointer: Start Of Tape
Buffer

BITTS 00B4 180 RS-232 Out Bit Count/
Cassette Temp

NXTBIT 00B5 181 RS-232 Next Bit To Send/
Tape EOT Flag

RODATA | 00B6 182 RS-232 Out Byte Buffer

FNLEN 00B7 183 Length Of Current File
Name

LA 00B8 184 Current Logical File
Number

SA 0089 185 Current Secondary
Address

FA 00BA 186 Current Device Number

FNADR 00BB—-00BC | 187-188 Pointer: Current File
Name

ROPRTY | 00BD 189 RS-232 Out Parity/
Cassette Temp

FSBLK 00BE 190 Cassette Read/Write Block
Count

MYCH 00BF 191 Serial Word Buffer

CAS1 00CO0 192 Tape Motor Interlock

STAL 00C1-00C2 | 193-194 I/0 Start Address

MEMUSS | 00C3-00C4 | 195-196 Tape Load Temps

LSTX 00C5 197 Current Key Pressed:
CHR$(n) 0 = No Key

NDX 00C6 198 Number Of Characters In
Keyboard Buffer
(Queue)

RVS 00C7 199 Flag: Print Reverse
Characters—1 = Yes,
0 = No Used

INDX 00C8 200 Pointer: End Of Logical
Line For INPUT

LXSP 00C9-00CA | 201-202 Cursor X-Y Position At
Start Of INPUT

SFDX oocB 203 Flag: Print Shifted
Characters

BLNSW 00CC 204 Cursor Blink Enable: 0 =
Flash Cursor

209

HEX DECIMAL
LABEL ADDRESS | LOCATION | DESCRIPTION
BLNCT 00CD 205 Timer: Countdown To
Toggle Cursor
GDBLN 00CE 206 Character Under Cursor
BLNON 00CF 207 Flag: Last Cursor Blink
On/Off
CRSW 00D0 208 Flag: INPUT Or GET From
Keyboard
PNT 00D1-00D2 | 209-210 Pointer: Current Screen
Line Address
PNTR 00D3 211 Cursor Column On Current
Line
QTSW 00D4 212 Flag: Editor In Quote
Mode, $00 = NO
LNMX 00D5 213 Physical Screen Line
Length
TBLX 00D6 214 Current Cursor Physical
Line Number
00D7 215 Temporary Data Area
INSRT 0oD8 216 Flag: Insert Mode, >0 =
#INSTs
LDTB1 00D9-00F2 | 217-242 Screen Line Link Table/
Editor Temps
USER 00OF3-00F4 | 243-244 Pointer: Current Screen
Colour RAM Location
KEYTAB O0F5-00F6 | 245-246 Vector: Keyboard Decode
Table
RIBUF 00F7-00F8 | 247-248 RS-232 Input Buffer
Pointer
ROBUF 00F9-00FA | 249-250 RS-232 Output Buffer
Pointer
FREKZP 00FB-00FE | 251-254 Free 0-Page Space For
User Programs
BASZPT 00FF 255 BASIC Temp Data Area
0100-01FF | 256-511 Microprocessor System
Stack Area
0100-010A | 256-266 Floating To String Work
Area
BAD 0100-013E | 256-318 Tape Input Error Log
BUF 0200-0258 | 512-600 System INPUT Buffer
LAT 0259-0262 | 601-610 KERNAL Table: Active
Logical File Numbers
FAT 0263—-026C | 611-620 KERNAL Table: Device
Number For Each File
SAT 026D-0276 | 621-630 KERNAL Table: Second
Address Each File
KEYD 0277-0280 | 631-640 Keyboard Buffer Queue
FIFO
MEMSTR | 0281-0282 | 641-642 Po(inter: :30ttom Of Memory
For Operating System *

210

HEX DECIMAL

LABEL ADDRESS | LOCATION | DESCRIPTION

MEMSIZ 02830284 | 643-644 Pointer: Top of Memory For
Operating System

TIMOUT 0285 645 Flag: Kernal Variable For
IEEE Timeout

COLOR 0286 646 Current Character Colour
Code

GDCOL 0287 647 Background Colour Under
Cursor

HIBASE 0288 648 Top Of Screen Memory
(Page)

XMAX 0289 649 Size Of Keyboard Buffer

RPTFLG 028A 650 Flag: REPEAT Key Used,
$80 = Repeat

KOUNT 028B 651 Repeat Speed Counter

DELAY 028C 652 Repeat Delay Counter

SHFLAG 028D 653 Flag: Keyboard Shift Key/
CTRL Key/C = Key

LSTSHF 028E 654 Last Keyboard Shift Pattern

KEYLOG 028F—0290 | 655656 Vector: Keyboard Table
Set-up

MODE 0291 657 Flag: $00 = Disable Shift
Keys, $80 = Enable
Shift Keys

AUTODN | 0292 658 Flag: Auto Scroll Down, 0
=ON

M51CTR 0293 659 RS232:6551 Control
Register Image

M51CDR 0294 660 RS232: 6551 Command
Register Image

M51AJB 02950296 | 661662 RS232 Non-Standard BPS
(Time/2-100) USA

RSSTAT 0297 663 RS232: 6551 Status Regis-
ter Image

BITNUM 0298 664 RS232 Number of Bits
Left To Send

BAUDOF 0299-029A | 665-666 RS232 Baud Rate: Full Bit
Time (us)

RIDBE 0298 667 RS232 Index To End Of
Input Buffer

RIDBS 029C 668 RS232 Start Of Input Buffer
(Page)

RODBS 029D 669 RS232 Start Of Output
Buffer (Page)

RODBE 029E 670 RS232 Index To End Of
Output Buffer

IRQTMP 02F-02A0 671672 Holds IRQ Vector During

211

Tape I/O

HEX DECIMAL
LABEL ADDRESS | LOCATION | DESCRIPTION
ENABL 02A1 673 RS232 Enables
02A2 674 TOD Sense During
Cassette /0
02A3 675 Temporary Storage For
Cassette Read
02A4 676 Temporary D1IRQ Indi-
cator For Cassette Read
02A5 677 Temp For Line Index
02A6 678 PAL/NTSC Flag, 0 =
NTSC, 1 = PAL
02A7-02FF | 679-767 Unused
IERROR 03000301 768-769 Vector: Print BASIC Error
Message
IMAIN 0302-0303 | 770-771 Vector: BASIC Warm Start
ICRNCH 0304-0305 | 772-773 Vector: Tokenize BASIC
Text
IQPLOP 03060307 | 774-775 Vector: BASIC Text LIST
IGONE 0308-0309 | 776-777 Vector: BASIC Character
Dispatch
IEVAL 030A-030B | 778-779 Vector: BASIC Token
Evaluation
SAREG 030C 780 Storage for 6502 A
Register
SXREG 030D 781 Storage for 6502 X
Register
SYREG 030E 782 Storage For 6502 Y
Register
SPREG 030F 783 Storage For 6502 SP
Register
USRPOK 0310 784 USR Function Jump
Instruction (4C)
USRADD 0311-0312 | 785-786 USR Address Low Byte/
High Byte
0313 787 Unused
CINV 0314-0315 | 788-789 Vector: Hardware IRQ
Interrupt
CBINV 0316-0317 | 790-791 Vector: BRK Instruction
Interrupt
NMINV 0318-0319 | 792-793 Vector: Non-Maskable
Interrupt
IOPEN 031A-031B | 794-795 KERNAL OPEN Routine
Vector
ICLOSE 031C-031D | 796-797 KERNAL CLOSE Routine
Vector
ICHKIN 031E—031F | 798-799 KERNAL CHKIN Routine
Vector
ICKOUT 0320-0321 | 800-801 KERNAL CHKOUT
' Routine Vector
ICLRCH 03220323 | 802-803 KERNAL CLRCHN Routine
Vector

212

HEX DECIMAL
LABEL ADDRESS | LOCATION DESCRIPTION
IBASIN 0324-0325 | 804-805 KERNAL CHRIN Routine
Vector
IBSOUT 03260327 | 806-807 KERNAL CHROUT
Routine Vector
ISTOP 0328-0329 | 808-809 KERNAL STOP Routine
Vector
IGETIN 032A-032B | 810-811 KERNAL GETIN Routine
Vector
ICLALL 032C-032D | 812-813 KERNAL CLALL Routine
Vector
USRCMD | 032E-032F | 814-815 User-Defined Vector
ILOAD 03300331 816-817 KERNAL LOAD Routine
ISAVE 0332-0333 | 818-819 KERNAL SAVE Routine
Vector
0334-033B | 820-827 Unused
TBUFFR 033C-03FB | 828-1019 Tape I/O Buffer
03FC—-03FF | 1020-1023 Unused
VICSCN 0400-07FF | 1024-2047 1024 Byte Screen Memory
Area
0400-07E7 | 1024—-2023 Video Matrix: 25 Lines x
40 Columns
07F8-07FF | 2040-2047 Sprite Data Pointers
0800-9FFF | 2048—40959 | Normal BASIC Program
Space
8000-9FFF | 32768—40959 | VSP Cartridge ROM—
8192 Bytes
AQOO0-BFFF | 4096049151 | BASIC ROM—8192 Bytes
(or 8K RAM)
CO00-CFFF | 49152-53247 | RAM—4096 Bytes
DO00-DFFF | 53248-57343 | Input/Output Devices And
Colour RAM
Or Character Generator
ROM
Or RAM—4096 Bytes
EOO0-FFFF | 57344-65535 | KERNAL ROM—8192

Bytes (Or 8K RAM)

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

213

HEX DECIMAL BITS DESCRIPTION
0000 0 7-0 MOS 6510 Data Direction
Register (xx101111)

Bit=1: Output, Bit=0:
Input, x=Don't Care

HEX DECIMAL BITS DESCRIPTION
0001 1 MOS 6510 Micro-Pro-
cessor On-Chip I/0 Port
0 /LORAM Signal (0=Switch
BASIC ROM Out)
1 /HIRAM Signal (0= Switch
Kernal ROM Out)
2 /CHAREN Signal
(0=Switch Char. ROM
In)
3 Cassette Data Output Line
4 Cassette Switch Sense
1 = Switch Closed
5 Cassette Motor Control
0=O0N,1=0FF
6-7 Undefined
D000-DO02E | 53248-54271 MOS 6566 VIDEO INTER-
FACE CONTROLLER
(VIC)
D000 53248 Sprite 0 X Position
D001 53249 Sprite 0 Y Position
D002 53250 Sprite 1 X Position
D003 53251 Sprite 1Y Position
D004 53252 Sprite 2 X Position
D005 53253 Sprite 2 Y Position
D006 53254 Sprite 3 X Position
D007 53255 Sprite 3 Y Position
D008 53256 Sprite 4 X Position
D009 53257 Sprite 4 Y Position
DOOA 53258 Sprite 5 X Position
D0ooB 53259 Sprite 5 Y Position
D00C 53260 Sprite 6 X Position
DOOD 53261 Sprite 6 Y Position
DOOE 53262 Sprite 7 X Position
DOOF 53263 Sprite 7 Y Position
D010 53264 Sprites 0—7 X Position
(MSB Of X Co-ordinate)
D011 53265 VIC Control Register
7 Raster Compare: (Bit 8)
See 53266
6 Extended Colour Text
Mode: 1 = Enable
5 Bit-Map Mode: 1 = Enable
4 Blank Screen to Border
Colour: 0 = Blank
3 Select 24/25 Row Text
Display: 1 = 25 Rows
2-0 Smooth Scroll To Y Dot-
Position (0-7)
D012 53266 Read Raster/Write Raster
Value For Compare IRQ
D013 53267 Light-Pen Latch X Position

214

HEX

DECIMAL

BITS

DESCRIPTION

Do14
D015

D016

D017

D018

D019

DO1A
DO1B

Do1C

DO1D
DO1E
DO1F

D020
D021
D022
D023
D024

53268
53269

53270

53271

53272

53273

53274

53275

53276

53277
53278
53279

53280
53281
53282
53283
53284

7-6

2-0

7-4

215

Light-Pen Latch Y Position

Sprite Display Enable:

1 = Enable

VIC Control Register

Unused

ALWAYS SET THIS BIT
TOO!

Multi-Colour Mode: 1 =
Enable (Text Or Bit-Map)

Select 38/40 Column Text
Display: 1 = 40 Cols

Smooth Scroll To X
Position

Sprites 0—7 Expand 2 x
Vertical (Y)

VIC Memory Control
Register

Video Matrix Base Address
(Inside VIC)

Character Dot-Data Base
Address (Inside VIC)

VIC Interrupt Flag Register
(Bit = 1: IRQ Occurred)

Set On Any Enabled VIC
IRQ Condition

Light-Pen Triggered IRQ
Flag

Sprite To Sprite Collision
IRQ Flag

Sprite To Background
Collision IRQ Flag

Raster Compare IRQ Flag

IRQ Mask Register: 1 =
Interrupt Enabled

Sprite To Background
Display Priority: 1 =
Sprite

Sprites 0—7 Multi-Colour
Mode Select: 1 =
M.C.M.

Sprites 0—7 Expand 2 x
Horizontal (X)

Sprite To Sprite Collision
Detect

Sprite To Background
Collision Detect

Border Colour

Background Colour 0

Background Colour 1

Background Colour 2

Background Colour 3

HEX

DECIMAL

BITS

DESCRIPTION

D025
D026

D027
D028
D029
DO02A
D02B
Do2C
D02D
DO2E
D400-D7FF

D400
D401
D402

D403

D404

53285
53286

53287
53288
53289
53290
53291
53292
53293
53294
54272-55295

54272
54273
54274

54275

54276

216

Sprite Multi-Colour
Register 0
Sprite Multi-Colour
Register 1
Sprite 0 Colour
Sprite 1 Colour
Sprite 2 Colour
Sprite 3 Colour
Sprite 4 Colour
Sprite 5 Colour
Sprite 6 Colour
Sprite 7 Colour
MOS 6581 SOUND
INTERFACE DEVICE
(SID)

Voice 1: Frequency
Control—Low-Byte
Voice 1: Frequency
Control—High-Byte
Voice 1: Pulse Waveform
Width—Low-Byte
Unused
Voice 1: Pulse Waveform
Width—High-Nybble
Voice 1: Control Register
Select Random Noise
Waveform, 1 = On
Select Pulse Waveform,
1=0n
Select Sawtooth
Waveform, 1 = On
Select Triangle Waveform,
1=0n
Test Bit: 1 = Disable
Oscillator 1
Ring Modulate Oscillator,
1 With Oscillator 3
Output,
1=0n
Synchronize Oscillator,
1 With Oscillator
3 Frequency,
1=0n
Gate Bit: 1 = Start
Attack/Decay/Sustain,
0 = Start Release

HEX

DECIMAL

BITS

DESCRIPTION

D405

D406

D407
D408
D409

D40A

D40B

D40C

54277

54278

54279
54280
54281

54282

54283

54284

7-4

7-4

7—4

3-0

217

Envelope Generator 1:
Attack/Decay Cycle
Control

Select Attack Cycle
Duration: 0—-15

Select Decay Cycle
Duration: 0—15

Envelope Generator 1:
Sustain/Release Cycle
Control

Select Sustain Cycle
Duration: 015

Select Release Cycle
Duration: 0-15

Voice 2: Frequency
Control—Low-Byte

Voice 2: Frequency
Control—High-Byte

Voice 2: Pulse Waveform
Width—Low-Byte

Unused

Voice 2: Pulse Waveform
Width—High-Nybble

Voice 2: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform,

1=0n

Select Sawtooth
Waveform, 1 = On

Select Triangle
Waveform, 1 = On

Test Bit: 1 = Disable
Oscillator 2

Ring Modulate Oscillator 2
with Oscillator 1
Output, 1 =0On

Synchronize Oscillator 2
with Oscillator 1
Frequency, 1 = On

Gate Bit: 1 = Start
Attack/Decay/Sustain,
0 = Start Release

Envelope Generator 2:
Attack/Decay Cycle
Control

Select Attack Cycle
Duration: 0-15

Select Decay Cycle
Duration: 0-15

HEX

DECIMAL

BITS

DESCRIPTION

D40D

D40E
D40F
D410

D411

D412

D413

D414

54285

54286
54287
54288

54289

54290

54291

54292

74

7-4

7-4

218

Envelope Generator 2:
Sustain/Release Cycle
Control

Select Sustain Cycle
Duration: 0-15

Select Release Cycle
Duration: 0—15

Voice 3: Frequency
Control—Low-Byte

Voice 3: Frequency
Control—High-Byte

Voice 3: Pulse Waveform
Width—Low-Byte

Unused

Voice 3: Pulse Waveform
Width—High-Nybble

Voice 3: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform,
1=0n

Select Sawtooth
Waveform, 1 =On

Select Triangle Waveform,
1=0n

Test Bit: 1 = Disable
Oscillator 3

Ring Modulate Oscillator
3 with Oscillator
2 Output, 1 =0On

Synchronize Oscillator
3 with Oscillator
2Frequency, 1 =0On

Gate Bit: 1 = Start
Attack/Decay/Sustain,
0 = Start Release

Envelope Generator 3:
Attack/Decay Cycle
Control

Select Attack Cycle
Duration: 0-15

Select Decay Cycle
Duration: 0-15

Envelope Generator 3:
Sustain/Release Cycle
Control

Select Sustain Cycle
Duration: 0—15

Select Release Cycle
Duration: 0-15

HEX

DECIMAL

BITS

DESCRIPTION

D415
D416

D417

D418

D419
D41A
D41B
D41C

D500-D7FF
D800-DBFF

54293
54294
54295

54296

54297
54298
54299
54230

5452855295,
55296-56319

DC00-DCFF|56320-56575

DCO00

56320

74

7-0

7-6

219

Filter Cut-off Frequency:
Low-Nybble (Bits 2-0)

Filter Cut-Off Frequency:
High-Byte

Filter Resonance Control/
Voice Input Control

Select Filter Resonance:
0-15

Filter External Input:
1=Yes,0=No

Filter Voice 3 Output:
1=Yes,0=No

Filter Voice 2 Output:
1=Yes,0=No

Filter Voice 1 Output:
1=Yes,0=No

Select Filter Mode And
Volume

Cut-Off Voice 3 Output: 1
= Off,0=0n

Select Filter high-Pass
Mode: 1 =0n

Select Filter Band-Pass
Mode: 1 =0On

Select Filter Low-Pass
Mode: 1 =0On

Select Output Volume:
0-15

Analog/Digital Converter:
Game Paddle 1 (0-255)

Analog/Digital Converter:
Game Paddle 2 (0-255)

Oscillator 3 Random
Number Generator

Envelope Generator 3
Output

SID IMAGES

Colour RAM (Nybbles)

MOS 6526 Complex
Interface Adapter (CIA)
#1

Data Port A (Keyboard,
Joystick, Paddles,
Light-Pen)

Write Keyboard Column
Values For Keyboard
Scan

Read Paddles On Port A/
B (01 = PortA, 10 =
Port B)

HEX

DECIMAL

BITS

DESCRIPTION

DCO1

DCo02

DC03

DCo04
DC05
DCo06
DCo7
DCo08
DCo09
DCOA
DCo8
DCoC

DCOD

56321

56322

56323

56324
56325
56326
56327
56328
56329
56330
56331
56332

56333

3-2

7-0

3-2

220

Joystick A Fire Button:
1 = Fire

Paddle Fire Buttons

Joystick A Direction
(0-15)

Data Port B (Keyboard,
Joystick, Paddles):
Game Port 1

Read Keyboard Row

Values For Keyboard
Scan

Timer B: Toggle/Pulse
Output

Timer A: Toggle/Pulse
Output

Joystick 1 Fire Button:

1 = Fire

Paddle Fire Buttons

Joystick 1 Direction

Data Direction
Register—Port A
(56320)

Data Direction
Register—Port B
(56321)

Timer A: Low-Byte

Timer A: High-Byte

Timer B: Low-Byte

Timer B: High-Byte

Time-Of Day Clock: 1/10
Seconds

Time-Of-Day Clock:
Seconds

Time-Of-Day Clock:
Minutes

Time-Of-Day Clock: Hours
+ AM/PM Flag (Bit 7)

Synchronous Serial /O
Data Buffer

ClA interrupt Control
Register (Read IRQs/
Write Mask)

IRQFlag (1 = IRQ
Occurred)/Set-Clear Flag

FLAG1 IRQ (Cassette
Read/Serial Bus SRQ
Input)

Serial Port Interrupt

Time-Of-Day Clock Alarm
Interrupt

Timer B Interrupt

Timer A Interrupt

HEX

DECIMAL

BITS

DESCRIPTION

DCOE

DCOF

DDO00-DDFF|
DD00

56334

56335

56576-56831
56576

6-5

n w >0 D~

221

CIA Control Register A
Time-Of-Day Clock
Frequency: 1 = 50 Hz,
0=60Hz
Serial Port I/O Mode: 1 =
output, 0 = input
Timer ACounts: 1 = CNT
Signals, 0 = System 02
Clock
Force Load Timer A:
1=Yes
Timer ARunMode: 1 =
One-Shot, 0 =
Continuous
Timer A Output Mode To
PB6:1 = Toggle, 0 =
Pulse
Timer A Output On PB6:
1=Yes,0=No
Start/Stop Timer A: 1 =
Start, 0 = Stop
CIA Control Register B
Set Alarm/TOD-Clock: 1 =
Alarm, 0 = Clock
Timer B Mode Select:
00 = Count System 02
Clock Pulses
01 = Count Positive
CNT Transitions
10 = Count Timer A
Underflow Pulses
11 = Count Timer A
Underflows While
CNT Positive
Same As CIA Control
Register A—for Timer B
MOS 6526 Complex Inter-
face Adapter (CIA) #2
Data Port A (Serial Bus,
RS232, VIC Memory
Control)
Serial Bus Data Input
Serial Bus Clock Pulse
Input
Serial Bus Data Output
Serial Bus Clock Pulse
Output
Serial Bus ATN Signal
Output
RS232 Data Output (User
Port)

HEX

DECIMAL

BITS

DESCRIPTION

DDo1

DDo02
DD03
DD04
DD05
DDO06
DDO7
DDO8
DD09
DDOA
DDoB
DDoC

DDOD

56577

56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588

56589

1-0

~

NWEOO

222

VIC Chip System Memory
Bank Select (Default =
11)

Data Port B (User Port,
RS232)

User/RS232 Data Set
Ready

User/RS232 Clear To Send

User

User/RS232 Carrier Detect

User/RS232 Ring Indicator

User/RS232 Data Terminal
Ready

User/RS232 Request To
Send

User/RS232 Received
Data

Data Direction
Register—Port A

Data Direction
Register—Part B

Timer A: Low-Byte

Timer A: High-Byte

Timer B: Low-Byte

Timer B: High-Byte

Time-Of-Day Clock: 1/10
Seconds

Time-Of-Day Clock:
Seconds

Time-Of-Day Clock:
Minutes

Time-Of-Day Clock: Hours
+ AM/PM Flag (Bit 7)

Synchronous Serial I/0
Data Buffer

CIA Interrupt Control
Register (Read NMIs/
Write Mask)

NMIFlag (1 = NMI
Occurred)/Set-Clear
Flag

FLAG1 NMI (User/RS232
Received Data Input)

Serial Port Interrupt

Timer B Interrupt

Timer A Interrupt

HEX

DECIMAL

BITS

DESCRIPTION

DDOE

DDOF

DE0O-DEFF,
DFOO-DFFF

56590

56591

56832-57087

57088-57343

6-5

CIA Control Register A
Time-Of-Day Clock
Frequency: 1 = 50 Hz,
0=60Hz
Serial Port I/O Mode: 1 =
Output, 0 = Input
Timer A Counts: 1 = CNT
Signals, 0 = System 02
Clock
Force Load TimerA: 1 =
Yes
Timer A Run Mode: 1 =
One-Shot, 0 = Con-
tinuous
Timer A Output Mode to
PB6:1 = Toggle, 0 =
Pulse
Timer A Output on PB6:
1=Yes,0=No
Start/Stop Timer A: 1 =
Start, 0 = Stop
CIA Control Register B
Set Alarm/TOD-Clock: 1 =
Alarm, 0 = Clock
Timer B Mode Select:
00 = Count System 02
Clock Pulses
01 = Count Positive
CNT Transitions
10 = Count Timer A
Underflow Pulses
11 = Count Timer A
Underflows While
CNT Positive
Same As CIA Control
Register A—For Timer B
Reserved For Future /0
Expansion
Reserved For Future /0
Expansion

INDEX FOR MASTERING
MACHINE CODE ON
YOUR COMMODORE 64

Accumulator 23

ACPTR 167

ADC 23, 40-42

Addressing modes 20

Adding commands to BASIC 109
A/D/S/R see MUSIC

AND 22, 38

APND 129

Arithmetic operators 23, 40—42
ASCII character codes 177-178
ASL 23, 44
Assembler/monitor

Attack see A/D/S/R

Banks

Basic ROM 136-155
BCC 22,28

BCS 22,29

BEQ 22,28

BIT 22,39

Bit map mode

BMI 22, 29

BNE 22, 28

BPL 22,29
Branches and testing see BPL etc
BRK 22,30

BvVC 22,29

BVS 22, 29

225

CHAR 95, 104, 128
CHKIN 169
CHKOUT 169
CHRIN 169
CHROUT 169
CINT 166

CIOUT 168

CLALL 170

CLC 23, 41

CLD 23,42

CLG 95,114,128
CLI 23, 42

CLOSE 169
CLRCHN 169

CLV 23,42

CMD 5

CMP 22,27
Collision 60
COLOUR 98-99, 128
Commands see adding commands to BASIC
CPX 22,27

CPY 22,27

DEC 21,27
DECAY see A/D/S/R
Detection see sprites
DEX 22,27
DEY 22,27

EOR 22,39
Error messages 192

Fill 95, 128
Function keys 73-76

GETIN 170

GRAPH 96, 128
Graphics

Greater than see BCS

226

Hexadecimal numbers 17

INC 21, 26-27

INDEXING addressing 20
INDEXED INDIRECT addressing 20
Interrupts see IRQ

INVERT 95, 128

INX 21,26

INY 21,26

IOBASE 170

IOINIT 166

I/0O ports 190

IRQ interrupts 72

IRQ MUSIC see MUSIC

IRQ function keys see function keys

JMP 21, 25-27
JSR 21, 25-27

KERNAL 166
KEYBOARD one key entry 76-80
KEYWORDS see adding commands to BASIC

LDA 21, 23-24
LDX 21, 23-24
LDY 21, 23-24
Less than see BCC
LIST in columns 83
LISTEN 168

LOAD 169

Machine code 19-20
MEMBOT 167
Memory map 206
MEMTOP 167
MLOAD 128
MSAVE 128
MVERIFY 128
MUSIC 65

227

NEW see OLD
NOP 21,25
NRM 95-97, 128

OFF 128

OLD 128

OPEN 169

Operating system 156

Operators (Arithmetic) see ADC SBC
OR see ORA

ORA 22, 38-40

Organ 82-83

PHA 22,30

PHP 22,30

PLA 22,30

PLOT 102, 128, 169
PLP 22,30

Ports /O see /O ports
PROG 129

RAMTAS 166
Raster interrupts 84
RDTIM 170
READST 168
Release see A/D/S/R
RESTOR 166

ROL 23, 43-44

RTI 23, 43

RTS 21,25

SAVE 170

SBC 23, 42-44

SCNKEY 167

SCREEN 170

Scrolling character up 46
Scrolling character down 47
Scrolling character left 48-49
Scrolling character right 50
Scrolling pixel up 52-53

228

Scrolling pixel down 53-54
Scrolling pixel left 54-55
Scrolling pixel right 55-57
SEC 23,43

SECOND 166

SED 23,43

SEl 23, 43

SETLFS 168

SETMSG 166

SETNAM 168

SETTIM 170

SETTMO 167

Sid chip see MUSIC
SPRITES 58

SPRITES character detection 60
STA 21,23

Stack pointer see TSX, TXS
STOP 170

STX 21,23

STY 21,23

Subroutines see JSR
Sustain see A/D/S/R
SYS 2

TALK 168
TAX 21,24
TAY 21,24
TKSA 162
TSX 22
TXA 21,24
TXS 22
TYA 21,24

UNPLOT 102, 128, 169
UDTIM 170
UNLSN 168
UNTLK 168

229

Vector see IRQ
Voices see MUSIC
Volume see MUSIC

Xregister 24

Y register 24

Zero Page 31

230

NOTES

231

NOTES

232

Mastering machine code on your
Commodore 64

Now, you can master machine code on the Commodore 64
quickly and easily. Say goodbye to jerky, slow-moving graphics in
BASIC, and learn the secrets of professional, incredibly swift
graphic production in machine code.

You're holding the first complete tutorial on using assembly
language on the Commodore 64. The book assumes that
although you can program in BASIC, you know little or nothing of
6502/6510 machine code. Step by simple step the book
progresses through the subject, until the whole instruction set of
the 6510 has been covered. A large number of example
programs — which are explained in detail — help make the
learning simple.

In section two of the book, you'll learn about practical applications
of machine code use on the Commodore 64. High resolution
graphics, scrolling, raster graphics, using interrupts and adding
commands to BASIC — they're all here in a form you can readily
understand and apply. This section of the book contains
programs which put 24 sprites on the screen at once, programs to
combine both text and high resolution images on the same
screen, function key programming and one key entry of
commands.

Written by Mark Greenshields, highly successful author of
Mastering the Commodore 64, this book is your gateway into the
exciting world of machine code programming on the Commodore
64.

Another great book from

ISBN 0-9075k3-b9-4

INTERFACE
PUBLICATIONS
9 1780907"563693

£7.95

