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Author’s Note

Here is a collection of routines, methods and techniques which are all
useful in the construction of games. I have had great pleasure in
compiling this list — I have discovered much about the machine that I
didn’t know before. There were many routines that couldn’t be listed in
this book for various reasons. The ones listed here, however, should
suffice to give you a head-start in the world of machine code games
programming. Don’t stick rigidly to my methods and ideas: let yourself
develop as you feel you should. I am totally self-taught and thus have
my own particular style.

This book is designed to be more than just a collection of routines. All
the ideas are explained so that you can confidently alter them, mix them
and tease them apart. Don’t just type them in and use them — do them
justice.

Throughout the book I refer to both the 6502 and the 6510. This is a
matter of loyalty. As far as programming is concerned, the two are
identical. I had been programming the 6502 years before the 64 arrived,
so I feel a certain amount of afinity for it.

On a final note I would like to thank my friends and family who bore
with me and offered helpful suggestions while I wrote the book.

Program notes
In the computer listings in this book, the following symbols have been
replaced. Please ensure that you key in the correct sign.

£ appearsas \
<« appearsas —
1 appearsas

Commands which appear in the listings in square brackets are listed
below:

[CLS] - Clear Screen [HOM] - Cursor Home
[CD] - Cursor Down [CU] - Cursor Up
[CL] - Cursor Left [CR}] - Cursor Right
[RVS] — Reverse On [OFF] - Reverse Off
[FX] - Function Key X (eg [F1] , [F2])

vii



CHAPTER 1
Introduction

The language of BASIC is remarkable in two ways: it’s remarkably
simple to learn and apply and it's remarkably slow. Machine code is also
simple to learn (although much harder to write) but is remarkably fast.
When the two are mixed a hybrid form of programming evolves: one
that is simple to use yet fast. Ideally the best programs are written in 100
per cent machine code, but to write programs like this demands a lot of
practice and experience. A mixture provides the best of both worlds.
This book is about using machine code in games in this way. Writing
pure machine code is simply a logical extension of some of the ideas, but
don’t rush it, it'll come naturally.

The problem with machine code is that it’s difficult to be objective.
The instructions themselves are so ridiculously elementary that any
large task seems daunting to say the least. By contrast, BASIC lends
itself well to the construction of longer, more complex programs.

Look at it in this way. By now you probably ‘think in BASIC’ quite
comfortably. When you start to learn French at school, the language
seems very abstract but, after a time, the ability to think in the language
itself becomes easier. The same is true of machine code. After a while
you will develop a feel for the language proper. Mixing machine code
with BASIC is a powerful way of learning. The more you do it, the
bigger the role machine code will take in your games and, on top of this,
you will minimise the amount of time needed to write a decent game.
The ‘balance of the game’ is an important idea and the keynote in
machine code programming is simplicity. Keep the amount of machine
code down to start with and work up gradually, while keeping the
machine code itself simple.

Writing games

Figure 1.1 illustrates the process of writing a game. Each stage, right
from the first idea, is examined in detail. You start at the left and work
steadily to the right. By the time you get there, you have a working
game. This type of chart is known as a top-down chart (you’ll be seeing a
lot of charts so get used to them — although they are all very basic). In
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the top-down chart, you start at the top and work down, fleshing out the
process as you go. The result is a clear representation of the structure of

a process.

Figure 1.1: The Game Production Process.
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The first stage is the conception. Silly though it may seem to spend a
lot of time thinking about the function of the game itself, you are going
to expend a considerable amount of time and effort on the game so
make this worthwhile by finding a good idea. The idea is the underlying
principle of the game, whether it is stealing apples or destroying Klingon
starbases. Then the idea is developed by building up a set of
refinements. These might be things like mother ships and power-pills
which liven up the game. Two things make a game attractive, good
presentation and all the little finishing touches, so take your time at this
stage.

Design is the next stage. Here, the game is charted so that we can see
what has to be done. Then comes balancing where the BASIC-machine-
code mix is decided. Next, with the machine code routines identified,
scheduling begins. When writing in machine code, it’s vital to document
as you go. All the charts should be numbered and the routines all neatly
listed along with their functions. All the documentation should be kept
neatly in a file. Documenting does provide a great deal of satisfaction if
it’s done neatly. It’s nice if, at the end of the day, you have a neat file
containing all the details of the program. Throughout the book I make
reference to the ‘program files’ and you will find that, if you do make use
of one, it will ease a lot of the head-scratching moments when you need
to know the details of how a routine passes data to and from itself.
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Returning to scheduling, this simply means looking at the program files
and planning a programme (not program) of coding, testing and
documenting so that you can work to set deadlines.

Coding and testing is where the game really gets under way. This is
the process of constructing routines to perform various operations and
fiddling around until they work. After all this is done, the program is
finished and playing can commence.

The routines

As the title says, this book contains a wealth of machine code routines.
These perform a lot of simple and complex tasks that help take the
pressure off BASIC programs. However they are not intended for you
just to copy in and forget about. If you are going to use a routine, then
take the trouble to see how it works — you may have to make
alterations to it and, if you don’t understand it, then modifying becomes
impossible. As this was the intention, the routines are accompanied by a
description of the topic, how the machine code program works and
occasionally a few points on style in the programs. The routines
themselves are annotated with short remarks and program flow is shown
by arrows so that, at a glance, you can make cross references to the
flowcharts that go with them. The result of all this support is that they
are more than just routines, they are methods and techniques. The
routine section itself is divided into two — direct and indirect. The
direct routines perform fairly clearcut tasks such as filling memory or
scrolling while the indirect section concerns itself with concepts
(supported by routines) such as moving fleets of objects around the
screen.

The book
Not all the routines in the book are contained in that section though.
You will find them hidden all over (they are listed in the routine index at
the end of the book) often just to prove a point to make it interesting.
The appendices also contain more important information such as using
the function keys as well as a collection of utility programs. The idea is
that this book can be read and not used merely as a dry reference guide.
I'would suggest that you read the book before starting on a program as
you may miss out on an idea which you could be using in a program.
Don’t rush reading it through. I spend a lot of time ‘dabbling around’
with ideas, which is the only way to really get to know the machine and
these routines. Play with them, alter them and tease them apart until
you're really familiar with them. I find it all too easy to spend an hour
happily toying around with ‘ideas. If you’re not really familiar with
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machine code, then you won’t understand its quirks; these will confront
you and you won’t know what’s happening. It can be very depressing —
a computer is a very strict teacher, and allows no mistakes.

Talking about mistakes, no machine code program is ever without
them. This normally culminates in a hang-up. When this happens don’t
panic — just worry about your program. Often the RUN/STOP +
RESTORE sequence will release you. Don’t forget to make backup
copies every half-hour or so and don’t write a backup over the top of a
previous backup — you will corrupt the old backup and acquire a write
ervor with the new one. Don’t forget to verify all your backups. It does
take time with a tape system but it’s worth it if you have a powercut. If
the machine is still jammed, then a little routine in Appendix A (Crash
Recovery) will pluck you out — have a look now.

At first, to make sure that the routines you need are in the book, you
might try writing a game around a routine or two instead of writing the
routines around a game. For instance, you might take the sprite homing
routine (Chapter 10 — this homes sprites 1 to 7 on to the position of
sprite 0) and write a chase game where the player controls sprite 0 with a
joystick (also in Chapter 10) and has to perform certain tasks on the
screen without colliding with a homing sprite. A program like this is
easily written and will run quickly (especially if the routines are hooked
on to the interrupt).

Interrupts

Interrupts are a major tool in the harnessing of the 64. You may not
understand the term interrupt now, but by the end of the book you will.
The interrupt is definitely the key to the machine. In the two routine
chapters, many of the routines are specially designed to run on the
interrupt, including a tune-player: when something is ‘on the interrupt’ it
means that the 64 is automatically calling the routine for you. Thus you
can have all eight sprites tearing around the screen while listing and
editing the program with a flashing cursor (this will amaze your friends).
All I can say is that, if you don’t like using interrupts, then you won’t
capitalise on the 64. Some of the routines in Appendix B show you how
to use the function keys properly to do some remarkable things.

Machine code

To finish off this introductory section, I'll just point out a few important
facts. First, writing in machine code takes more time than BASIC.
Programming starts off with great enthusiasm. However, after this there
is a considerable period when you’re not going to get results — the
slump. Many would-be programmers give up at this stage, which results
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in unfinished programs. Machine code programming is all about
stamina, determination and confidence. Start off with simple routines
and work up to the big ones.

Another important point is that there are an almost infinite number of
ways of writing a program to perform a task. My routines are simply one
way of doing this. Often you will be able to shorten them as they are
designed to show you how they work and not to show off the ‘clever
tricks’ that abound in machine code. The same idea goes for the process
of games programming. Mine is simply a guideline and everybody
develops their own particular style. Wait until you are confident and
then develop your own style.

When writing your own routines keep them simple. If you look at
the arrows on my routines, you will see they are few and are nested one
inside the other. When branching is thrown in anywhere the bugs creep
in. Keep it simple. Often badly-written routines arise because the
programmer writes them at the keyboard. For the really simple ones this
is alright but I have noticed that the screen itself doesn’t help
concentration. Most of my routines are sketched out on paper first and
then transferred. As I have got into this habit 1 write my routines
anywhere (anyway staring at a TV screen for too long is bad for you).

The question of assemblers must arise at this stage. While hand
assembly is good for teaching the fundamentals, an assembler is vital for
those longer routines. The best tactic is to get hold of a plug-in cartridge
assembler. Personally I have several assemblers including a retired
Acorn Atom which I sometimes use in parallel with my 64. If you must
hand assemble then be wary of branch vectors (which can be tricky to
calculate by hand). There is an assembler in Appendix B, at the back of
the book, which doubles as a disassembler. Whether or not you have an
assembler, the adressing mode representation in this book (shown in
Table 2.2 in the next chapter) is probably not the one you are used to.
The reason for the difference is an effort on my part to force you to
comprehend the routines without blindly typing them in.

I say some pretty harsh words about BASIC in this book but this is
not designed to stop you from using it. It remains the greatest computer
language yet devised. Programs can be quickly and efficiently put
together. Throughout the book I use BASIC to demonstrate some
principles. Don’t drop BASIC — it’s great. If you’re ready then start
reading through the book. You’ll find all sorts of useful information, so
read on!






CHAPTER 2
Further 6510 Theory

Some of the methods used in this book may seem a little strange at first,
and this chapter is designed to explain the theory behind these ideas. If
you know about the workings of the 6510 and 6502 anyway, skip this
chapter. Quite a few topics will be covered and it’s imperative for
effective programming that you are totally au fait with them. The best
advice is to play around with these ideas until you can use and think of
them instinctively. Mastery of anything is when you can do something
without really having to think at all.

The ideas presented here are simply the ones I use. Don’t just use
them, try working with 32-bit or 64-bit numbers as opposed to 8 and 16
bits. If you stretch your abilities then success is guaranteed.

Addressing techniques

The 6510 processor has no less than 13 different addressing modes! Stop
now and see how many you can remember. For every forgotten mode
there is lost opportunity. Not only should you know them all but you
should be able to decide instantly which is the best for the problem in
hand. Table 2.1 gives all the modes. How many do you know
thoroughly?

The chances are you did pretty badly in that test. Returning to our
earlier analogy, addressing modes are like tenses in French: you can get
by on one or two but only just. Read on and discover the uses of the
more obscure modes.

ABSOLUTE: Absolute mode is very important. It takes a 16-bit
operand and uses that as the address. Many of the other modes are
based on this one. In this book the absolute mode is denoted by just the
operand, eg:

LDA 1024 LDA  #Hoo
which PEEKs the first byte of the screen. A close relative is the

zero-page absolute mode which is identical except that it has only a
one-byte operand which is a page-zero address (more about page-zero
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Absolute Two-byte operand used as a 16-bit address.

Immediate One-byte operand used directly.

Implied Single-byte function with one unique meaning.

Absolute X Same as absolute, except X register added into the
address.

Absolute Y Uses the Y register instead.

Zero page One-byte address giving 8-bit address in page zero.

Zero page X X register added in again.

Zero page Y Y register added in.

Accumulator Single-byte instruction that affects accumulator.

Relative Mode used by BRANCH instructions to ease

program location.

Indexed indirect Single-byte address into page zero to which the X
register is added and the resulting address PEEKed
to give a 16-bit address.

Indirect indexed Single-byte address into page zero PEEKed to give
16-bit address. Y register then added in to index the
address.

Indirect Two-byte operand PEEKed to give 16-bit address.
Used exclusively by the JMP instruction.

Table 2:1 6510 Addressing Modes.

later). A good assembler will, where required, automatically use this
mode where required which is shorter and faster. Thus the code in
zero-page absolute is shown the same way as normal absolute.

IMMEDIATE: Another old friend. The immediate mode always has
one byte for the operand, the value of which is used directly. This is
shown by the symbol ‘#’ in this bok and is read ‘hash’. This mode has no
further ‘indexed’ extensions.

IMPLIED: These one-byte instructions perform some standard task.
They are represented by just the relevant three-letter mnemonic.

RELATIVE: Branch instructions such as BEQ, BCC and BNE alil use
relative addressing. Irrespective of where they are encountered, they
simply instruct the machine to jump to a new instruction by showing
how far and in what direction this should be from the branch instruction.
The beauty of this is that a program written totally in relative mode can
be anywhere in the memory and run. A single JMP ‘nstruction within
the code will mean that you will have to recalculate the jump address
when you move. In the programs in this book I have used relative
addressing everywhere. The routines supplied are 100 per cent portable.

The way to produce a relative branch even when you don’t want a
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condition to be true is to precede the branch instruction by the
appropriate implied instruction:

CLC
BCC
or

SEC
BCS

Both of these will ‘force’ the branch. When you see this happening in
the code, you’ll understand what’s going on. If you want to branch to a
location that’s out of range of the branch then you’re probably doing
some bad programming. If you can’t avoid it then reverse the branch
instruction (ie BCC becomes BCS and BPL becomes BMI) and place a
JMP after it.

Look at this example:

BEQ LOOP
RTS

Suppose this gives an out-of-range error. The answer is the following
code:

BNE STOP
(J MP LOOP
:STOP RTS

This is an ‘extended’ branch and should be used in preference to a
leap-frogging technique, although locatability is lost.

At this stage it might be wise to discuss the ways in which variables
and labels are presented in the book. Labels are preceded by a *:’ sign
and are written in a column well to the left of the code. Variables are
simply short meaningful groups of letters that represent some value (eg
LDA CHAR has CHAR as a variable). You could interpret this in two
ways: either CHAR is the address of the value of CHAR and the
instruction is thus absolute, or CHAR is the value itself making the
instruction immediate. The choice is completely yours. For various
reasons, I have used LLX for labels throughout the code as labels where
X is any number. The routine is usually started by :LL0, and :ILL1
:ILL2, etc, appear in the order I used them when compiling the routine.
As each routine uses the same labels you are forced to develop your own
labels — an aid to success.

ZERO-PAGE THEORY: In this summary of addressing techniques, a
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quick word on page-zero will not be out of place. Page-zero is the core
of the computer’s memory. It is the area which has modes devoted to it,
and so these modes tend to be fast and effective. You will see that the 64
doesn’t leave a lot of space for the programmer here but there’s enough.
The beauty of page-zero is that you only need a one-byte operand to
address the 256 bytes in the page. The result is more space (this
shouldn’t be a consideration) more speed and versatility. If you look in
the manual you’ll find page-zero is full of all sorts of interesting things.
Thus where possible use addresses in the range 2-255. Locations 0 and 1
contain ports and should be kept clear of.

ABSOLUTE X and Y: These are close relations of the absolute mode. A
16-bit address is given and to this is added the value of either the X or Y
registers. This means that one instruction can produce 256 different
addresses. This mode is used to produce very short fill and scroll
routines amongst other things. The mode is represented by adding the
suffix ,X’ or ‘.Y to the operand.

The instruction LDA 1024,X could PEEK any number from 1024 to
1279 merely by altering the X register. There is also a zero-page
counterpart for this but only with the X register. (There is a Y register
mode, but it’s very limited.)

INDIRECT: This mode is used purely with the JMP instruction and is
not used in the book, but it is very handy for picking up a vector. A
16-bit operand is used and this points to a pair of memory locations.
These are then PEEKed and the address so obtained is jumped to. JMP
(788) means look at 788 and 789, use their contents as a 16-bit address
and jump to that address. The mode is signified here by enclosing the
address in a pair of brackets.

ZERO-PAGE INDEXED MODES: These modes are useful, as the
operative address can be changed to cover the entire memory of the 64.
What happens is that the instruction points to a zero-page address. The
value found at this address constitutes a 16-bit number which then
becomes the operative address. On top of this, more flexibility is given
by adding the values of the X and Y registers. There are two variations,
where the value is added in before and where it is added in afterwards.
One uses the X register and the other uses the Y.

INDEXED INDIRECT: This is the X register associated mode. The
operand is a zero-page address to which the value of the X register is
added (indexing). The resulting zero-page address is then PEEKed and
the result of the PEEK supplies a 16-bit address (indirect). Look at
Figure 2.1 to see this in action.

10
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Figure 2.1: Indexing and Indirection.

Indexing is when the X or Y register is added in.

Indirection is when an address is PEEKed to point to a new address.

Thus the difference between indexed indirect and indirect indexed is the order in
which things are done.

Load accumulator at 100 in indexed indirect mode means:

Acc = PEEK(PEEK(100 + X)+PTEEK(101 + X) *256)
Load accumulator indirect indexed at 100 means:
Acc=PEEK(PEEK(100)+PEEK(101) * 256 + Y)

Each of the two modes is associated with a particular index register.

INDIRECT INDEXED: This is the Y register mode. The indirect PEEK
is done first and the resulting address indexed by adding in the Y
register. Both of these modes are very useful in manipulating tables of
data as you will see in a later section.

This then completes our look at the possible addressing methods
available.

Table 2.2: Assembly Language Representation.

No Hexadecimal numbers are used in this book. All the numbers are decimal.
This table describes the representation of each mode in the book.

MODE FORMAT

Implied 3-letter mnemonic only.

Accumulator Suffix ‘A’, eg ASLA

Absolute Mnemonic + operand (zero-page addressing is via
default).

Absolute X or Y Same as absolute but with X’ or Y’ appended.

Relative

Relative Mnemonic + label

Indirect indexed Operand enclosed in brackets, ‘,Y” appended.

Indexed indirect Operand + ,X’ enclosed in brackets.

Immediate Operand preceded by ‘# sign.

These are slightly similar to the representation on the Atom.

The stack
The stack is the clever device which allows you to call JSR within JSR
and eventually dig your way out with RTSs. This is not its only use. It

11
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can also be used to pass parameters and store variables, but first let’s see
how it works.

The stack occupies page 1 of the 64’s memory. A stack pointer
maintains the position within the stack. Every time a JSR is
encountered, the return address is stored on the stack, the stack pointer
adds 2 and a JMP (effectively) is called to the subroutine address. On
finding an RTS the stack pointer is lowered, an address is pulled off and
a JMP is executed to this address. As the stack is 256 bytes long, it’s
possible to nest 128 consecutive JSR calls before overwriting the first
return address: don’t try to do this because all sorts of other things use
the stack as well, and if it fills up you’ll know all about it!

The instructions PHA and PLA mean PusH and Pull the
Accumulator to and from the stack. Obviously if you do push something
on, you’ll have to wait until the stack pointer is in the right position to
remove it. Manipulation of the stack pointer itself can be done with the
aid of TSX (Transfer Stack pointer to X) and TXS which puts it back. If
you are doing this, be careful not to alter any return address.

Using these ideas, we might store the value in the X register within a
routine with no JSR, RTS or other stack operations between by using a
TXA, PHA. Recovery is the opposite — PLA , TAX. Admittedly this is
not very helpful but if we want to pass a parameter it can be a helpful
way to send it. In the absence of a zero-page location, the stack provides
a handy temporary storage facility. The processor status register can
also be stored and removed from the stack by PHP and PLP. When an
interrupt occurs, the stack is used to store all register values and the
status register so that on return nothing seems to have happened.

Multi-bit operations

It’s easy to add two 8-bit numbers. But as soon as we use more than
eight bits, things begin to get a little more complicated. You probably
know how to add 16-bit numbers: this section is to remind you and show
you why things are done. The first thing we shall look at is addition. If
you understand it now then write a 64-bit adding routine — this will test
your knowledge.

The first thing to do is to clear the carry flag. This is because ADC
means ‘ADd with Carry’. A number is added into the accumulator and,
if the carry flag is set, an extra 1 is added in as well (a smart way to add
two numbers and increment the result is to use a SEC). Now if the last
operation overflowed the accumulator, the carry flag is set to 1. When
the next (more significant) bytes are added the carry is not cleared. If an
overflow occurred, then an extra 1 must be added. The process is like
adding decimal numbers: when a column exceeds nine you must carry a
ten over into the next column where it appears as a one. Only the first

12
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CLC is needed for the entire operation. The following code adds two
16-bit numbers found in 251-252 and 253-254:

LDA 251
CLC

ADC 253
STA 253
LDA 252
ADC 254
STA 254

Subtraction is performed in the same manner except that SEC is used to
SEt the Carry beforehand. Addition and subtraction are vital in games
as they allow us to move objects around the screen.

A vector is a number. In the manual you will see vectors which point
to the start of ROM routines. In games terms, a vector is a number that
is added into an address to simulate movement. When I speak of adding
in a vector, I mean adding in a number to update a position. For
example to move a sprite to the right you add in the vector 1 to its X
coordinate. By definition, a vector has both magnitude and direction.
Both of these can be contained within a number: a faster right
movement vector would be to add 3 instead of 1. Figure 2.2 shows the
eight directions and the associated vectors you would use in BASIC. In
machine code it would be a waste of time to have separate routines to
add and subtract. This is overcome by using very large numbers to
subtract. If you add in 65,535 then in 16 bits you have effectively
subtracted 1.

Figure 2.2: Subtraction by Addition.

—40 65496
-41 ~39 65495 65497
65535
-1 1 1
39 41 39 41
40 40

The second part of the figure should now make more sense. Instead of
negative numbers, we add large numbers. They are in fact the ‘two’s

13
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complement’ of the negative numbers. This idea of using large numbers
to perform subtraction is extensively used and so you should ensure that
you fully understand it.

Comparing two numbers for similarity or difference is simple. You
just use CMP (or CPX or CPY) and use BEQ (similar) or BNE
(different). Working in 16-bits, a little more must be done. Often you
must check to see if an address has been reached (or a missile has hit a
ship) in which case a 16-bit comparison is needed. The process is simple:
compare the two lower bits and the two higher bits separately. If the two
lower bits don’t match then the numbers must be different. If they do
match then test the higher two bytes. Either they match (both numbers
are the same) or they don’t. The routine does this:

LDA 251

CMP 253

BNE UNEQUAL
LDA 252

CMP 254

BNE UNEQUAL
**Numbers are equal**

The two numbers are stored in 251-252 and 253-254. UNEQUAL is
simply a label for the sake of demonstration.

These 16-bit operations are very important. They form the core of
writing a game in machine code; without them you cannot move objects
around with any degree of ease.

Logical operations

The AND/OR/EOR functions always seem a little strange as they have
no apparent use. In fact they make the manipulation of individual bits
within a byte very easy indeed. Often you will want to set just a bitin a
byte or clear a few bits somewhere else without disturbing the rest. The
key to this is the use of the logical operators. Each does its own little
thing and Figure 2.3 will refresh your memory as to their function.

AND: The result of AND is 1 only, and only if both the first input AND
the second input are 1. Thus 1101 AND 1100 = 1100. The AND
function is a mask operation. It enables you to mask out unwanted bits
while retaining the important parts. Suppose we were interested in the
lower three bits of an 8-bit number. To obtain these bits only, we mask
with 1 + 2 + 4 = 7. Only where a 1 is present in the mask can a 1 show
through. By this method we can do all sorts of things: checking whether
a number is even or odd, or decoding a byte that contains more than one
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Figure 2.3: AND-OR-EOR Truth Tables.

AND OR EOR
IN IN OuUT IN IN ouT IN IN ouT
0 0 0 0 0 0 0 0 0
0 1 0 0 I i 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0
Mask Set Toggle

piece of information, the AND function acts as a sieve through which
only what you want drops through.

OR: The result of OR is 1 if either the first OR the second input is 1.
This function performs the SET operation. If you want a bit set then you
simply OR it with the relevant number. ORing with 0 leaves the number

~unchanged while ORing with 255 turns it all into ones. In the same
respect the AND function is a CLEAR operation. Suppose we wish to
set bit 4 of the number 10101010 then we simply OR with 10000:

10101010
00010000

10111010

When POKEing important locations such as 0 and 1, it’s vital to change
only the bit that you want. Failing this, the machine will almost certainly
crash.

EOR: Just the same as the OR function except that when both inputs are
1, the output is zero. EOR is a toggling function: if you continually
EOR with a number, then the corresponding bits will go on and off and
on again. This means that performing EOR twice leaves the number
unchanged. One use is for toggling bit 7 of a character on the screen.
This switches it to and fro between inverse video (flashing it). It can also
be used to produce the two’s complement of a number — EOR with all
ones and then add 1.

Taking stock of these operations then we have a way of setting any bit,

clearing any bit and toggling any bit. Consider the following application
of controlling the tape motor:
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LDA 1
ORA #48
STA 1
turns it off

This will have to be repeatedly done to hold the motor off.

Scanning the screen
As the book is designed for games purposes, a lot of the routines
directly affect the screen. This means that they look at the screen and,
depending on various instructions, alter its content. Thus the process of
scanning the screen in machine code is worth thinking about. Normally
the screen is scanned from top to bottom. But for some operations a
reverse scan is needed (which is slower). The process of scanning the
screen uses 16-bit theory, so make sure you understand the principles.
The normal scan is performed as follows. The address of the top
lefthand corner is stored in a zero-page location (two consecutive
bytes). A 16-bit increment is then used to increment the number and a
16-bit compare to see if the process is complete. The function of the
routine is inserted into the loop and, as the address that we are working
on is in page-zero, it’s easy to interrogate the screen for information.
The initial address is 1024 : 0,4 in the lo-hi format.

LDA #0 ; Low BYTE

STA 251 STA JFB | ZERo PAGE FREE SPACE
LDA #4 ; Hicw BYTE

STA 252

The increment is done with the aid of the INC instruction.

INC 251

BNE LLO
<INC 252
:LLO

With the 16-bit compare, it doesn’t matter whether we test the hi or
lo-byte first. It’s quicker though to test the lo-byte, as this will only be
‘correct’ on a few occasions. Another point to bear in mind is that we
are testing the number immediately after incrementing it. This means
that we must test for the first square off the screen as otherwise the
bottom righthand corner will get neglected.
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LDA 251

CMP #232

BNE [loop around again]
LDA 252

CMP #7

BNE [loop around again]
RTS

If we had incremented the number (used it to do something on the
screen and then tested it), then we would test for the final address on the
screen. You must look out for and be aware of these little points that
recur in machine code programming.

Multiplication and shifts

Frequently multiplication has to take place in machine code. A typical
problem might be to multiply a byte by 65. Where the multiplicand
remains constant the problem is easily solved. Where the multiplier
varies the topic goes beyond the scope of this book, although the
principles remain the same. To multiply by, say, 65, split the number up
into powers of 2 (64 and 1). Multiplying by 2 is easy so multiplying by a
power of 2 is also easy.

Figure 2.4: Shifts and Rotates.

Ce—| 7 6 5 4 3 2 1 0 |<0 ASL
01 7 6 5 4 3 2 i 0 |->C LSR
‘,. 7 6 5 4 3 2 1 0 4-]< C ROL
C- 7 6 5 4 3 2 1 0 ROR

_I C — carry flag
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The shift instructions allow us to multiply and divide the numbers in a
byte. Figure 2.4 shows what happens when they are used. The ASL
instruction is particularly handy for multiplying by 2. If you are doing a
lot of this, then don’t forget to catch the carry when it comes through.
Figure 2.5 shows how to do this.

The result of a*b is returned in T. First of all, copies of a and b are
made to preserve their values. The multiplication is then performed.
The first bit of X is tested by using the AND function. If it’s a 1 then the
value of Y is added into T. Then X is divided by 2 (shifted to the right)
and Y multiplied by 2 (shifted to the left). If X = 0 then all the bits in X
have been dealt with and the task is completed. If X<>0 then the first
bit is again tested but it is not the same bit as before.

To do this with 16-bit precision demands 16-bit shifts both left and
right, a 16-bit add and a 16-bit compare. In fact, it’s not that hard at all
but it’s unlikely you’ll want a multiply routine of this sort anyway. What
Figure 2.5 does show though is the mechanics of a multiply. Suppose we
want to multiply by 40. Let a = 40 then the only bits set in X will be 32
and 8. Thus we add together a X 2 three times (X 8) and b X 2 five times
(x 32). Multiplying by 2 is done by a shift instruction; ASL and ROL
can be used. Use ROL to perform a multi-bit shift as follows:

First clear carry CLC
Next shift the first byte ROL ADDR or ASL ADDR
Now shift the successive bytes ROL ADDR+1

ROL ADDR+2

etc

Use ROR to divide by two in a multi-bit shift as follows:

First clear carry CLC

Next shift last byte ROR ADDR+2 or LSR
ADDR+2

Now shift successive bytes ROR ADDR+1
ROR ADDR

Data structures and tables
The simplest of data structures in BASIC is the single variable. This can
easily be handled in machine code but, as soon as arrays are needed to
control fleets of characters, problems arise. The use of this sort of array
is demonstrated in the section on Fleet Movements (Chapter 10). An
array is only a list of simple variables. The novice tends to shy away
from them but in fact they are remarkably simple concepts.

The first stage is to work out the dimensions of the array. What
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Figure 2.5: Perform T = a*b.

NO

T=T+Y

X=X+2

Y=Yx2

@

YES
STOP

Chapter 2 Further 6510 Theory
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information do you want held for each object? Some information, such
as an address, will need two bytes whereas others will need only one.
Let’s suppose we want a table of 50 aliens containing an address, a
movement vector and an alien type. This might be represented by the
structure illustrated Figure 2.6. Each entry consists of four bytes. Next
we decide where to site the table — find a suitable area of memory.
Store the start of the table as a two-byte vector somewhere else
(page-zero if possible) and store the number of objects (ie entries)
somewhere else. To fill the table up with suitable data is a task for a
COPY routine. This means that you can call up attack wave#1,
wave#2, etc, with ease by simply instructing the copy to fetch the data
from different areas of memory.

Figure 2.6: A Typical Table Structure.
(X+0) (X+1) (X+2) (X+3)

LO-ADDRESS|HI-ADDRESS| MOVEMENT ALIEN
VECTOR TYPE

[

(Y+0) (Y+4) (Y+8) (Y+12) (Y+16) (Y+20) (Y +24)(Y+28)

ALIENIALIEN
#0 #1 #2 #3 #4 #5 #6 #7

Once we have defined the structure, manipulation is easy. Suppose
the base of the table is held at 251 and 252. Then by:

LDY #0
LDA (251),Y

we can obtain the first byte of the table. If the structure is as above, then
this is the lo-byte of an object’s address. By using INY successive bytes
can be accessed. Tf the overall length of the table is less than 256 then
scanning is performed via the Y register. If it’s larger then the best plan
is just to add numbers to the address at 251 and 252 and use the Y
register for reading each entry. To give an example let’s suppose the
objects in the tables run 0-49 and we want to find the type of alien
number 12. As each object consists of four bytes, the object we are
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interested in starts at Table + 12 * 4. Suppose 12 is in the accumulator.
Two ASLAs multiply by 4 and TAY moves the value into Y. The alien
type is the fourth (and final) byte of the object. Thus we follow with
three INYs. A LDA(251),Y then supplies the type of object #12.

Get type of object in accumulator
ASLA

ASLA

INY

INY

INY

LDA (251),Y

RTS

As you can see, tables are very easy to use. You will find them in use in
several of the routines in this book, including the screen-flash attribute
routine (Inverting and Explosions, Chapter 9) where a table of 25
elements is used to determine whether or not to flash that line.
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CHAPTER 3
The Birth of a Game

So you have decided to write a machine code game. No doubt you
already have a rough idea of the game that you want, whether it is just
another variation on the Space Invader theme or a totally new idea of
your own. Whatever the case, don’t rush through this first stage. Before
you even think about moving on to the next part, put your thoughts
down on paper in a neat and ordered fashion. There is no way that you
are going to design a game (in machine code) if the basic idea varies
from day to day following your whims. In short, make up your mind
while you can. Once programming is under way, alterations will be
costly both in terms of time and morale.

Speaking of morale, this is one of the most important factors when
programming in machine code. There will be long periods of intense
work with little reward. It is a real test of stamina and self-confidence.
For this reason, it would be unwise for the beginner to attempt to write a
game totally in machine code. Simply use machine code to speed up any
slow sections of BASIC in a game. You may find that one or two
routines are all that’s necessary to considerably speed up a game that
you have already written. (Indeed, one popular way of translating an
idea into machine code is first to write a BASIC program to do the job
and then to convert it stage by stage into code. I don’t like this method if
it is used to produce a pure machine code program as this results in
rather badly written, difficult to edit and inefficient programs. It can,
however, be a successful method for use on a small scale within a
program.)

For the beginner, the best approach is to write a BASIC program
leaving out the sections to be performed by machine code. The reason
for this is that BASIC and machine code are two totally different
languages. You can’t attempt a literal translation. You need to go back
to the problem in hand to write efficiently.

A classic example of this is the attempt to program a computer to
translate one (human) language into another. As an experiment, the
computer was told to translate a section of the Bible into one language,
and then translate this into another. Finally this was translated into yet
another language. The initial text read ‘The spirit is willing but the flesh
is weak.” The final product read, ‘The liquor is good but the meat is
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poor.” This serves to show the dangers of attempting a literal translation
instead of considering the main issue.

How to write good games

This section is devoted to the design of a game that is both challenging
and addictive. It is possible to brood for hours over various ideas and
concepts without arriving at a satisfactory answer.

A careful study of the popular arcade games reveals various principles
on which these games are based. All of the top games display these
qualities to a certain extent, and I am certain that it is possible to ‘work
backwards’ from these ideas to produce a game that is a winner.

The first factor is simplicity. Most arcade games are based round very
basic ideas. This allows the novice a certain degree of success and
eliminates the need to constantly refer back to the rules. The idea can be
anything from collecting apples to climbing a mountain. Recent ideas
have become very silly with titles such as Attack of the Mutant
Hamburgers, but if it’s fun then it works.

But there is a new genre on the rise, of which Defender is one. This is
a complex game (as can be judged by the number of controls) but is very
satisfying once mastered. However, it should be obvious that a complex
game will be more difficult to write than a simple one, so do not attempt
something of this calibre until you are sure of yourself.

The next factor of design is variety. Once again we have two types of
games to discuss — the old and the new. Old favourites supply endless
variation in that there are many ways to play them: in Space Invaders,
for example, the invaders can be picked off in any order you like, each
order resulting in a different ‘end game’. The new genre of games
provides variation via a series of different screens or ‘attack waves’.
Each screen provides a new and fresh challenge and there are often
several ways of performing the task. By combining almost infinite
variety with simplicity, a very sound game emerges which can be picked
up quickly but which also maintains interest.

A third factor is the introduction, from time to time, of an element
which adds a lot to the game (such as a mother-ship or fruit in a pac-man
maze). Normally these offer a quick boost to the player’s score at the
expense of added danger. The arrival of a baiter in Defender adds to the
excitement and helps keep interest in a finely executed game. These are
often the stumbling blocks for players who can just about handle a game
until a new element arrives to finish them off. In BASIC, this third
factor is often neglected due to the severe loss of speed in order to
control the action. )

Undoubtedly, a gradual increase in difficulty is a prime feature in a
game and this is the fourth factor. But note that difficulty does not make

24



Chapter 3 The Birth of a Game

the game: it simply serves as a barrier to the player and stimulates the
will to player advancement.

An increase in difficulty can be achieved in two (sensible) ways. If the
speed is gently raised, the player is forced to think faster and work with
more coordination, resulting in the inevitable error. However, there is a
limit to the degree of speed that can be introduced without resulting in a
mere game of chance. If the enemy is made to become more intelligent
as the game proceeds, the player is faced with increasing problems. This
is sometimes achieved by altering the motion of the enemy from a
somewhat random one to a more ordered fashion. By linking an
increase in speed with this mutation of the enemy, there arises a natural
score-barrier which the player cannot pass without practice. An attempt
to effect this in BASIC usually fails miserably: an increase in speed is
out of the question as the chances are that the game is already running at
full speed, and increasing the intelligence of the enemy is out of the
question as this would slow the game down even more. This results in a
silly method being used (eg tripling the number of bombs being
dropped), which forces the player into defeat. The only sensible course
is to use machine code.

These four points (simplicity/variety/extra factor/difficulty) are the
essential ingredients of a good game. To think up a winning idea you
must first come up with an underlying objective, but keep it simple.
Next think up a way of hindering the player and again keep it simple.
Then introduce variety into the game by giving the player a range of
different enemies and multi-solution tasks. Once this has been done,
you have the foundation of the game. All that’s left now is to introduce
the third factor from time to time and produce a way of gradually
increasing the difficulty of the game. Despite all I have said, game
design demands imagination and an open mind. Ideas will often come
unprompted, so be ready for them! Once you have a good idea don’t
waste it. Give it the treatment that it deserves and develop it into a
fully-fledged arcade game.

Developing the idea

Once you have established the exact function of the game, you are
nearly ready to move on to the next stage of program design. But first
give a little thought to how you are going to achieve your aims. Be
realistic. Although the graphics of the 64 are outstanding, it doesn’t
mean that it’s easy to write a game with a lot of on-screen action. In fact
it’s more complicated than usual, because of the complexity of setting
up the graphics, and because programmers tend to start off with too
ambitious ideas. All that is really necessary at this stage is to think about
how one thing is to be done in relation to another. For example, you
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may decide that one class of enemy will be represented by UDGs while
another class is shown using the sprite graphics facility.

This should help you identify possible areas for machine code
intervention. It’s unlikely that you will write games 100 per cent in
machine code until you have had a fair bit of experience. You can use
BASIC to initialise a game and give the player instructions: perhaps
only a small part of the game will be assisted by machine code. The
degree of jumping between the two will ultimately determine the time it
takes you to complete the game.

A common method of producing above-average games is to write two
versions of the game. The first one is the prototype and is made as good
as is technically possible. Then the programmer spends time rethinking
it, in an effort to further enhance the initial idea. These thoughts are
reflected in the second and final version. This method, however, does

Figure 3.1: Conception.

IDEA

i

MODIFY APPLY
FUNDAMENTAL
PRINCIPLES

NO _~GooD
U

YES

INITIAL | (BASIC: MACHINE
moci.mme CODE RATIO)

-

YES

PRODUCE M
DETAILED
DESCRIPTION
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have the grave disadvantage that it takes longer than ever to write the
program. This is often avoided by writing the first program totally in
BASIC and ignoring the lack of speed. At this stage (which can take
only a day or two) both the idea and the techniques involved are
developed so that the final product is as near perfect as possible. For the
absolute beginner I would advise that he (or she) refrain from this
method as it really is boring and unrewarding for the novice.

Once you think you have developed your idea in sufficient detail,
make sure that it is not ambiguous and (more importantly) that it is
presented in a tidy format for later reference. Make sure that you have
achieved what you want. In the near future you are going to put in a fair
bit of work on this program so be sure that you are going to do what you
want to do and not what you allowed yourself to be roped into. Machine
code is really a matter of stamina and achievement. If you’re not really
interested in what you are doing, then there’s no way that you will
finish, or even look like finishing, the game. You must be totally au fait
with the game all the way through to ensure its survival. If you are
confident that this stage has been satisfactorily completed then move on
to the next section, but first have a break to allow the idea to fully
mature in your mind. Whatever you do, don’t rush it.
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CHAPTER 4
Program Design

Once the detailed description of the game has been completed, the next
stage is to draw up the charts that will divide the game into a series of
minor tasks. You may well ask how this job is to be done, but unless it
is, the game will never be completed.

In BASIC it’s possible to write programs straight off the top of your
head. In machine code the situation is different — for a lengthy
program, there is no way round this stage of detailed specification.
Indeed, even if only a section of the program is written in machine code,
I would still advise you to stick with this stage. Once you get down to it,
you will find it surprisingly simple.

There are essentially two ways of describing a process with a visual
representation: the flowchart and the top-down chart. Each has its
virtues, although the use of a flowchart is often considered bad
programming by some institutions. My system is first to take a clean
sheet of paper and write in a box at the top of the page, in the middle,
the title of the program. This is ‘very high level’: what I mean by this is
that I (the human) understand it but the computer hasn’t got the faintest
idea of what the task is. The next stage is to take this box and divide it
into a series of tasks not more in number than, say, four or five. Let us
take for example the program Space Invaders.

I would divide this into the following series of tasks:

Display title page.

Initialise for a game.

Play a game.

Inform player that game is over.

These would then be fitted into a series of boxes one row down from the
first box and connected as in Figure 4.1. Notice that the level of the
description has dropped, in that it is more ‘machine-orientated’ than the
first box. Subsequent stages simply mean taking each of these boxes and
dividing and sub-dividing it further still, until the task of encoding it is
little more than a straightforward exercise in coding. The final result will
resemble the roots of a tree. At each stage a root splits into several other
roots.
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Figure 4.1: The Top-down Chart.

HIGH LEVEL
INVADERS
TITLE INITIALISE PLAY A INFORM
PAGE FOR A GAME PLAYER
GAME GAME OVER

each box is further simplified

LOWER LEVEL

After a little practice you will know when the tree has the required
amount of detail. Obviously there is no need to take things as far as the
actual instructions themselves: I would stop the process when tasks
became reduced to things like ‘scroll screen left’, as I know I am
competent enough to write this in machine code. (This is where this
book comes in: it will show you how to perform such tasks as scrolling
the screen. Of course it cannot cover every eventuality and so I have
included a chapter on ‘algorithm design’ — Chapter 6 — which is
designed to stimulate your mind to devise methods of solving particular
tasks.)

Now that we have obtained a basic insight into the process of program
design, we can begin to expand on some ideas of designing top-down
charts. If the program is to be at all complex, then the top-down chart
will cover many sheets of paper. This means two things — we must be
very neat and organised and we must have a flawless system for
connecting one box to another. If the system is not flawless then the tree
will become deformed. The other point is, how do we represent loops
and branches in a top-down chart?

I'll discuss the second point first. It doesn’t matter how you denote
loops and branches in your top-down charts as long as you are
consistent. Gone are the days (at least with micros) when one man
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would describe the program and another would write it. You and you
alone are writing this program. As long as you know what you mean
then all is well. You will probably be aware of the notation used when
using flowcharts (diamond box for decisions, rectangular box for
processes, etc). A top-down notation is not normally shown by the
shape of the boxes but by signs inside each box. I will show you my
notation (which 1 didn’t develop) but feel free to develop your own if
you think that it’s clearer. If you are doing this, then it might be a good
idea to write down on a separate piece of paper exactly how your system
works so that you don’t deviate from it.

Figure 4.2: Top-down Schematics.
»~WHAT THE BOX IS ABOUTN

PRINT PLAY
INSTRUCTIONS GAME
UNTIL DEAD
N FURTHER DETAILS 7
UPDATE
BOMBS «—‘update bombs twice’ [FOR-NEXT]
112]
STOP
GAME «'stop the game until A=1 [DO-UNTIL]
UNTIL [A=1]
%)ghglgggé <«‘comment on player’s ability
to score points’ [IF-THEN-ELSE]
BRANCH [SC]
SC<100 SC>10,000
WALLY! AVERAGE GENIUS!

In my system, every box is divided up as shown in Figure 4.2. The top
part contains the title and function of the box while the bottom part
contains details of the way in which the ‘box’ will be executed. There are
several distinct possibilities for this section. You may wish just one pass
to be made. In this case I would normally leave the box empty or put in
it the Greek symbol for nothing, ‘0’. We may want a fixed number of
passes: this is similar to the FOR-NEXT loop in BASIC. I show this by
writing ‘I[n]’ meaning ‘iterate n times’. You may wish the box to be
repeatedly executed.until some certain completion conditions arise: this
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is similar to the DO-UNTIL instruction found in some BASICs. This is
denoted by ‘UNTIL [X]', where ‘X’ stands for a condition (eg SCORE
= 1500). For the occasions where several possible events may occur,
depending on some other event, I utilise the notation ‘BRANCH ON
[XT', where X is once again a condition. When this is in use, I write
along the connecting line the value of the condition that will force the
machine to take this path. Figure 4.2 should make all this clear to you.

We are now in a position to see how we can integrate all these ideas,
so that we can draw a top-down chart for anything we like. Take the
simple example of sorting a list of n numbers contained in the array
U(X) into the array S(X). Let’s use the following algorithm:

Figure 4.3: An Example Top-down Chart.

SORT
0

INITIALISE [TSORT n

FOR SORT NUMBERS

E=1 I[n]
FIND STORE DELETE GET NEXT
LARGEST LARGEST IN LARGEST FREE ELEMENT]

S(X) FROM _ U(X) IN S(X)

INITIALISE SEARCH
SEARCH UNTIL SCAN

[ COMPLETE |

TEST zxé))leE ON'TO
ELEMENT
ELEMENT

SMALLER OR EQUAL?

BIGGER?

UPDATE
LARGEST
NUMBER

TAKE NO
ACTION
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(1) Find the largest number in U(X).

(2) Store this value in the first empty element of S$(X).

(3) Replace this number in U(X) with a very small number (effectively
deleting it from U(X)).

(4) Repeat steps 1 through to 3 until all the elements in U(X) are very
small.

This can be described in top-down form as shown in Figure 4.3. Bear in
mind that we are demonstrating the principle of top-down design and
therefore this example will be illustrated in BASIC. Before I explain it
to you, try and see if you can understand how it works. The actual
concept of sorting a series of numbers is quite complex, yet the use of a
top-down chart breaks it down into easily-managed chunks.

Looking at Figure 4.3, the chart starts of with ‘sort numbers’. Well
this is a logical way to start. The ‘0’ in the box is not really necessary, it’s
just there to show you what the box means. This task is divided into two:
getting ready for the job and then actually doing it. The ‘E = 1’ in the
left box means just that — assign the value 1 to variable E. This is
clearly not a directive. The righthand box contains our iteration symbol
‘I[n]". A glance at the algorithm will remind you that we must perform
the process of picking out the largest number and recording it as many
times as there are numbers in the list. The symbol is telling us to repeat
execution of its ‘constituent’ boxes n times.

With the next generation of boxes, it is impossible to guess from only
one of them what the purpose of the whole chart is. This is a clear
indication that our simplification of the problem is working. The four
boxes comprise the four steps that must be repeated for every largest
number found. Of the four boxes, it is not absolutely clear how we
might program just one of them, so we further simplify this box only.
The workings of this branch should be clear to you: notice the
conditional branch box with suitable annotations along each arm.

Now we are in a position to program this chart. While this will be
more objectively discussed later on, a short example will be given now.
For simplicity we will program in BASIC. The principle involved here is
known as ‘tree-walking’. This means starting at the top and working
down the leftmost arm until we arrive at a dead end (or ‘leaf’). We then
turn around, go back up and take the next route available at the next
junction that hasn’t yet been explored. In this way it’s possible to walk
the entire tree.

Starting at the top, we encounter first ‘sort numbers’, so we write the
first line:

10 REM *** SORT NUMBERS *#**
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Next we come across E = 1, so this is naturally the second line.

20 LETE =1

The next box is ‘sort n numbers’ so we make the third line:

30 GOSUB 1000

meaning that the subroutine starting at line 1000 will perform this
function. It’s only right that we should make this clear and so line 1000
becomes:

1000 REM *** SORT N NUMBERS ***

Travelling further along the tree, we arrive at ‘find largest’. This itself
diversifies and so we write:

1010 GOSUB 2000

followed by

2000 REM *** FIND LARGEST ***

This takes us to ‘initialise search’ — a leaf at last! This gives:
2010 LETL =1

Next on our travels comes ‘search’ and note the directive to continue
until L = 101. As this is not a leaf, we write:

2020 GOSUB 3000
followed by
3000 REM *** SEARCH ***

Now we get to ‘test’, which is a conditional branch. Taking each box in
turn, we write:

3010 IFN(L) > LARGEST THEN LET LARGEST = N(L): LETP
=1

As nothing happens in the next box, we may as well ignore it. The walk
now takes us to ‘next L’ which is a leaf so we write:
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3020 LET L=L+1

This is the last box in the simplification of ‘search’ and so we can write:
3030 RETURN

We are now back at line 2020 where we placed a GOSUB. However,
there was a directive telling us to repeat this operation until L = 101 so
we write:

2030 IF L<>101 THEN GOTO 2020
followed by
3040 RETURN

We now walk back up the tree and finish off the ‘find largest’ subroutine
by writing

2030 RETURN

We are back in the line 1000 subroutine and we see that we have three
leaves so we write:

1020 S(E) = LARGEST
1030 N(P) = -9999
1040 E = E+1 (I have now dropped the optional ‘LET")

Once again this is the final leaf of a box, so we finish off this box with
1050  RETURN

We now return to the first few lines we wrote and add

40 END

to halt the computer.

The program is now complete and ready for testing. You should have
noticed how the top-down technique virtually wrote the program for us.
All that was required was a little light thought, almost therapeutic!

It should now be apparent that a full program will have a very large
top-down chart. This will be very difficult to draw on a single sheet of
paper. The answer is to use a number of fairly large sheets (say A4) and
to give each sheet an identification number: this might be two letters
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from the game’s name plus the number of the sheet, which will help you
identify which game the chart belongs to. Thus for, say, Space Invaders
we might have SI1, SI2, SI3, and so on. The reference number of the
chart should be clearly written in a box at the top of the page. Make an
index of these reference numbers and the purpose of the chart on a
different sheet of paper, which will allow quick and easy cross
referencing. To identify each individual box on the page, use the page
code preceded by the letter ‘B’ (for box) with yet another code tagged
on to distinguish between all the other boxes on the page. If you're
really keen, then make up another index page with all these codes on it.
All this paperwork will assist greatly in later stages of writing.

Once we have compiled a top-down chart, we are nearly in a position
to start coding: we can see exactly what is required and where.
Moreover, by looking carefully at the chart we can locate repetitions in
the code. These are obviously ideal candidates for turning into
subroutines. Yet more is done for us by the chart: it shows us how to
connect each of the parts and also the natural way to test each section as
it becomes available for integration into the rest of the program.

The efficient programmer should plan out all the work in a timetable
so that he can see exactly where he is (and whether he is on schedule).
Always allow yourself lots of time for each individual stage as machine
code is never written without the arrival of bugs. A proficient BASIC
programmer can write a full 10K program and have it in total working
order in two days, but a machine code programmer will be pushed to
write 1K of usable code in a day.

The stages in producing a schedule vary from programmer to
programmer. Some programmers don’t need to use too much
organisation, but for a program in depth this can be mentally taxing.
The first stage is to look through the chart and identify all the routines.
Then, depending on how much of the program is to be in machine code,
single out all the machine code routines. Compile a list of all these
routines, including references to the chart. Now work through the chart,
estimating how long each routine will take to code and test (this comes
with experience) and, from this, organise your timetable. Obviously it is
good to get into a habit of following the schedule tightly, so be generous
with the estimates. You will have plenty of time to become a
‘speed-merchant’ later on.

Before moving on to the next chapter, try writing a few BASIC
programs with the top-down method so that you have a chance to really
appreciate the full value of the technique. This is what is known as
‘structured’ programming — the chart shows the program’s structure.
For efficiency and clarity 1 use a programmer’s template with all the
flowcharting symbols available, plus a pencil to rough out ideas. Once I
have produced the prototype chart, it is transferred on to a much
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smarter piece of paper. Using a template means that you get uniform
boxes with square sides. You can either buy one or cut one out of
cardboard.

As a final note to this chapter, bear in mind that in drawing up this
chart you are laying the foundations of the game. It’s well worth the
time to build them securely, so take your time and double-check the tree
when it’s ready.

Figure 4.4: Design.
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CHAPTER 5
Coding the Program

By this stage, you will have finished the groundwork and we can at last
get on with the actual writing of the program itself. Taking stock of what
has already been done, we have a detailed description of the program,
and we have also compiled the top-down charts, which tell us exactly
how to write the program. Furthermore we know which routines are to
be written in machine code and so are ready to get on with writing them.

A major part of this book is taken up with a ‘common routine’ section
(Chapters 9 and 10), which is a large selection of some of the common
routines you are likely to want to use. These range from filling areas of
memory with a code to scrolling the screen left and right (and other
directions). Each routine is discussed in terms of subject matter and
style, so that they are readily adaptable. This chapter shows you how to
use these routines to the maximum, with the minimum of work. But
don’t think that the book will write the game for you: there will be some
routines that you must construct yourself, and Chapter 6 is devoted to
this aspect.

Those of you who are alert may have noticed that there are going to
be two fundamentally different types of routine in our program. First,
there is the purely functional routine which appears at every leaf on the
top-down chart: this routine actually performs some noticeable task.
The second type of routine structures the program: it links individual
routines together and performs the inter-routine looping operations. The
latter make up each node (ie junction) of the tree. The writing of these
connecting routines is discussed in Chapter 8: the present chapter con-
cerns itself with the purely functional routine only.

It is assumed that you already have a fair knowledge of machine code
in that you understand the manipulation of the registers and how to
perform the simple addition and subtraction operations which books on
6510 and 6502 code pride themselves on. As to actually writing
something worthwhile, these books (with some exceptions) tend to
leave you in the dark a little. This is because it’s very difficult to be
objective in machine code. The language lends itself very well to the
construction of short, quick, repetitive tasks, whereas the writing of a
complex program is a daunting task indeed. By the introduction of the
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top-down chart, however, we have reduced our task into a series of very
simple sub-tasks that lend themselves well to an objective style of
programming. If this is not the case with your charts, then you simply
haven’t extended the tree in enough detail yet.

A vital instruction in machine code is the JSR/RTS combination.
These two instructions give you the capability to call subroutines just as
in BASIC. The only difference is that we can use a far higher level of
nesting than in BASIC. The 6510 allows us to use up to 128 JSR calls
without using a single RTS. This gives us the ability to call up to 127
subroutines within one subroutine. As a sneak preview of the next chap-
ter, it would make sense to say that the ‘connecting routines’ work by
calling each of their subsidiary routines with JSRs. If you are not totally
clear on the topic of the JSR, go back and read up the relevant sections in
your manual.

Parameter passing

The subject of parameter passing is a vital concept. Parameters are the
pieces of information that a routine requires to do its job. The
parameters of a PRINT statement in BASIC are the variables and any
text that you wish to have printed. Consequently in machine code
various routines will need some parameters. Some, however, won’t
need any. To give an example, consider a routine that fills a section of
memory with a certain character. To perform this function the routine
must know where to start and stop filling, and also what character to fill
with. In BASIC there is only one way of parameter passing and that is to
assign the values to be passed into a variable which the routine itself
must interrogate. In machine code there are two distinct methods.
Either the values required can be dumped into some pre-determined
memory locations so that the routine can pick them up, or the data can
be put on to the stack. For our purposes, we will use the first method as
it is easier to implement.

To demonstrate this method, let’s suppose we are going to use a Fill
routine and so must pass two addresses and one code to the routine. As
long as the parameters are sent and received in the same fashion, no
problems will arise. We can store the two addresses in locations 251-252
and 253-254 as a pair of 16-digit numbers. As the code with which to fill
the area is only a single byte we could send it in the X register (no
particular choice, it could as easily have been the Y register). As long as
the Fill routine knew about this, then there would be no probiems. An
important fact arises from this. If a routine is to be used with only one
set of parameters throughout the program, then it would make sense to
forget passing them at all and simply initialise them as part of the
routine #tself. It is up to you to spot when this sort of situation arises and
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to act accordingly.

The same sort of reasoning is true for passing parameters back from
the routine to the calling routine and then on into the next routine. This
is a topic which will be discussed later in this chapter and in Chapter 8 in
more detail, but for the time being we are ready to start looking at some of
the routines that we must encode with a view both to parameter passing
and to the actual function of the routine. Of course, there will be some
routines that don’t demand any parameters.

Compiling routines

Assuming that you are ready, we can start to compile some of the
routines. The procedure for doing this isn’t just to put pen to paper; you
will be forced to think a bit about what you are doing. The system that I
describe here shouldn’t be strictly adhered to after a while; it’s just to
point you in the right direction, to help you get started. One of the key
considerations at this stage is not to work too fast— you will not succeed,
and you will only be disappointed. Working in machine code is a siow and
laborious process: and be ready for the bugs, for they are the real test of
your stamina.

The first stage of compilation is to study the routine to be encoded.
Are you fully aware of its function? Is it simple enough to encode, or
have you failed to simplify the tree to the required extent? You must
know what you are trying to achieve right down to the last detail.
Furthermore, you must be well aware of what parameters the routine
requires.

The next stage is to try and find the corresponding ancillary routine (if
there is one). You may find an ancillary routine with a close similarity or a
very vague one to the routine for encoding. More often than not, the
encoding routine will be a hybrid of two or more of the ancillary routines.
If there is no real similarity then it looks like you are faced with the
prospect of writing the routine from scratch: put it aside for the time being
and move on to the next routine (the next chapter deals with writing from
scratch).

In order to do this speedily, you would be well advised to get to know all
of the routines fairly well, so that when you come to use one you already
have a fair amount of confidence in it. But don’t just leave it at that; make
up your own routines and document them. Then start mixing them
(mentally) and you may be amazed at some of the new routines you find
yourself with.

Study each routine and establish the parameters it needs. These fall
into two classes: in-going and out-going. In the case of in-going data, find
out which (if any) are staying constant. This information may as well be
entered by the routine itself rather than by the calling routine. All this

41



Machine code games routines for the Commodore 64

information should be carefully recorded in the program files so that it’s
available when you need it.

I must point out the danger of parameter clashes: these occur when
more than one routine uses the same memory location for a different
parameter. This results in loss of data and an erroneous entry for its
replacement. Most of the time, clashes will not matter as the
information carried in these locations won’t be needed any more, but
occasionally disaster will strike and it can be very difficult indeed to spot
the fault as the routines work on their own, but result in a bug when run
together, which is very frustrating. To prevent this, you must keep a
detailed record of what memory locations are used, and where.

If you’ve followed the instructions so far you will now be in a position
to write the routines (well, some of them, at least). Whether or not you
own an assembler, you need a copy of all the routines you write so that
these are instantly available. I would suggest copying the routinesonto a
ruled page so that everything is crystal clear: you can’t afford any ambi-
guity.

The first version is the prototype — just make sure it works. It doesn’t
matter if it’s a little inefficient. At this stage, you should not be using any
of the clever tricks that abound in machine code programs: keep things
plain, and try to avoid the use of JMP instructions within a routine as
these render the code un-relocatable. There should be no call to jump
further than 127 bytes, which is the limit for relative branches. To use a
conditional branch as an unconditional branch, you force the branch by
setting the flag which governs that branch. An example of this is to
precede a BCC instruction with a CLC instruction. If you are hand
assembling, then be wary of calculating these vectors as they are a
common source of error.

Once you have produced the prototype routine, assembled, tested
and corrected it, the next stage is to improve it. You may like it as it
stands or you may have noticed some improvements that you can add. If
so, go ahead by all means and change it — but don’t forget to re-test it
after the change.
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Figure 5.1: Routine Design Number 1.
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CHAPTER 6
Writing Your Own Routines

Not all the routines you are going to want can be written for you. You
either have to try writing them, or shy away from machine code and
write them in BASIC. At least make an attempt at machine code: even
if you fail miserably, you will have gained valuable experience.

The first consideration is whether or not you know how to achieve
what you actually want in normal terms. Suppose you want a routine to
play chess, it’s difficult enough describing the process in English, let
alone converting it into machine code. If this is the case, then what you
have is an algorithm problem — see the section on algorithm design
later in this chapter. But don’t expect instant success, inspiration may
not come at once.

Well then, assuming you have got your algorithm worked out, we can
consider turning it into an operative machine code routine. First, draw
up a flowchart of the algorithm. For planning programs as a whole the
flowchart is a poor tool, but for laying down an algorithm it is very
effective. Try to make each box as simple as possible, but there is no
need to get right down to the instructions themselves. What is wanted is
something between the two flowcharts in Figare 6.1, which add two
numbers together. Where necessary, indicate program flow lines with
arrows. Where program control can take various paths, these should be
kept to a minimum as otherwise the diagram can become cluttered. A
major cause of failure in machine code (and other computer languages)
is an over-complicated branching structure. This leads to unforeseen
logical errors, leading to a very frustrated programmer. It should be
possible to re-draw the flowchart several times, simplifying both the flow
structure and the instruction content.

By now you should be well aware of parameters to be passed to and
from the program. Note these down at the top and bottom of a sheet of
paper. From the flowchart, the main part or ‘spine’ of the routine should
be obvious. Don’t worry about the other little bits, just copy down on
the sheet the code which you think will perform this task. If you're not
sure then type it in and check it. You will then be able to start adding in
the other ‘arms’ of the flowchart. After each stage stop and check —
don’t do it all in one go. Once this is done you have written the routine.
Look at the top and bottom of the sheet and add in the parameter
passing code. This is just the prototype — if it works, then fine, but you
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Figure 6.1: Over and Under-simplification.
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may already have plans for a superior second version. The following
sequence of charts and code shows this method in use.

The development of a Spiral Screen Fill routine

Filling the screen from top to bottom is child’s play. Doing it from the
centre outward is not so easy. Doing this in machine code certainly
seems daunting at first. The solution, however, is painless. Using the
Rectangular Fill routine (see Filling Memory, Chapter 9) simply draw
larger and larger rectangles centred on the middle of the screen. The
result of this is to fill the screen from the inside out.

If we look at the Rectangular Fill, we find it takes several parameters.
First, it wants the address of the top lefthand corner of the rectangle.
Then it wants the width and height, and last the code with which to fill
the area. These are placed in the following locations:
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251 & 252 Lo and hi addresses of the rectangle’s corner

253 Width
254 Height
2 Code to fill with

Now the screen is 40 characters wide and 25 deep. If we increment the
length of each side by 1 to produce the next rectangle, then the result
will be asymmetrical. We must increment by 2. This means that the
starting height is 1 (so we get 25 not 24). Following on from this, 12
increments will need to be made to fill the screen. This means a total of
13 rectangles. A little algebra tells us the starting size of the width:

12 x 2 (there are twelve increments) + WIDTH = 40
WIDTH = 40 — 12 x 2
c=16 = 1dy

A little more algebra supplies us with the starting corner. After each
increment, the corner moves to the left and up — diagonally north-west.
We know the final position after 12 moves must be 1024 so:

ADDRESS — 12 X~ 41 (— 41 is the vector) = 1024
50 ADDRESS= 1024 + 12 x 41

(=1516 “=¢sECH

Now we can draw the first flowchart (Figures 6.2 and 6.3).

Spiral Screen Fill
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Figure 6.2: Preliminary

Figure 6.3: Coding Chart
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INC WIDTH
INC WIDTH
INC HEIGHT
INC HEIGHT
LDA ADDR
SBC #41

STA ADDR
LDA ADDR+1
SBC #0

STA ADDR+1
LDA HEIGHT
CMP #27
BNE LL1

RTS

This routine then produces a screen fill from the centre outwards. It’s
certainly very verbose, but it works. Further refinements should be
made only when the prototype routine has been produced. You may
want a delay to help slow down the action — as always, it’s a case of trial
and error.

Algorithm design

Sooner or later you will turn to this page. Of course this book can’t
cover every eventuality: if every routine that could ever be written were
to be listed here, then the whole magic of the world of computers would
be broken. Computers are about virtually infinite possibilities. This is
where this section comes in. It’s designed to stimulate your brain so that
you can solve problems and produce new routines to perform functions
that perhaps only you have ever conceived of. The problem may be
simple or it may be complex. Worse still, it might be infuriatingly simple
in nature yet hard to solve. This chapter is about algorithm design. The
word algorithm implies a way of doing something. This chapter aims at
showing you how to create your own.

The first step (simple though it may seem) is precisely to define the
problem. Inclulde every detail of the task. Now look at it and try to
break it up into lesser tasks. In the section on program design, you were
asked to do this but here we are looking for a more subtle connection
between the tasks. Obviously, you simplified the task as far as possible
then, but now the idea is to think in term of the two routines possibly
working in parallel with each other. Consider the trivial example of
keeping a randomly wandering object within a square. The problem
can’t be solved by suggesting that the particle never strays further than a
set distance from a central point as this describes a circle: trying to find
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an algorithm in terms of the distance won’t work. The answer is to
consider the vertical and horizontal distances separately. Don’t expect
the answer to jump out at once. This is simply a step in the right
direction. Don’t try to solve one algorithm on its own. Do several at
once as you may find that one will help with another. The ability to think
clearly and with a very open mind are key attributes that you will gain
from algorithm design.

Once this first stage is under way (the whole thing is a dynamic
process) there are various things you can try in order to find a solution.
These are not the only methods, so don’t refrain from using your own.
One essential, however, is a doodling pad as it lets your mind wander
into wider avenues than before. The aim is to reduce the problem into a
series of clear and unambiguous stages suitable for coding (some people
tend to forget what they are aiming at). It’s important to keep the
destination in mind, so every now and again re-read the definition of the
problem.

The first thing to remember is that every problem has a solution. And
the hardest ones sometimes tend to have very elegant solutions. Just as
in the field of maths, help often comes from a section you thought had
nothing to do with the problem. Consider the problem of creating a
sense of movement into the screen (ie falling down a shaft) by drawing
perspective lines and moving them outwards, slowly at the centre and
quickly at the edges of the screen. Who would have thought that a
solution lies in the use of UDGs (see Chapter 10). This brings up
another point — there is more than one solution so don’t fall into the
trap of thinking that ‘there’s only one way to do it, and it has got
something to do with this . . .’

Don’t be blinded by your destination. The chances are that the
solution to the problem takes an indirect route there, so don’t look for
the single-stage solution. Magazines are a good source of ideas and
programs — you’ll be surprised what you can pick up by browsing
through the listed programs and notes, which will show you how others
solve problems.

There is normally a lazy way out of algorithm solving, in that it’s
normally possible to take each instance separately and write a routine
for each. This is highly unsatisfactory but it does mean that you can get a
sort of stand-in. There are circumstances when it is a perfectly good
alternative. Take, for example, the task of providing trigonometrical
formulae in machine code for 3D perspective projection. One way is to
write floating-point routines and then use approximation formulae. This
is very clearly a daunting task. The answer is that the ratios need only be
supplied in 5° intervals anyway, and so you might as well use a table of
angles and values instead. The result? — a fast routine that’s quick and
easy to write.
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Figure 6.4: Routine Design Number 2.
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I have a certain affinity for the flowchart in algorithm design. It allows
me to be much more direct with ideas and it’s easy to see how things are
happening. This is really just a formal doodling. The process can be
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quite fun although if you’re not careful the diagram may get
over-complicated. But I think the flowchart ought to have a place in the
programmer’s arsenal.

Manually performing the process you are trying to devise an
algorithm for can often be enlightening. After a while you find yourself
‘doing things without thinking’. It’s at this stage that you must probe
further in and enquire what is the underlying principle. Consider the
eight queens problem:

Place eight queens on a chess-board so that no queen attacks any other.

Write an algorithm, suitable for use by a computer, to solve this
problem. The task does seem a little overpowering at first, but if you
attempt the solution manually you will find that it just takes a few
minutes to see the light.

One of my pet ways of solving problems is the approximation method.
I start off with an idea and gradually improve and refine it until I find the
answer. The initial approximation takes the form of an educated guess
at the solution and what factors may help solve it. The answer can turn
out to be totally Heath Robinson due to all the alterations but that
doesn’t really matter — as long as it’s ‘watertight’, it will work and you
can always improve on it later. Remember this is just the prototype.

These then are some of the chief methods of algorithm design. Use
them liberally and just let your mind wander. Inspiration may come to
you at the most unexpected moments. It’s unlikely that you will work
things out instantly, but then again it’s unlikely that you’ll find yourself
with too many difficult algorithms anyway. Most of the problems not
supported by the service routines supplied will yield readily to
decomposition.
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CHAPTER 7
Testing and Debugging

No program in machine code is ever without its associated bugs. The
longer it is the worse they are, and the more numerous. It is reasonable
only to expect the shortest routines to work first time. This chapter is all
about the hunting and killing of bugs. It’s vital to remove them
completely and kill them dead. The good programmer expects bugs (but
hopes for none) and so is quite prepared to fight them.

Bugs come in all shapes, sizes and guises. They may be caused by
errors, faulty algorithms or any one of a hundred causes. There is no
such thing as the standard bug and sometimes it’s difficult to even
recognise the problem. One of the best debugging aids is the dry-run
with paper and pencil but prevention is always better than cure, which is
why this chapter comes in three sections. First how to keep your
routines simple, second how to test them and third how to debug them.
This chapter is possibly the most valuable in the whole book as it only
takes a few bugs for you to lose heart and give up. Stand up and fight
them: after all, if machine code programming was simple you wouldn’t
get so much satisfaction out of it. Trouble-shooting a program can even
be fun if you enter into it in the right spirit.

Keeping routines simple

A simple routine is a programmer’s dream. All you have to do is keep it
short and straightforward — no clever tricks. There should be as few
branches as possible to minimise the total number of different paths.
Don’t hesitate to use a JSR in a routine even if this is the only time that
routine is called. If the routine is therefore simpler, then the JSR is
doing its job. Ideally a routine should be no more than, say, 25
instructions. This is so that it can all fit on the screen in one go. Any
more than this, and start thinking about some JSRs.

Writing a program off the top of your head has a noticeably cramping
effect on your thought processes — even in BASIC — as you can see
only 25 lines at once. It’s far easier to work from a paper listing than a
screen — you can see the whole program at once. If you look at some of
the routines in this book you will notice that they are kept short and
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simple. The branches are also minimised. With very few exceptions, you
will also notice that they are ‘nested’” one inside another. When control
is passed to and fro between the different sections of a routine like the
one in Figure 7.1 it becomes very difficult even to test the routine. In
fact, one mainframe program recently revealed a bug after over 10 years
of flawless use! If you keep the branching logic simple then testing
becomes far easier.

Figure 7.1: Haphazard Branching.
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Writing straightforward routines is largely a matter of practice. If you
plan properly you will find your routines fall into place automatically,
with simple branching. Following the top-down chart theory, the boxes
become more complex as you move higher up the tree. If the leaves at
the bottom are complex then who knows what the top will look like?

Testing the routines
The first law of debugging is “You can never be sure a program is totally
correct’. The second is, ‘Some bugs are hard to find and easy to correct,
some bugs are easy to find but hard to correct, and some bugs fall into
both categories . . .".

When testing a program, it is necessary to ensure that it works for all
possible paths of flow through the program. What I mean by this is that
a particular routine (say a keyboard scanning routine) may contain
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various paths for the machine to follow. If one key is pressed, then it
may execute one section of code, and if another key is pressed then
another section may be executed. Thus there are two different ‘paths’
for the program to follow. To test this routine we must ensure that it can
follow both paths correctly.

Figure 7.2: How Many Control Paths?

TASK #1 TASK #2 TASK #3 TASK #4 TASK #5
R

1 3 2 5 1

Consider Figure 7.2. This shows a program made up of five different
sections. After completion of one section control moves on to the next.
Under each box a number denotes the quantity of different paths the
machine may take through each box. Thus the total number of different
paths through the entire program will be the product of these numbers,
iel X3 X2 x5x1=30.To test this program fully, we must check that
it can execute each of these paths correctly. This is obviously going to be
tedious to say the least (bear in mind that a full program would have
thousands of different paths). Therefore a system known as modular
testing may be used. This entails testing each section individually
through all possible paths. What this means is that, if we know that the
section ‘play’ is totally correct (or appears to be), then we can forget
about it. Using this method reduces the number of trials to the sum of
the different paths,ie 1 + 3 +2 + 5+ 1 = 12.

Notice how, even in this trivial example, we have greatly reduced our
work. This is often the natural way to test your code as, when you have
just finished writing a section of code, the chances are that you won’t
have all the other routines finished to go along with it. Test the routine
while your mind is still attuned to it.

This leads us on to the stage where we want to test a particular routine
but don’t know how to do this. First of all make sure that you have a
copy on tape or disk and then proceed as follows:

1) Examine your charts for this section of code and pick out every
branch or jump instruction. These are the only points where control
may split in two. Now we aim to make the program travel along each of
these paths by ‘seeding’ the program so that each of the branch and
jump instructions are executed (not all at once but each in turn).
Seeding the program is very simple — if you can’t force the program to
branch at a BCC instruction without obscure circumstances, then insert
a CLC instruction before it (this may upset branch offsets): the program
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will not know the difference. This method may be a bit ugly but it works
— don’t forget to remove the ‘seed’ after use. What this first stage has
done is to show that all lines of control are operative.

2) The next stage is tougher on the program. The aim here is to
confuse the routine by deliberately giving it foul data, such as it might
receive while the program is running. It is up to you to be ruthless here.
Often the programmer is well aware of an error in his thinking but
pretends that it is not present. Confronted with this type of situation you
must go back and correct your mistake as it will only return to haunt you
later on.

If your routine comes through with flying colours, then congratulations!
If, however, a bug rears its head then it is imperative that you debug the
routine before continuing. Remember one thing — the computer
doesn’t make mistakes. If something doesn’t work then it’s your fault.
Many’s the time I have seen programmers notice an error and pretend
that it’s the machine’s fault. Often a bug doesn’t appear every time a
program is run: if a bug appears and then hides for a while, don’t fall
into the trap of thinking that it really was the computer’s fault. The rule
is that if you see a bug once, then it exists and no amount of ignoring it
will get rid of it. Once you admit that there is a bug in your code you're
half-way to correcting it.

Debugging

So now you have a bug and you know roughly where it is. You may even
have an inkling as to its cause. Apart from giving in to the pest, you have
three options: you can correct the bug; you can rewrite the faulty
section; or you can decide that the bug adds a new dimension to the
game, as in, ‘Avoid the white blobs on the screen as they are spiral
vortices which if hit cause time to stop and the game ends’, ie the
machine hangs up. (OK this is taking it a bit far but you would be
amazed at the number of programs which have been aided through
divine intervention like this. You have probably done it yourself and,
while you should guard against doing it too often, there are occasions
when bugs fit the bill perfectly.) To give this underhand system a more
technical name use the phrase ‘If it doesn’t work then document it (but
don’t tell anybody)’.

The favoured method is, of course, to correct the bug. However you
may not be able to track it down. Worse still, you may have tracked it
down but know that fixing it isn’t going to be easy. It is at this (later)
stage that you should resort to rewriting the code.

The first stage of debugging is to check that what you have entered on
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the computer agrees with what you wanted to enter. A bug arising from
a typing error or misprint is a gremlin (merely a distant cousin of the
bug). Make sure you do this first, as otherwise you may tamper with the
code and only later discover the misprint — a sheer waste of time.

The next step in debugging is to ask the question, ‘Does it hang up?” If
the routine goes into a loop then one of two things is probably
happening. First, check all the branch instructions, both conditional and
unconditional, as it is through these that the program can go into a loop.
Often you will find that you have miscalculated a relative branch vector.
If the code is all correct, then the next most likely cause is that
‘completion conditions’ are not occurring. Every section of code will
exit the routine when the job is done. This is where the completion
conditions come in: they inform the routine when the job is done. If
completion conditions are not occurring then there is probably a small
oversight in your code (ie the algorithm is probably correct) so the best
solution here would be to dry-run the code with a pencil and paper and
the error will give in without too much of a fight. If you find that your
code still hangs up and neither of these explanations is the right one,
then re-check the code with a fine-tooth comb: the error is in there
somewhere. You will probably be best off with a dry-run as above. It’s
only a matter of perseverance, that’s what makes the machine code
programmer.

If however your code doesn’t hang up but fiatly refuses to work, then
there is an error in your algorithmic reasoning. Just in case this isn’t
true, check the code for gremlins again and be especially careful over
what addressing modes you wanted to use and what addressing modes
you actually used. If all this is done and you still can’t see the fault,
then it’s time to use some diagnostic aids. These will allow you to
follow the program flow closely which, with luck, will enlighten you.
There are a number of different aids so I would advise you to get to
know them now, so that you are aware of the aid that will assist you
most in your plight.

The first is a technique used on much larger computers. It involves
listening to the noise the processor is making (ICL machines are fitted
with a ‘Hoot Volume’ knob). On a mainframe this is detected and
amplified so that the engineers can listen to the machine’s activity. On
the 64 this noise can be heard on the TV. All you have to do is turn up
the volume and listen. Of course if you are using the SID then you won’t
be able to hear the ‘hoot’. With the volume on, listen to the noise. Now
enter this line of BASIC:

FOR A=1 TO 3000:NEXT

and press return. Hear the difference? This is the noise the machine
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makes when in a loop. Of couse the note you hear depends on the
rapidity of execution. Thus by turning up the ‘hoot volume’ you can
listen in to the processor.

The second technique is a form of flagging. If your code 1s concerned
with on-screen activity then, in order for you to see what’s happening, it
may be necessary for you to insert a delay into the main loop. This is
easily done by use of the JSR instruction. Simply insert JSR (address of
delay) into the loop and run the code. For details of how to write a
delay, see the section in Chapter 9.

However, just slowing down the code may not be enough. You may
wish to see exactly the value of a register or just how far across the
screen a pointer has got. This is easily achieved by POKEing the
information on the screen before the delay and then removing it
afterwards. To show how far across the screen a pointer has got, I wouid
advise POKEing the address it holds with a 160 (white square) and then
removing this after the delay. When run, a white square will zip across
the screen. If you want the value of a register, then use the absolute X or
Y mode coupled with a base address of 1024. Once again, POKE a
white square on before the delay and remove it. Thus the value of the
register can be gleaned from the position of the white square. If the
square is in the top lefthand corner of the screen then the register has
value 0; the top righthand corner makes it value 39, and so on.

A far more elegant way of ascertaining register values is to use the
neglected BRK instruction. This is a software-called interrupt and is
non-maskable so you can be sure it works. Its use is simple: you simply
sprinkle BRKs liberally throughout your program and, when encoun-
tered, they force an interrupt. The vector is contained at 790 and 791.
On older CBM machines the BRK instruction traditionally pointed to
the machine code monitor, but on the 64 there is no resident monitor so
we aren’t going to lose a lot. We can work the service routine two ways.
We can store register values safely somewhere and then return to
BASIC, or we can test for the function keys being depressed and act
accordingly. If no key is held down then the program continues as
normal: F1 slows the program down, F2 stops it, etc. All this is dealt
with in the section on the interrupt and the Mini-toolkit in Appendix B.
For the moment we shall limit ourselves to the former option.

:LLO STA 820
STX 821
STY 822
JSR 58251 (return to BASIC)

Site this routine somewhere, say 49152, and alter the BRK vector to the
new address. On returning to BASIC you can discover register values by
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PEEKing 820-822. A BRK is really a JSR to a preset address that takes
only one byte of programming. For a more flexible system the best thing
is to build it yourself — see Appendix B — and hopefully you can
custom-design your own debugging aid. Good luck.

Figure 7.3: Testing and Debugging.
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CHAPTER 8
Connections: Stringing the Game
T'ogether

After you have completed a number of functional routines you will
notice that you are in a position to combine them. You can see this by
looking at the top-down chart you drew earlier on. Only the leaves (final
boxes) on the tree actually do something. All the other boxes simply
connect them together in the desired structure. Once you have
completed enough routines start connecting them, but only after they
have been thoroughly checked and tested. If this hasn’t been done,
when a bug arises you won’t know where to look. If you have checked
that the individual routines do work, however, then you know that a bug
is caused either by a parameter problem or by a faulty connection.

The first move is to look up the box on the tree and find out what
connections must be made. Check each of the routines and see what
information is passed to and from them. Check that the routines don’t
clash with each other. If problems do arise then you can either modify
(and retest) the functional routines or patch up the fault in the
connector. You should really have been aware of clashes when writing
the routines anyway — that was why I emphasised the research into the
exact function and nature of each routine.

Don’t forget that further up the tree an old result (a parameter or data
generated some time ago) may be called in for use. As long as you’re
aware of this then it’s OK. Talking about moving further on up the tree,
the connector box may not be a simple connection. It could require
iteration or conditional branching or even a DO-UNTIL loop. This
section will describe how to produce these constructs. Of course the first
part is the one-pass connection. This simply entails each routine being
called in turn: the connecting routine then returns to where it was called
from.

Each routine is called with a JSR. Any parameters should be set up
before this and afterwards a bit of tidying up may be necessary to
prepare for the next JSR. At the end of the routine you store away any
data needed in the future and then finish with an RTS. If some of the
routines are simply one-offs, then you may already have written
parameters into them. This is far preferable, as it improves the
readability of the program. For instance:
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JSR KEYCHECK
JSR MOVESHIP
JSR MISSILE
RTS

is infinitely more clear than:

LDA #145

STA 121

LDA #34

STA 2

LDX #35

JSR KEYCHECK
LDA 2

AND 121

STA 121

JSR MOVESHIP
LDA 145

EOR #255

STA 2

LDY #40

TYA

JSR MISSILE
STA 2

RTS

isn’t it? If you concentrate on austerity, your programs will almost write
themselves. Thus the one-off box connection is simply a chain of JSRs
with parameter activity in between and an RTS at the end.

Where iteration is required, things get a little more complicated. Ask
yourself the question, what is the control variable? Then find out if the
number of iterations stays constant or if this in turn is a parameter. Once
you know this, you simply start the connector by setting the control
value safely somewhere in memory. Then you proceed as normal for the
one-off routine — JSR calls and parameter shuffling. At the end of this,
decrement the control variable and use a BNE to loop back to the start
of the JSR-calling section. The chances are that you will need less than
256 iterations, so only one-byte precision is required. Thus the construct
is as follows:

SET UP CONTROL VARIABLES
:LOOP JSR CHAIN AND PARAMETER SHUFFLING
CDECREMENT CONTROL VARIABLE
BNE LOOP
RTS
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The connector requiring a DO-UNTIL construct is much the same as
the iterative one. The first stage is to find out what the operative
condition (or conditions) is. All you have to do is write a routine
(probably a compare) to test this condition and place this after the JSR
chain. This is followed by a branch instruction which loops the program
back if the condition hasn’t been satisfied. Thus it looks like this:

TEST CONDITION
BRANCH ON NOT TRUE TO LOOP
RTS

:LOOP CJSR CHAIN AND PARAMETER SHUFFLING

Testing for such conditions as ‘less than’ and ‘greater than’ comes under
conditional branching. The conditional branch connector is possibly the
most complex connector of the lot. Only the main branch conditions can
be covered here. The resulting connector can get messy as far as
branching is concerned, so be careful. There are two main types of
routine here: where more than one routine can be called due to two
conditions being satisfied, and where only one can be called. Each of
these can be further split up by a connector which uses the same
information on each condition and one which uses different informa-
tion. What I mean by this is that one may branch to several sections
depending on the player’s score, whereas another may look at score,
time left and other factors. Despite all this complication, any branching
routine can be written as follows:

TEST CONDITION #1
BNE
<JSR ROUTINE #1

TEST CONDITION #2
BNE

JSR ROUTINE #2

M

etc.

The BNE here is being used to signify ‘branch if condition not equal
(not true)’. Thus each condition is tested in turn and, if true, the
corresponding routine executed. The “*’ shows where to insert a JMP (a
forced branch is better) if you only want one routine run. This would
change control at the end of the connector. This may be desirable in the
following situation.

Suppose you have a ranking chart which comments on your score
from one of five phrases. If you leave out the ‘*’ part, then for each
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phrase you will have to test for being greater than and less than another
two numbers, to check if the score lies in a certain range. By simply
starting at the top and using a ‘greater than’ check with a **’ jump, you
only have to test for the ‘greater than’ condition.

Where routines are being run depending on a value in a limited range
(say X = 1, 2, 3, 4, 5) then, by modifying a branch vector, you can
eliminate the need to test for a condition. Take the situation when the
value in the accumulator can range from 0 to 5, which dictates which
routine to run. This can be achieved like this:

ASLA

ASLA

ASLA

STA (operand of BCC instruction)
CLC

BCC (operand set by STA)
JSR ROUTINE #0

JMP END

NOP

NOP

JSR ROUTINE #1

JMP END

NOP

NOP

JSR ROUTINE #2

JMP END

NOP

NOP

etc

The number in the accumulator is multiplied by eight and the result
stored in the operand byte of the BCC. This makes the program branch
to the start of the corresponding JSR instruction. The two NOPs simply
ensure that the JSRs are eight bytes apart.

Testing for conditions such as ‘greater than’ and ‘less than’ is easily
achieved by use of the SBC instruction. Simply subtract one from the
other and, by testing the carry flag or the negative flag, the relation can
be evaluated. Testing for equality is, of course, a straight compare
sequence.

If for some reason the connector doesn’t work, the error shouldn'’t lie
in the routines it calls — if you’ve tested them. Either the logic in the
connector is wrong or the parameters are clashing. There’s no excuse for
missing a bug in this sort of routine. The construction is so simple that a
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dry-run to keep track of parameter addresses should show the bug up

fairly quickly. Once it works, don’t forget to document the routine —
it’s going to be used later on when you've forgotten all about writing it.
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CHAPTER 9
Direct Routines

This chapter and the next one contain a large number of machine code
routines, the ‘common routines’. Each is accompanied by some text and
suggestions or possible variations. They are more than just one-offs,
they are methods. This means that a little thought on your part will
produce many more routines. Play around with them, mix them and
experiment. The Rectangle Fill (see Filling Memory) is a good example
of versatility in an apparently ‘normal’ routine.

These aren’t the only routines in the book, others crop up elsewhere
but they are all listed in the routine index. Look out for more routines
like these in magazines, among reader’s programs. You may not be
interested in the bulk of their programs, just in the odd one or two
routines within those programs.

TEXT AND SLOW PRINTING

Most games, at some time or other, require messages to be sent to the
player. These may be vital to the game or may simply add a degree of
realism. One simple way to get text on to the screen is to use the COPY
routine and simply copy out a chunk of memory with the relevant text
contained in it. However, this method is very clumsy and wasteful of
memory. Moreover, you may wish the text to appear gradually in a form
of ‘slowed-down’ writing like the ‘GAME OVER’ messages at the end
of many arcade games. And you may also want the message to be
centred on the screen, so that it’s pleasing to the eye. How are we going
to achieve this? Well first let’s review the problem in BASIC.

Figure 9.1: Text Centring.

SCREEN WIDTH: 40 CHARS

MESSAGE: Y CHARS
& N &

X spaces X spaces

» 40=x+y+x
S x=40-y
2
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Let’s say the message is contained in M$. Let’s also assume that the
cursor is already on the right line and all we have to do is slowly print
out M$ along the centre of this line. The screen is 40 characters wide
(Figure 9.1) and the length of M$ can be determined by LEN (M$). If
the message is to appear centrally, then there must be the same number
of spaces on the line before it, as after it. If we call this ‘x’ spaces, then
we will see from the diagram that

2x + LEN (M$) = 40
Solving for x gives us
X = (40—LEN(MS$) + 2)

Thus the statement ‘PRINT TAB (x);’ will put the cursor in the position
ready for printing, and the *;” will hold it there. Now all we have to do is
PRINT each character in turn, using the MID$ command, and
introduce a delay between each character. Try the following:

FOR C = 1 TO LEN (M$)
PRINT MID$(M$,C,1):

FOR DE=1 TO 100 : NEXT DE
NEXT C

PRINT

Don’t forget the final PRINT, as otherwise the cursor will be left
hanging after the last character of the message.

Slow printing

So that’s how we do it in BASIC. In machine code, the message is
simply a string of bytes terminated by a byte with a predetermined value
(such as 255), where each byte represents the ASCII code of that
character. Printing the characters is easy. All you do is set up a loop to
read the data in sequence (ie put the value into the accumulator) and
then call one of the ROM routines which prints a single character. To
align the cursor to the correct position beforehand, call this character
printing routine with some cursor controls (eg Home, cursor down X 5,
cursor across X15). Make sure that you are writing to the screen by
calling the routine to clear all I/O channels, as otherwise you may find
yourself dumping characters to the printer! A call to a delay routine
while in the main loop will slow the process down so that the human eye
can follow the process. Remember, messages of this sort are very good
for breaking up the player’s rhythm. Data input to this routine is: the
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address of the text file, the text file itself and the duration of the delay
(although this may already have been set). If you have a number of
different messages, then it might be easier to have the slow printing
routine called by, say, four or five subsidiary routines which set up the
particular parameters for one message (they should also position the
cursor). Then, when you want to print out a message, all you need do is
make a call to one of the subsidiary routines. The routine returns
nothing to the caller.
Here are the addresses of the ROM routines which I referred to:

CHROUT: This outputs to a device (in our case the screen) the
ASCII character represented by the value in the
accumulator. Its address is 65490 ($FFD2).

CLRCHIN: This restores all I/O channels to normal and means that,
when CHROUT is used, the characters will go to the
screen. Its address is 65484 ($FFCC).

Variations on this theme of printing characters might be to print a space
between each character, thus ‘expanding’ the text and making it appear
larger than it actually is. Compare the following:

GAME OVER GAME OVER

The second example is novel and therefore more pleasing, but don’t
overdo it. Other ideas might be to underline the message or, best of all,
print it from the middle out. This is known as ‘meta-printing’ and can be
very effective but it’s a special effect so keep it for special things.

Meta-prlntmg (BASIC listing)
L=LEN (M$) : IFL/2 = INT (L/2) THENM$ = M$ + * »:L =
L+1

20 X =INT ((40 — L)/2)

30 FORP=(INT (L/2) + 1) TO1STEP -1

40 PRINT “[CU]” TAB (X + P — 1) MID$ (M8, P, ((INT (L/2) + 1)
-P)*2+1

50 NEXTP

This takes M$ and prints it from the centre outwards in the middle of a
line.

The following routine prints out the message held in ASCII form
starting at START and finishing with an entry of 13. The maximum
length is 255 bytes:
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:LLO LDX #0

:LL1 LDA START,X Get it
JSR CHROUT Print it
INX Move on
*
CMP #13 Return
BNE LLI1
RTS

The “*’ indicates where a call to a delay routine should be made if you
want to include a slow printing effect. This is also the place to insert
spaces to expand the text a bit. If you do this, make sure that you
preserve the value in the accumulator.

If you want your messages to appear in a set position, then the best
way of doing this is to precede the text with some cursor control codes.
For example, you might have a message like this:

[HOM] [DOWN] [DOWN] [DOWN] GAME OVER

Using the following table to encode the control codes, the first four
entries in the message table we get are 19, 145, 145, 145.

Cursor Home :19 Clear Screen  :147
Cursor Left 1157 Cursor Right :29
Cursor Up 1145 Cursor Down  :17

FILLING MEMORY

Filling memory with a certain value is a common request for the
programmer as it shows up more than most the plodding speed of
BASIC. By clearing the screen you get a free ‘fill screen with 32’ but
BASIC goes no further than this. On the 64 a second screen-associated
problem arises: if you clear the screen then the color memory is reset to
the background colour. This means that, to put anything visible on the
screen, you need two POKEs (video & color RAM). This problem
does have another solution. Before clearing the screen you POKE 53281
with another value, thus changing the paper. Then you clear the screen
and POKE 53281 with its former value. Be on the lookout for simple
solutions like this to larger problems (see the previous section on Text
and Slow Printing for clearing the screen).

There are essentially two main types of FILL: Block Fill where you
simply give start and stop addresses, and Rectangle Fill where you
specify the positions and dimensions of a rectangle (see Figure 9.2(a)).
For filling small areas (<256 bytes) then a simple loop with the X or Y
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registers in absolute register mode will do the trick: LDX#0, LDA
#CHAR, :LOOP STA ADDR+X, DEX, BNE LOOP,RTS.

Block Fill

The following routine performs a straightforward Block Fill from the
address in 251-252 to 253-254 (the final address in 253-254 will not be
filled). A smarter routine using the zero-page plus Y mode is possible,
but this routine is designed to be simple.

:LLO LDY #0
:LL2 TXA
STA (251),Y Fill a byte
INC 251
BNE LL1 Move on
(INC 252
LDA 251
CMP 253
BNE LL2
LDA 252
CMP 254
BNE LL2
RTS

:LL1

In case you are wondering about the TXA, its purpose is to fill the X
register with the character code to be POKEd.

Rectangle Fill

The Rectangle Fill is more complex but more useful. It’s a fast way of
producing a border: fill an area normally, and then fill a rectangle within
this in a different code. The centre is overwritten producing a rectangle

Figure 9.2(a): Block Details. Figure 9.2(b): Obtaining a Border.

Advance start address.
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Figure 9.2(c): Complex Shapes with a Rectangle Fill.

1 2

1. Pretend screen is 41 chars wide
2. Decrement width each time
3. 41 char screen, decrement width by 2

with a border. As well as the code to plot, we need to know the address
of the top left corner, the width and the height. One other small thing is
also important; the width of the screen, so that each row of the rectangle
is directly below the one above (a staggered effect can be quite
eye-catching). With these in mind an algorithm might be to work out the
address of the start of each row and plot as many characters as the width
dictates. The following routine does just that:

:LL1 LDY #0

:LL2 STA (251),Y

INY

CPY WIDTH Fill a line
BNE LL2

DEC HEIGHT

BEQ LL3 Finished?
'LDA 251

CLC

ADC #SCREEN-WIDTH Next line
STA 251

LDA 252

ADC #0

STA 252

CLC

:LL3
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The address of the top left corner goes in 251-252. The HEIGHT,
however, does get reduced to 0 in the process so don’t expect it to
maintain its value on return. A triangle fill can be achieved by
decrementing (or incrementing) the width each time round, but make
sure that the WIDTH doesn’t make the transition from 0 to 255 or vice
versa! Figure 9.2 shows the flexibility of this routine for producing a
wide variety of shapes.

COPYING MEMORY

BASIC is notoriously slow for drawing pictures with: even the human
eye can follow it quite easily. For the most part this doesn’t really
matter, but when switching from one display to another, or merely
reprinting the background, it can turn a game very sour indeed. The
solution, of course, lies in the use of machine code. Then the copying
will take no more than a fraction of a second. The task is very simple —
all you need to know is where to start and stop copying and also where
to start putting the copied data. To explain this, suppose that from
locations 49152-50151 lie the details of the title page of a game. To
transfer this on to the screen all that we need to do is specify the start
and stop positions as 49152 and 50151 and tell the routine to start
copying the data found there at location 1024.

Most of the time you will be using the routine to copy screens or
sections of a screen, and so it’s likely that some or all of these
parameters are staying constant. If so don’t hesitate to write them into
the routine itself. The other thing to watch out for is that the two areas
must be totally different from each other. If any of the memory
locations occur in both the section to be copied and the area to be
copied to, then you may experience problems — this is the underlying
principle of the SCROLL and is discussed under Scrolling later in this
chapter. Taking stock of this routine then, we have the following
algorithm:

1) PEEK the address of C

2) POKEA,C

3) C=C+1

4) A=A+1

5) IF C < E THEN GOTO (1)
6) RETURN

In this description, the following letters represent these factors:

C: This is the first address to be copied from. After each iteration, it is
incremented so that next time round it’s the next character’s turn to
be copied.
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Figure 9.3: Copying Memory.
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A: This is the first address to be copied to and is incremented in the
same way as C.

E: This is simply the final address to be copied from.

Memory Copy

Copying screen layouts is not the only use for COPY routines. They
may be used to set up arrays of alien ships in tables in preset attack
waves, or perhaps re-locate a machine code program for you. The
routine given below is for memory-screen copying, but could of course

be easily altered. Nothing is returned by the routine in the way of
parameters.

:LLO LDY #0
:LL1 LDA (251),Y Pick up data
/STA (253),Y Copy it
SEC
+ LDA NOB
SBC #1 Decrement no. bytes to be copied
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STA NOB
LDA NOB+1
SBC #0
STA NOB+1
INC 251
BNE LL2
(INC 252
INC 253 Move on
BNE LL3
<INC 254
:LL3 LDA NOB
CMP #0
NE LL1
LDA NOB+1
CMP #0 Finished?
BNE LL1
RTS

:LL2

NOB is the address of the number of bytes to be copied. Thus NOB and
NOB+1 are the lo and hi bytes respectively. The actual copying proper
is performed by the second and third instructions while the rest of the
routine moves on to the next copying location. A variation on this might
be to copy a ‘window’ instead of just a straightforward chunk of
memory. This idea is used in the game ‘Laserbike’ (see Appendix D)
where a 10 X 10 zone on the screen is copied on to from the playing
zone.

Uses of the copy are manifold but, if the interrupt is used, then the
possibility of creating a permanent background effect becomes possible.
All that’s needed is a copy of the backdrop somewhere else in the
memory and the relevant hook-up routine.

DELAYS

Don’t look here if your program is in BASIC! BASIC, as I have often
said, is a very slow language — it puts delays in where you don’t even
want them by interpreting the language as opposed to compiling it. If
you do want a sizeable delay in BASIC, then try the following method:

FOR A =1 TO 1000 : NEXT
This will give a delay of just over one second. All it does is waste time by
counting up to 1000 (in one second).

Working in machine codé, you may find that your game really is too
fast to play with any skill. It’s in this situation that you need a delay. Just
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insert it somewhere into the main loop and, every time the loop is
executed, the delay will cause a pause. Of course we are talking here of
delays of fractions of a second and not seconds but the underlying
principle, of wasting time in a loop, applies. For some odd reason, the
6510 instruction set contains an instruction for doing nothing! It’s known
as ‘No operation’ and has the mnemonic NOP (implied). This
instruction can be introduced into a time-wasting loop to double and
triple the length of the delay, but first let’s think about just why we need
this delay.

The very idea of a delay is to slow the game down, but speeding up
the game (to a certain extent) as it progresses is one way of putting
pressure on the player and forcing him into errors. Thus it would be nice
to be able to vary the length of the delay. If the delay length is held in a
16-bit number somewhere, then the delay routine can PEEK the value
required and, when you want to accelerate the pace of the game, you
can easily reduce this value by subtracting some value from it. My
solution to the problem is given below:

1) Read the length of the delay.

2) Decrement this value.

3) Perform some NOPs.

4) If the delay count is still > 0 then go back to (2).
S) Return.

It is possible to predict accurately the length of the delay by adding up
execution times outside the loop, and adding this to the loop time
multiplied by the number of iterations, but I feel that the best method is
to play it by ear and experiment with various values until you find a
satisfactory solution.

The following program executes a delay of a length detailed by the
16-bit number in location 253-254. This value remains unaltered at the
end of the routine.

LLO LDA 253
STA 251
LDA 254 Set up
STA 252
LL1 LDA 251
SEC
SBC #1
STA 251
LDA 252
SBC #0
STA 252
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LDA 251
CMP #0

BNE LL1
LDA 252
CMP #0

BNE LL1
RTS

Far simpler but less flexible is the following delay which utilises the X
register:

:LLO LDX #0

:LL1 DEX
BNE LL1
RTS

Note that, although the register is loaded with a zero at the start, it is
decremented before it arrives at the BNE, turning it into a 255. This
could be extended a little by inserting a few NOPs in the main loop. By
embedding a similar routine, but with the Y register, into this routine
we can reach a compromise between the two routines:

:LLO LDX 254

:LL1 DEY
BNE LL1
DEX
BNE LL1
RTS

The length of the delay is stored in location 254.

By hooking a delay routine on to the interrupt, it is possible to
noticeably slow down your programs. But remember that this delay will
be executed every sixtieth of a second, so don’t make it too long. This is
used to great effect in debugging programs. A hefty delay will slow
down BASIC so much that clearing the screen can take seconds. (For
some odd reason, clearing the screen is done from the bottom up rather
than from the top down.) Anyway, use these three different delay
routines where you think they are needed, but remember that, in
general, it’s more convenient to have a delay that doesn’t destroy the
length of the delay (the parameter dictating the duration of the hold).
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UPDATING BOMBS

If you have ever written a version of Space Invaders or the like in
BASIC, the chances are that the program was reasonably fast until the
bombing routine was put in. The bombs always spoil the action in any
BASIC arcade game as they take so long to update and check. Due to
this, some people write games without bombs and instead limit the
player to the number of shots he may use. This is a very poor substitute
and leads to a boring game.

The obvious answer is to include a machine code routine to handle the
bombing. All this does is search the screen for bombs, find them and
move them on to the next position, first checking to see if they have
crashed into something. If they have then this is flagged to the BASIC
(or machine code) program. Once this is done, all that remains is to call
the routine from BASIC with a single SYS call and check the contents of
the flag to see if a bomb has struck. There are two ways in which the
bombs can be moved. They can be kept on the screen and updated from
there, or they can be kept in a display file and manoeuvred from there.
It’s up to you to decide which system to use. The simplest way is
definitely the on-screen approach but this has the disadvantage that, if
the bombs are accidentally overwritten, they are lost. In the on-screen
system, all the BASIC program has to do is to POKE a bomb character
on to the screen at the right position. The machine code will then pick it
up and move it on from there. However, if you are scrolling the screen,
the bombs will acquire a sliding effect as well (this is not necessarily a
bad thing). The problem with the display file system is that, to eliminate
a bomb, you must go through the hassle of subtracting one element from
an array — a messy task. For details of the display file system, see the
section on moving groups of objects (Fleet Movements, in Chapter 10).

We will assume (for simplicity) that your bombs are going to fall
vertically (ie from top to bottom). Thus all the program has to do is to
scan the screen for the relevant PEEK code, blank out the bomb at its
present position and add 40, and plot it on again at the new position,
first checking to see if it’s going to hit something. If we think about it,
there are several things it could hit. It could hit part of the enemy (ie its
own side): this obviously doesn’t matter and the bomb will just have to
disappear. Or it could strike a protective hedge (like the ones in
Invaders). If this is the case, then the normal practice is to erode the
hedge and eliminate the bomb. The bomb could strike the bottom of the
screen and, when this happens, the bomb has clearly finished its useful
life. Thus we might as well destroy it. Some programmers like to have
their bombs explode when this happens — this is just an extra
refinement. The most important case is, of course, when the bomb
strikes the player’s ship. Differentiating between players’ ships and
other paraphernalia on the screen is largely up to the programmer. In
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Space Invaders, one technique is to check only for a bomb-ship collision
when the bomb is near the bottom of the screen. The only thing the
bomb could hit on the line where the ship operates is the ship itself, and
so all the program has to do is check for a collision when the bomb
crosses this line. For more involved situations, the easiest method might
prove to be just looking at the PEEK codes and comparing them with
those of the ship and the other items.

This then gives the general idea of moving the bombs, but one or two
finer points arise out of it. Firstly you must scan the screen in the
opposite direction to that of bomb movement (this idea is met in
scrolling as well) as otherwise you will pick up a bomb and move it on,
only to pick it up again a fraction of an instant later (and move it on
again). Of course this results in the bombs moving straight to the base of
the screen in one scan. Secondly, don’t forget to reset the collision flag.
How this is done is important. You may want the bombs in the BASIC
program to move three times as fast as everything else. This can be
achieved by using:

SYS 826 : SYS 826 : SYS 826

(826 is the assumed address of the routine.) If this is the case, then it’s
no use the machine code routine resetting the flag: the flag might be lost
if a collision occurred in the first one or two passes. In this instance it’s
the caller that must maintain the status of the flag, but bear in mind this
is not always the case.

We are now in a position to set down the various stages involved in
the bomb-updating process:

1) Reset the collision flag (may be omitted).

2) Scan screen in opposite sense to bomb motion.

3) If bomb has hit something other than the player’s property, then
apply rules of the game to the situation.

4) If the bomb has hit the player’s ship, then set the collision flag.

5) Repeat (2) onwards until the screen has been scanned.

If the bomb does hit something then the programmer might want to
trigger an explosion by tripping a gate in the SID.

To alter the direction of the bombs all you have to do is to alter the
bomb vector, but bear in mind that if you make the bombs move into
progressively lower memory locations then you will have to reverse the
direction of the scan. To liven things up a bit you might like to try a
‘spiralling’ bomb routine where the bombs change shape as they fall.
The best way to do this is to alter the UDG definition from one shape to
another, every time the routine is called. Using this method I have
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Figure 9.4: Bomb Update.
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created bombs with teeth that gnash together as they fall. Ambitious
programmers might like to add suitable sounds every time the bombs
mutate. ‘Homing’ bombs can be produced for those games where the
going gets really tough by taking each bomb in question and comparing
chunks of its address with the ‘target’s’ address. The art of doing this is
discussed under Non-linear Motion, in Chapter 10. If you are operating
this sort of homing bomb, however, you are going to have to establish a
system for distinguishing between an updated bomb and one which
hasn’t been updated. One solution is to change the bombs from one
character into another and then change back again for the next scan. It
was in this way that I discovered the idea of spiralling bombs. The bomb
routine demands no parameters: all you have to do is to call it and check
the collision flag.

Fundamental Bomb Update routine
:LLO LDA #191
STA 251
LDA #8 Start at the base
STA 252
LDY #0
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:LL1 LDA (251),Y Get character
CMP #36 Is it a bomb?
BNE LL2
LDY #40 Move down one line (+40 vector)
STA (251),Y Put it back
LDY #0
LDA #32
STA (251),Y Destroy the image
:LL2 LDA 251
SEC
SBC #1
STA 251 Work backwards
LDA 252
SBC #0
STA 252
CMP #3
BNE LL1 Done?
RTS

This routine scans the entire screen and moves all bombs ($ signs) down
the screen. If you want to move them somewhere else, simply assign the
Y register a different value where shown. If you are interested in
collisions, then insert a few instructions to PEEK the new locations
before the bomb is moved in and set the collision flag accordingly.
Anything other than ‘$’ signs remain untouched.

The interrupt mixes well with this routine. Just plot the bomb on the
screen and the machine will do the rest for you. (It can also be quite
amusing to watch somebody trying to type a ‘$’ sign on the screen when
this is hooked on to the interrupt — every time they type it it falls to the
bottom of the screen!) The following program shows how potent this
routine can be even in BASIC. The POKE 53281,0 is merely there to
change the colour of the background (otherwise the bombs won’t show
up). Type the program in and type RUN: this will load in the machine
code. Then type RUN 1000 to see the routine in action.

Hail of Barbs

5 REM ** HAIL OF BARBS

10 DATA 169,191,133,251,169,7,133,252

20 DATA 160,0,177,251,201,36,208,10

30 DATA 160,40,145,251,160,0,169,32

40 DATA 145,251,165,251,56,233,1,133

50 DATA 251,165,252,233,0,133,252,201,3,208,221,96
60 P = 820

70 READ D : POKE P,D : P=P+1 : GOTO 70
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1000 PRINT “[CLS]” : POKE 53281,0
1010 POKE 1024+INT(40*RND(1)),36 : SYS 830 : GOTO 1010

SCROLLING

Many games now available give the player a sense of movement by
scrolling the screen in various directions. What this means is that the
player isn’t limited to playing in an area the size of the screen. The
games also look much more attractive as there is more going on and
therefore more variety. A SCROLL routine in BASIC is so slow that it
takes several seconds. Clearly, then, SCROLL routines must be written
in machine code, with the one exception of the automatic scroll
executed by the PRINT staement when the bottom of the screen has
been reached. The use of this facility is demonstrated in the program
‘Asteroyds’. This can easily be accessed in machine code, either by
calling the ROM routine directly or by sending a line-feed character to
the print-character routine.

Asteroyds

FEM ASTEROYVDS
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Despite what I said about BASIC’s appalling lack of speed, in this
instance it will serve us very well to show you the fundamental idea
behind scrolling. To scroll to the left all you have to do is to copy each
character into the character position to its left (see Figure 9.5). Type in
the following program, clear the screen and draw a picture using the
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graphics. Now RUN the program and watch. The picture is gradually
shifted to the left. Here’s the program:

10  FOR M=1024 TO 2022
20 POKE M,PEEK(M+1)
30 NEXTM

Figure 9.5: Scanning Directions
Take the following sequence of numbers:

[s o fefe]e e o] o

Suppose we want to scroll them left:
lS!S 811“214 9‘7‘
I
N2 WA A O A

Only we can't do this simultaneously.
If we do it from left to right it works:

el ladef e o] o]
If we do it from right to left it fails:

R R

The ‘7" is moved all the way along.
Thus: SCAN IN THE OPPOSITE SENSE OF THE SCROLL

2

Now this little program brings two other vital facts to light. First, if
something is on the extreme left of the screen (like your RUN
statement) then it suffers ‘wrap-around’ and moves on to the extreme
right of the screen. This will clearly be true for any scroll, it just depends
on the direction. The other important fact that we can glean from the
program is that you must ‘scan’ in the opposite direction to the scroll.
We were scrolling to the left and the FOR-NEXT loop was scanning to
the right. If you scan in the same direction as the scroll then the first
piece of data is repeated throughout the area — try it and see. This is
why a normal COPY routine won’t work for all SCROLL directions.

Summarising then, a scroll is simply a localised copy (ie the
destination is not far away), the copying must be done in the opposite
direction to the movement and screen extremities may have to be
cleared to prevent wrap-around.
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Figure 9.6: Scrolling.
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There are basically four scroll directions — up, down, left and right.
These combine to produce the standard eight directions (Figure 9.7).
For each of these directions, we can specify a number that represents in
relative terms the position to which data is copied. For instance, when
scrolling to the right this number is one — each memory location is
copied into its address plus one. Scrolling left has the value minus one.
So if this number is negative then the area must be scanned from left to
right, and if it’s positive it must be scanned from right to left (in
descending memory order). These numbers are all shown in the diagram
(although you should be totally familiar with them).

Putting together all these ideas, the algorithm becomes quite simply
the following method:

1) M=PEEK (L)
2) POKE L+V.M

3) L=L+D
4) If not finished then (1)
5) RETURN

Where the following letters mean:
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Figure 9.7: Scroll Vectors.
—40
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39 41
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For vector<( scan left to right
For vector>>() scan right to left

M: Temporary copying register.
L: Present position of scan.

D: Scan direction.

V:  Scroll value.

To cover every direction you must have two routines — one scanning
each way. Parameters to be passed to the routines are the start and stop
addresses and the scroll value. Resist the temptation to scroll the entire
screen as otherwise you won’t have anywhere stable to plot things such
as the score and number of lives left. One scroll technique which I am
particularly fond of is the ditty shown in the following routine. It scrolls
only 256 bytes (maximum), but is handy for scrolling messages across
the screen or just generally moving things about in restricted areas. The
VIC-II chip happens to support smooth scrolling. What this means is
that in hi-res mode it will scroll the screen bit by bit as opposed to
character by character. For details of how to achieve this see the
Programmer’s Reference Guide. You will still need a supporting
character-scroll routine as the bit-scrolling routine only works for eight
bits in any one direction. After that you must move all the memory on
via the scroll routine given here and then you may return to the
bit-scrolling routine. However, manipulating graphics in hi-res mode is
a complicated procedure and so should be left until you have gained
some experience.

256 Byte Continuous Scroll
:LLO LDX #0
:LL1 INX
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LDA ADDR,X
DEX

STA ADDR.X
INX

BNE LL1

RTS

This routine scrolls 256 bytes to the left, starting at ADDR. They are
scrolled in a continuous loop so that everything goes round and round.

:LLO LDX #0

:LL1 DEX
LDA ADDR,X
INX
STA ADDR,X
DEX
BNE LL1
RTS

This routine does the same, but to the right. Changing the LDX #0 to
any other value will reduce the number of bytes scrolled. This will,
however, remove the ‘endless belt’ effect. These scrolls are simple and
quick — it’s surprising what can be achieved with the X and Y registers.

Scroll into Lower Memory

The following routine performs a scroll into lower memory locations.
Thus each byte is moved to a lower address, and so the area is scanned
in the opposite direction — in increasing memory order. Each byte is
moved into the next-lower address, resulting in an apparent movement
to the left if watched on the screen. The symbols ‘LO-START’,
‘HI-START’, ‘LO-STOP’ and ‘HI-STOP’ refer to the lo and hi bytes of
the start and stop addresses.

:LLO LDA #LO-START
STA 251
LDA #HI-START Set up
STA 252
LDY #0
:LLI1 INY
LDA (251),Y
DEY Scroll
STA (251),Y
INC 251
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INC 252

LDA 251

CMP #LO-STOP

BNE LL1 o
LDA 252 Finished?
CMP #HI-STOP

BNE LL1

RTS

The drawback with this routine is that characters on the lefthand edge of
the screen suffer wrap-around. The solution is to clear this line before
the scroll can take place. If this is done, then there is nothing to
wrap-around. This routine should be called before the scroll or the
lefthand column will appear ugly. The routine could be improved by
using the X register to count the number of lines blanked, thus
eliminating the need for the compare instructions. START and STOP
are the addresses of the top and bottom lefthand corners of the screen
respectively.

QBNE LL2

:LL2

Line Blank routine
:LLO LDA #LO-START
STA 251
LDA #HI-START Set up
STA 252
LDY #0
:LL1 LDA #32
STA (251),Y Blank out
CLC
LDA 251
ADC #40 Move 1 line down (+40)
STA 251
LDA 252
ADC #0
STA 252
LDA 251
CMP #LO-STOP
BNE LL1
LDA 252
CMP #HI-STOP
BNE LL1
RTS

To use these routines to scroll the entire screen left, use the following
values for the symbols. If they are called one after the other, then the
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total duration is still less than a twentieth of a second.

LINE BLANK : START = 1024, STOP = 1984
SCROLL : START = 1024, STOP = 2023

The interrupt can be used to great effect with the scroll. However, if the
synchronisation is not correct, then the result will be a mess. I tend to
hook-up only smaller scrolls on to the interrupt as they are often easier
to handle. This sort of thing might be used to create an endless belt of
fruit (or meteor debris) that is constantly in motion around a certain
part of the screen. Scrolling is fun!

INTERACTION

Keyboard entry
In BASIC, the standard way of entering data is via the INPUT or GET

Table 9.1: Location 197 Keyboard Code Table.

No key depressed 64
Shift/Commodore key have NO EFFECT
SPACE 60
RETURN 1
F1 4
F3 5
F5 6
F7 3
. (Move left) 47
. (Move right) 44 Keys I use
‘Q (Move up) 62 for movement
‘A’ (Move down) 10
‘7 56
2’ 59
3 8
4 11
‘5’ 16
‘6’ 19
‘7 24
‘8 27
‘9’ 32
‘0 0

There is a relation between the ASCII code and the value but it’s
complicated, and far easier to know what’s what.
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statement. In machine code, these facilities are not easily available.

The easiest way to create machine-player interaction is to utilise the
keyboard scanner that runs automatically on the interrupt (make sure
that you have not disabled this). Every sixtieth of a second (during each
interrupt) the keyboard is polled to check for any key depressions since
the last check. If a key is being held down during this poiling, then a
value is stored in location 197 according to Table 9.1. If a new key has
been pressed since the previous scan, then it’s recorded in the buffer,
which records the last ten keys pressed.

This buffer starts at location 631 and continues to 640: the present size
of the buffer (ie how many characters it is holding) can be found at
location 198 — if the buffer is empty, then this will contain a zero.
However, as this book is describing the design of games, the
programmer is far better off PEEKing location 197 as this tells him if a
key is being held down. PEEKing the buffer will only tell you what keys
have been pressed — whether this was a moment ago or last year. Don’t
forget that this buffer will soon fill up in the course of a game (as it only
takes ten characters) and so, if you return to BASIC, be sure to empty
it, either by this method:

FOR A=1TO 10 : GET A$ : NEXT A
or perhaps the more elegant way:
POKE 198,0

This resets the buffer pointer.

Joysticks

Joysticks certainly allow games to become more exciting but don’t just
write games for joysticks or the keyboard alone — you don’t know
who’s going to end up playing the game. (Paddles are so rare it’s not
worth writing them in, and as for light-pens, forget it.)

The two joystick ports reside at 56320 and 56321. Only the lower five
bits are of any interest to us. Bit 4 is connected to the fire button so, to
test for this state, simply use AND #16 followed by a BEQ or BNE.
Bits 0-3 are concerned with the stick position. Read the port, AND #15
and look up the value obtained in Table 9.2. If the direction is stored as
a vector, then it’s a simple matter to add it into the address of your ship
or whatever.

The value 255 subtracts one if there is no carry. The following routine
moves sprite 0 around the screen via joystick signals and looks up the
vector in this table:
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[0,0,0,0,0,0,0,0,0,0,1,1,1,255,1,0,0,0,255,1,255,255,255,0,0,
0,0,1,0,255,0.,0]

Table 9.2: Vector Table.

VALUE
OBTAINED
0-4

o0 1 O\ W

9
10

11
12
13
14
15

DIRECTION X VECTOR Y VECTOR
NIL

Left+Down 1 1
Right+Up 1 255
Right 1 0
NIL . .
Left+Down 255 1
Left+Up 255 255
Left 255 0
NIL .

Down 0 1
Up 0 255
NIL

This routine, plus the sprite homing routine (see Non-linear Motion,
Chapter 10) and a few rules, makes a simple but satisfying game. Try it
and see; you’ll be surprised how easily they work together. Anyway the
following routine has no branches and runs straight through.

:LLO

LDA 56321
AND #15
ASLA

TAX

LDA TABLE,X
CLC

ADC 53248
STA 53248
LDA TABLE+1,X
CLC

ADC 53249
STA 53249

RTS

Get joystick position
Mask out rubbish
Multiply by 2

Look-up table

Update X

Update Y

You could modify this routine to run on the interrupt and move the
cursor around the screen, to simplify the task of editing your programs.
If you find that a one-pixel movement is too slow for what you had in
mind, change ones to twos and 255s to 254s in the table, or just call the

routine twice.
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INVERTING AND EXPLOSIONS

Sooner or later in your game, you will want to be able to pretend (it’s all
make-believe) that the player’s ship is exploding or that the doomsday
bomb has just exploded. It’s on this sort of occasion that you really want
the whole screen to go up in a big firework display: for a few seconds the
screen must totally freak out.

One way of achieving this is to ‘invert’ the screen. What is meant by
this is that every pixel is examined, and if it’s on, it’s turned off, and vice
versa. If this is done rapidly, the effect can be quite mesmerising (so
don’t overdo it) and is ideal for limiting the player’s view of things when,
for instance, he is flying through some asteroid debris. On top of this, if
the border and background colours are switched fairly quickly, then this
all adds to the merriment. The colour locations are 53280 and 53281
(screen and border): choose a colour number from 0 to 15.

The process of inverting the screen is a simple one (assuming you are
in character mode) as any character in reverse field is simply that
character inverted — look and see. Another added bonus from
Commodore is that, to convert a number from normal to reverse field,
all you have to do is add 128. Thus you can toggle to and fro by
Exclusive ORing with 128. To bring the screen back to normal, just
ensure that an even number of inversions has been performed.
Problems will obviously arise if you are using UDGs or hi-res graphics,
but these problems can be overcome. An inversion in hi-res, even in
machine code, may appear sluggish, so the best bet here is to use the
screen and border colour. Don’t forget that the screen is only updated
60 times a second, so don’t try anything too fast and, if you want to
minimise ‘snow’, wait until a refresh signal arrives before inverting. The
process of performing an inversion is thus surprisingly simple — just
scan the screen and EOR every location with 128.

Other possibilities lie in flashing a line or a zone on the screen to
attract the player’s attention. To convert the supplied routine to do this,
all you have to do is alter the start and stop addresses. An algorithm for
this problem might look like:

1) I=PEEK (C)
2) I=IEOR 128

3) POKEC, I

4) C=C+l1

5) IF C<=S THEN GO TO (1)
6) RETURN

Where C is the start address and S is the stop address. Nothing is
returned in the way of parameters.
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Inverting

The following routine inverts the entire screen once. If you only want
one section inverted, then the answer is to change the start and stop
addresses. If you EOR with a number other than 128, all sorts of things
happen. The screen sudenly turns into a meaningless mess: as soon as
the routine is called again, sanity is restored.

:LLO LDA #0 Lo-start address
TAX ie LDX #0
STA 251
LDA #4 Hi-start
STA 252

:LL1 LDA (251,X) Get character
EOR #128 Invert it
STA (251,X) Put it back
INC 251 Move on
BNE LL2

CINC 252

:LL2 LDA #7
CMP #252 Hi-stop address
BNE LL1 Finished?
LDA #232
CMP 251 Lo-stop address
BNE LL1 Finished?
RTS

Hooking this up to the interrupt is amusing, to say the least, but if you
want to invert something regularly, you really only want to have to write
a line or two. The following routine does just that — it inverts 40
consecutive characters starting at START.

:LLO LDX #0

:LL1 LDA START,X Get it
EOR #128 Invert it
STA START,X Put it back
INX Move on
CPX #40 Finished?
BNE LL1
RTS

In fact it would be easier to start with x = 40 and then count down to

92



Chapter 9 Direct Routines

zero, eliminating the need for the compare. Now, if we had a routine
like this for every line on the screen, with an option as to whether it
flashed or not, and the whole thing hooked on to the interrupt, then we
could have a flashing attribute system similar to the Spectrum and BBC
machines (Figure 9.8)! The following routine does just that.

Figure 9.8: Attribute System.
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Attribute Flasher

:LLO DEC 254
BNE LL1
LDA #60
STA 254
LDA #255
STA 251
LDA #3
STA 252
LDX #25

:LL3 LDY #40
LDA TABLE,X
CMP #255
BNE LL4

LL2 LDA (251),Y
EOR #128
STA (251),Y
DEY
BNE LL2

:LL4 CLC
LDA 251
ADC #40
STA 251
LDA 252
ADC #0
STA 252
DEX
BNE LL3

:LL1 RTS

Location 254 counts down from 60 to 0, decrementing each interrupt:
thus there is one flash a second (in fact counting from 59 downwards
produces a second’s delay). When location 254 reaches 0, it scans the
attribute table and, where it finds a 255 entry, inverts that line. The
table is in reverse order. That is, the first entry corresponds to the 25th
line and TABLE+1 corresponds to the 24th line and so on. The
interrupt connection has not been included — it is simply a JMP to the
start of the IRQ service routine.

Decrement interrupt counter
Have we counted 60?
Yes, so flash & reset counter

Start at top of screen

Do all 25 lines
Each line is 40 characters

Flash this line?

Yes, so do so

Move on

All done?
Yes

AN ALTERNATIVE SPRITE SYSTEM

The resident sprite system moves objects around quite independently of
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the screen content. A routine is presented here which manipulates
character blocks around the screen, and which may be useful for moving
large objects around. There is no limit to the size of the object or to the
number of objects: The only restraint is that there is only one type of
object (ie description).

The objects are described by a two-dimensional table. The first entry
contains the POKE code of that element and the second contains the
connection vector between that character and the next. Figure 9.9 shows
a typical symbol and the corresponding entries. This table is stored at
addresses shown in the routine and, to use it, you POKE the address
into the page-zero locations and call the routine. To delete the symbol
you must set the delete flag as well, before calling. This flag is cleared on
use. To move an object, then, the stages are as follows:

1) Delete the present location.
2) Add the vector to the address, thus moving the object.
3) Recall the routine.

Figure 9.9: Encoding a Sprite.

1. Draw symbol
2. Lay grid over
3. Draw up table
of codes & vectors
4. Poke tables into memory in the

form: code, vector, code, vector . . . nuil
eg [86,39,78,1,37.1,77,38,34,1,34,1,0]

entry’

Using this to move a fleet of objects means using a routine that performs
the above steps in turn for each individual ship in the fleet. See the
section on Fleet Movements (Chapter 10) for details of this process.
More than one type of sprite can be used by this routine if you change
the table addresses in between calls, but the chances are that this won’t
be necessary (Figure 9.10).

The following routine allows the manipulation of sprite-like objects as
outlined. TABLE is the start address of the table and the end of the
definition is marked by a character value of 0. The definition is limited
to a maximum of 127 entries (this should be plenty).

Ne}
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Figure 9.10: Alternative Sprite System.
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:LLO LDA 253
STA 251
LDA 254 Copy address in
STA 252
LDX #0 Symbol table index
LDY #0
LDA TABLE,X
:LL2 CPY 2
BEQLL3 Delete symbol?
LDA #32 Yes
:LL3 STA (251),Y Plot/erase
INX
CLC
LDA 251
ADC TABLE.X Move on to next character
STA 251
LDA 252
ADC #0
STA 252
INX
LDA TABLE X
BNE LL2 Finished?
RTS

The address of the first character of the sprite is sent in locations 253 and
254. This is not altered on return, and so the routine can be repeatedly
cailed without updating this. The PLOT/ERASE option is made by
location 2. If this is anything other than a 0, the character is erased.
However, on returning, location 2 is always reset to 0. Don’t forget that
this could be hooked on to the interrupt to maintain a certain picture on
the screen or better still a vector system (see Sprites, Chapter 10). This
routine is handy for plotting awkwardly-shaped objects when a lot have
to be plotted (see Fleet Movements, Chapter 10).
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CHAPTER 10
Indirect Routines

THE INTERRUPT

What happens when the telephone rings? You stop what you are doing,
pick it up, answer it and then resume what you were doing before. You
have been ‘interrupted’.

The same sort of thing is true with computers. They have control lines
leading to the CPU which can generate an interrupt (Figure 10.1).
When an interrupt is called, the computer stores the exact details of
where it was and what it was doing on the stack. The interrupt vector
contains the address of a routine and the machine jumps to this routine.
The end of the routine contains an RTI — similar to RTS but meaning
ReTurn from Interrupt. The activity of an interrupt routine is totally
transparent to a normal program. In fact it hapens 60 times a second in
BASIC alone!

Figure 10.1: CIA#1 Sends IRQ Signals to Check the Keys.

1 N
6526 e second 6510
CIA > CPU

Every sixtieth of a second, the IRQ (Interrupt ReQuest) line
generates an interrupt. The routine which services it makes the cursor
flash and reads the keyboard to see what keys you are pressing (as well
as performing other tasks). The address of this routine is held in 788 and
789 so0, if you want to point it to your own routine, you can. One
problem: if you do this the keyboard will become inactive, you will lose
the cursor, and the clock will stop — your housekeeping routines have
been swapped for your routine. Counter this by placing at the end of
your routine not an RTI but a JMP 59953. This is the address of the start
of the interrupt service routine and, of course, there’s an RTI at the end
of this.
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In fact there are three different interrupts available. First, there’s the
IRQ which we have already discussed. Second, the NMI, and third the
BRK. The NMl is very similar to the IRQ but will be ignored here. The
BRK is an instruction itself and is very useful for debugging purposes
(see Chapter 7 on testing and debugging). The rest of this section will be
devoted to the IRQ.

This may seem all very well but you may be asking what advantage an
interrupt system has over normal programming style. The answer is that
it allows perfection of timing and synchronisation, allied with the beauty
of being able to hook something on to the interrupt and then forget all
about it. I talk of ‘hooking’ things on, as often the interrupt performs
several tasks all ‘chained’ together (see Figure 10.2). It’s easy to ‘hook
on’ another task to the chain. So what sort of things can we do with the
interrupt? The answer is that almost anything can be done with it.

Figure 10.2: Multiple Routines on the Interrupt.
IRQ VECTOR: 788 & 789

IMP IMP IMP
PN TN PN e

TASK #1 TASK #2 TASK #3 TASK # | JMP 59953

For instance, you may want a particular event to occur every now and
again: this might be playing successive notes in a tune or updating
enemy ships on the screen. If this is the case, then a simple counting
routine will initiate whatever you want after a certain time. Suppose for
instance that to add atmosphere to your submarine game you want the
sonar to make a ‘blip’ every four seconds. As the interrupt occurs 60
times a second, it must count 4 X 60 = 240. If we keep the count in
location 254, then the program might look like this:

DEC 254
BNE LL1
[Trip gate on sonar sound]
LDA #240
STA 254
:LL1 RTS

The interrupt can be used to do anything. The number of interrupts
generated per second is also under user control. See the CIA section in
Appendix C for details of this. Many of the routines in this book are
designed to be interrupt-driven. These include sprite vectoring and
programming the function keys.
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Used properly, the interrupt is the key to the 64. The VIC-II chip has
the capability to generate IRQs: sprite collisions are just one of several
possible sources. Once interrupt routines are hooked on they can be
forgotten about, making programming very simple. It’s a bit strange at
first, but you’ll get used to it and be glad to have made the effort.

Hooking on

This describes briefly the process of hooking a program or routine on to
the interrupt. It assumes that only one routine is to be added. If this is
not the case, then change the JMP 59953 for the address of another
routine to be hooked on.

1) Write the routine and place an RTS at the end.

2) Test it by using a BASIC loop to call it continually. This way the
RUN/STOP RESTORE trick still works.

3) Replace the RTS with a JMP 59953,

4) Re-point the IRQ vector with one line of BASIC like this: POKE
788,LO : POKE 789,HI

If all is well, your routine is now smoothly operating 60 times a second.

SPRITES

Before the era of sprites, moving objects smoothly around the screen
was a daunting task. The 64 is lucky enough to own a little family of
eight sprites. With very little effort, they will perform for us, making the
entire task of game writing much simpler. They exist on a plane either
above or below the screen so that they don’t actually move on the screen
itself — they appear to glide over and under it. When they do cross each
other, or something on the screen, we are informed by an entry in the
sprite collision logs. Using sprites means that you can draw a detailed
background and not worry about it becoming corrupted.

Initial defining can be speeded up through the use of a COPY or FILL
routine. Full sprite manipulation details are available in the manual, and
a handy chart is included in the Appendix to this book. Of special
interest are the ‘control’ registers. These are one-byte registers with one
bit allotted to each sprite (bit 3=sprite 3). These registers control which
sprites actually appear and which sprites are expanded, and also record
collisions amongst other things. See the SID and VIC memory maps in
Appendix C for details. As the location of a sprite is recorded via a
cartesian (X,Y) coordinate pair, homing becomes a very simple matter
(see Non-linear Motion later in this chapter). To allow full span screen
coverage, the X coordinate has its MSB in a separate control register. I
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don’t like using this as it complicates the programs, and also if it’s not
used there is a safe area on the screen for the score, etc.

Every now and again a sprite collides with something else. When this
happens it’s recorded in the collision logs by setting the appropriate bits.
These are automatically reset when read, so you may have to copy this
data when you read it. The sprite-hits-sprite log is 53278 and the
sprite-hits-background is 53279. Using these registers and the enable
register, it’s easy to disable sprites that have collided. Suppose we want
to remove all sprite-hits-sprite collisions. We do this by PEEKing the
collision register. Changing all the ones to zeros and vice versa, and then
ANDing the result into the enable register:

LDA 53278
EOR #255
AND 53269
STA 53269

The removal of both types of collision is achieved by first ORing the
collision registers together before the EOR instruction. Thus the
maintenance of sprites is simple.

Only one thing really remains, the ability to set a sprite in motion and
then make it keep on going of its own accord. This facility would be of
enormous help in BASIC — a fast arcade ‘blast everything that moves’
program becomes possible. The routine that performs this feat is one of
my favourite ones — it wasted an entire afternoon, playing around with
different speeds and shapes of sprites (Figure 10.3). In 18 bytes, it is one
of the shortest routines in the book:

:LLO LDX #0

:LL1 LDA TABLE,X
CLC
ADC 53248,X
STA 53248, X
INX
CPX #16
BNE LL1
RTS

A table of vectors is stored at TABLE to TABLE+15. For each sprite
there is an X and Y vector. To effect backward movement, simply add
the vector to 256 — eg —1 (go left) becomes 256+(—1) = 255. For really
smooth motion, this should be hooked on to the interrupt, providing 60
updates a second. Try the following program on a friend. RUN it and,
when the cursor returns, LIST the program — the sprites have been
brought to life!
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Figure 10.3: Perform Sprite Vectoring.
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DATA 162,0,189,52,3,125,0,208,157,0,208,232,224,16,208,242
DATA 76,49,234

FOR P=49152 TO 49170 : READ D : POKE P.D : NEXT
FOR A=2040 TO 2047 : POKE A,15 : NEXT

FOR A=960 TO 1022 : POKE A 255 : NEXT

FOR A=820 TO 835 : POKE A,INT(4*RND(1)+1) : NEXT
POKE 788,0 : POKE 789,192 : POKE 53269,255

If you want to remove all collided sprites, then insert the removal
routine between the BNE and after the RTS.
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FURTHER USES OF UDGS

While UDGs are great for fine graphics, their application goes far
deeper than just producing convincing aliens. Consider for a moment
the function of a UDG: it allows you to create new characters in place of
the old ones. Two things arise out of this: there is nothing to stop you
from defining a pair of characters with the same definition, and there is
nothing to prevent you altering the definition once it has been entered.
Using these two ideas either together or singly, you can achieve very
easily what previously verged on the impossible. If you don’t fully
understand UDGs, then read the section in Appendix A. Failing that,
read the section in the Programmer’s Reference Guide — it’s vital that
you understand fully the principles upon which the current section is
based.

The idea of two identical graphics characters is not that new. Even
before the advent of UDGs as a popular feature, the PETs possessed
two identical characters. These were the space and the shifted space.
Both appeared as a normal space but, in fact, reported PEEK codes of
32 and 96. This similarity presents no problem for the machine. Each
PEEK code has one and only one corresponding bit matrix: the
converse doesn’t have to hold true.

This is all very well, but what is the use of it? A quick answer would
be to say that it allows differentiation, which the player isn’t able to
make, between items. What this means is that you may want some aliens
to be ‘super-aliens’. Perhaps these are the only aliens that drop bombs.
By creating look-alikes, they can be allowed to mix in with the rest of
the gang. Using the shifted-space idea, it’s possible to create invisible
barriers. Checking for a crossing by address means alone is tedious —
especially if there are several barriers. By employing invisible barriers
the problem is eliminated. This idea can be extended even further: by
surrounding an entity with an invisible boundary, you restrict movement
within that area. So the look-alike UDG technique allows you to set up
complex movement rules and character classes without giving too much
away to the player. Despite all this, don’t go to the extreme of creating
invisible mines and other silly things — the player should have to survive
by skill and not luck.

The principle of changing UDGs is yet more powerful, although a
little harder to apply. The first use has its roots in the previous
paragraph. By changing the definition of something that previously was
a look-alike, you suddenly make it stand out. This idea could be used to
give the player a quick glimpse of the opposition or even mark a
development in the player’s progression in a certain task. By performing
an act, he is able to distinguish between one thing and another. This,
however, shouldn’t be attempted in BASIC, it really is far too slow: the
transition from one form to another appears not instantaneously, but
with a ‘ripple’ effect that cheapens the game.
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Figure 10.4: UDG Switching and Matrix Transitions
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The more advanced use of UDG-switching is that of changing the
matrices so that an impression of motion appears. Suppose that
character X has the pattern shown in Figure 10.4 and is then
transformed into character Y. Things have clearly moved to the left. Now
suppose that there had been an entire line or even a whole screenful of
character Xs. By altering the single matrix, you would have altered a
multitude of parts on the screen simultaneously. The result? An impression
of apparent motion. This removes the need for a scrolling routine at all
(and looks smooth) if all you are after is an effect for a backdrop. Of
course, this is simply the first and simplest application.

Consider the task of creating a screen display, simulating rushing
through space in 3D. No simple scroll routine is going to help you here.
Star debris must move slowly at the centre of the screen, accelerate, and
be moving at a considerable rate when it gets to the edge. This task is
not easy by normal methods. By applying UDG-switching techniques
and employing a whole series of matrix transitions, the task becomes
child’s play — there is no messing about with differential screen
movements.

What I have given here is a brief introduction to the world of UDG
methods. The moral is to keep an eye open for the simple solution. The
possibilities are endless and no doubt many of you will devise many
more uses and tricks for the UDG: they are wonderful little things and
shouldn’t be kept out of the action when the going gets tough. It’s
wonderful to watch a player’s face as the aliens mutate bit by bit into
a deadlier foe (this could be achieved by BASIC). Furthermore, it won’t
affect your programs in the least so you might want to spice them up a bit.
The same idea can also be used with sprites, except that one POKE is all
that’s necessary to change to an entirely new definition. Don’t just use the
UDGs and then forget about them for the rest of the game.
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SOUND

Sound is a major element in virtually every available arcade-type game,
as it gives the player a very satisfying feedback from what he is doing —
it heightens the experience of the game. The traditional Space Invaders
‘thump-thump’ rhythm has been described as the heart-beat of the
invaders. In fact, this noise works against the player as it is out of phase
with the movement. As it does this, it upsets the player’s rhythm and
stops him from becoming totally synchronised with the game.

The 64 is particularly gifted in its sound, and possesses what is claimed
to be the most flexible synthesiser available. Indeed it is a remarkable
box but don’t go all out to show off every little trick it can perform. The
filters, for instance, have no real in-game value (or none that has been
exploited). One of the nicest things is that you can set up a sound ADSR
sequence so that, once you want to restart the sequence, all you have to
do is trip the gate and forget about it.

There are essentially two ways of using sound in games: the real-time
sound that occurs in a game to denote a gun-shot or explosion, and the
annoying little ditty that the title page plays over and over again to
attract attention. The subject of playing tunes will be discussed later,
but for the time being the in-game sounds will be considered.

The device creating the sound on the 64 is known as the SID, for
Sound Interface Device. This little chip is a computer in its own right. It
will control up to three different noises simultaneously and allows very
fine control of pitch, volume and colour. To use the SID effectively, you
must know it well as at times it can be very uncooperative. The sound
produced comes out of the television, or may be channelled into a hi-fi
system through the monitor lead. Thus to eliminate the noise in a game,
all the player has to do is to turn the TV or hi-fi sound down. This is very
helpful for nocturnal users.

To use the SID, you need to set up a ‘voice’ with the appropriate
values and then trip the gate whenever you want to hear it. Don’t forget
to POKE the volume control (54296) with 15 for maximum volume.
There are three voices so this should allow three different sounds. If you
want more, then you’ll have to write a routine that enters the necessary
values and then trips the gate. When I speak of ‘tripping’ the gate on a
voice, what I mean is first of all to POKE the control register with a 0
and then re-POKE it with the waveform value. Merely POKEing with
the waveform value is not enough. Thus use of the SID in a game is as
follows:

1) Initialise the SID at the beginning of the game.
2) Simply trip the gate on the required voice when necessary.

It might be an idea to write the routine that trips each voice as a

106



Chapter 10 Indirect Routines

subroutine (even though it’s only a couple of bytes long) as this will save
time. Table 10.1 lists some possible values for various devices, but, for a
full appreciation of the SID, refer to the Programmer’s Reference Guide
(especially to the section on the bell imitation).

Table 10.1: Some Sample Envelopes.

ADSR WAVEFORM  SOUND

0/0/240/0 17 ORGAN

5/3/10/0 33 VIOLIN

2/10/0/0 17 CHIME BAR

5/5/0/0 129 STEAM ENGINE STROKE Use hi

1/10/0/0 129 HEAVY GUN frequency

5/12/0/0 129 Explosion — Hi=10 of 30 for
these.

Produce phaser-like sound by making two sounds at very nearly the same
frequency, thus obtaining ‘beats’.

The following are obtained by using a lo-pass filter at resonance 15 and a voice
hi-frequency of 30.

FILTER HI-FREQUENCY SOUND

200 TORRENTIAL RAIN
140 LARGE FOREST FIRE
110 JET PLANE OVERHEAD

Playing a tune is fairly simple as long as only one voice is playing. As
soon as you want chords and the like, the programming becomes
complex. The best thing to do is to use one voice and, if you want the
others to play as well, try making them mimic the first voice in a
different waveform or several octaves higher: as I have suggested, the
topic of using more than one voice with each playing a different part is
beyond the scope of this section. It should prove a satisfying exercise for
the reader.

To play a tune then, all that is required is a table of frequencies and
durations (and a null entry for the last note). The procedure is simple —
read a note and duration, set the frequency and trip the gate, wait for
the prescribed duration and then move on to the next note. If you want
to play an octave higher, then just double the frequency. In fact, you
can multiply frequencies by any constant and the tune will still sound
OK, but never try adding a constant as this will cause the tune to go
sharp and flat in places. A program which plays a tune is listed and there
is also some sample tune data. To play the tune all you need do is call
the routine.

To sum up this section, sound in games is very easy. However
working out the ‘right’ sounds for a game can be subjective. The best bet
is to use a SID evaluation program (BASIC) and just toy around with
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ideas until sounds begin to emerge. An evaluation program simply
displays the voice characteristics, allows you to modify them and lets
you hear what the sound is like. It can be short and simple, but very
useful.

SID Evaluation

10 REM SID EVALUATION PROGRAM
20 POKE 54296,15 : POKE 54273,30

30 VC = [17,33,65,129]

40 INPUT “ADSR” ; A,D,S,R

50 POKE 54277,D+A*16

60 POKE 54278, R+S*16

70 POKE 54276,0 : POKE 54276,VC

80 GOTO 40

This program requests values for A, D, S and R, and then plays the

sound generated by the envelope. Simply pressing RETURN (with no
entry) leaves the envelope unchanged and plays the sound again.

Key SID registers

Start of Voice 1 54272
Voice 2 54279
Voice 3 54286

For each Voice: (V=Start of that Voice)
V,V+1 Frequency
V+2.V+3 Pulse waveform width
V+4 Main control register
V+5 Attack/decay
V+6 Sustain/release

Volume (0-15) 54296
Random Nos. 54299

See Appendix C for a detailed chart.

The following routine plays a tune stored in a table. Each note is
made up of three bytes — the lo and hi frequencies and the duration. If
this is hooked-up to the interrupt (as it should be) then a duration of 60
means a note of length one second (Figure 10.5). The end of the tune is
denoted by a duration of zero. When this is reached, the tune starts
again: to avoid the end running into the beginning, place a delay at one
end (sizeable duration, frequency 0). With this on the interrupt you can
drive anyone crazy (so do s0).
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Figure 10.5: Interrupt-driven Tune Player.
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:LLO DEC 254 Decrement counter
BNE LL1 Time for a new note?
CLC Yes!

LDA 251

ADC #3 Move on in table
STA 251

LDA 252

ADC #0

STA 252

:LL2 LDY #0

STY 54276 Cut sound

LDA #[Waveform: 17,33,65,129]

STA 54276 Trip gate

LDA (251),Y

STA 54272 Set lo-frequency
INY

LDA (251),Y

STA 54273 Set hi-frequency
INY

LDA (251),Y

STA 254 Set duration
BNE LL1 Last note?

LDA #LO-START  Yes, so repeat
STA 251

LDA #HI-START

STA 252

CLC

BCC LL2

:LL1 RTS

HI and LO-START is simply the address of the start of the tune. For
some ‘state of the art’ music, try running this program on totally random
data — just like the real thing! For something a little more inspiring,
sample the tune shown in Table 10.2.

LARGE-SCALE GAMES
Many games are fun on a normal-size screen, but by and by they tend to
become somewhat limited by their physical size. If this is the largest
playing area available, then it’s difficult to hold the player’s interest over
a long period of time. There are, however, various ways round this
probiem.

A very common method is to split the game up into several (or many)
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Table 10.2: Sample Tune Data.

This data tries to resemble a tune. It is stored in the following order for the
player program: lo frequency, hi frequency, duration. Duration is in seconds, so
multiply by 60.

LO HI DURATION

(multiply by 60)

1

96 22

49 28 1.5
19 28 0.5
156 26 1
96 22 1
223 29 1
223 29 1
49 28 1
156 26 1
49 28 1
135 33 1
135 33 1
165 31 1
135 33 3
49 28 1
162 37 1.5
135 33 0.5
223 29 0.5
49 28 1
156 26 1
96 22 1
31 21 1
49 28 1
156 26 1
96 22 1
96 22 1
31 22 1
96 22 3
0 0 255
0 0 0

separate screens. The player works his way through these screens in a
predefined order, giving the impression that he is gradually travelling
through the fantasy land. The other popular method is to make the
screen act as a window on to a much larger playing area. This is done in
Defender in one dimension and in ‘Laserbike’ (see Appendix D) in two
Jimensions. Games which supply the player with a view out of a window
Figure 10.6), such as in a space battle or racing track, are working in
‘hree dimensions. Working in three dimensions is very complicated and
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Figure 10.6: The Screen Window.
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only two-dimensional games will be considered here, but the possibility
always exists.

Multi-screen games

The multi-screen game is easily achieved, the chief limiting factor being
the amount of memory available. Each screen must be stored
somewhere in memory, together with all the details of any ‘gadgets’ and
special rules which apply on the screen. Each screen is brought on via a
copying routine. Possibly several routines will have to be copied or
acknowledged to maintain the game at this stage. What I mean is that
one particular screen may demand a constant hail of bombs to drift
across it. A dedicated routine would have to be written to take care of
this. What this amounts to is that each screen consists of well over 1K of
memory, even if it only occupies 20 lines of the screen. The rest of the
memory is needed to perform housekeeping tasks. The memory
limitation is not likely to be much of a problem, as it’s difficult to think
up more than a few original screens and gadgets anyway.

The method of using a window can be quite fun as, if you choose a
particularly large playing area, the player can easily get lost. The first
stage is to assign an area of memory to the ‘world’ on to which the
window looks. This should be at least 2K. Then decide just how large
the window should be. I consider that even half a screen is too much. In
‘Laserbike’ the player is limited to a 10 X 10 view of a 4K world. Next
decide how you want the world to exist. The ‘Laserbike’ world is
cylindrical — if you keep on going to the right then you loop back on
yourself and re-appear on the left but one row down. This is because it is
configured in memory like a collosal screen. If you keep on moving
across you eventually meet the edge and wrap-around occurs. Of
course, because we have the window view the ‘edge’ doesn’t exist as
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such. This effect doesn’t hold true for the top and bottom: these are
cordoned off with an uncrossable barrier. To eliminate the wrap-
around, just draw a barrier vertically as well (this spoils the game
slightly). Now you are in a position to write the routine to produce the
window effect.

Let’s see what information we have. We know how large the playing
area is and this must factorise into two not too different numbers.
Suppose the playing area is to be 80 X 80 bytes — a total of 6400 bytes.
To see how this would be stored, think of it as a large screen. To go left
and right, you would still add and subtract one, but moving up and down
is now *80 bytes. We know the size of the window, say 10 X 10 (these
numbers don’t have to be square). Now to draw the section of the world
with the top lefthand corner having the address 8000, we must copy
8000-8009 to consecutive addresses starting from the screen address
where we wish the window to be projected from. This, of course, is the
address of the top lefthand corner of the window. To draw the next line
we must go back to 8000 and add 80. This brings us one line down in the
world. As before we now copy from 8080 to 8089 but starting at the
window address + 40. We do this once for each line and the window is
projected. Figure 10.7 shows how this is done for a window of
dimensions X,Y on a world W bytes across.

The program ‘Laserbike’ is based on the light-cycle race from
Tron. When ‘Laserbike’ was first written in BASIC, a great delay was
caused through clearing out the world between one round and the next.
Of course filling a 4K area does take time. Thus the second routine
was introduced and the game became satisfactory. Notice, how-
ever, that the world itself contains very little action: to coordinate action
throughout a world of this size in BASIC would have ruined the game.
This is why there is no enemy apart from the blazing trail you leave and
the bombs.

The use of a window means that very ambitious games become
possible. For instance, I am at present working on a game involving a
hovercraft mounted with guns patrolling a sea/swamp/land zone with
hazards such as minefields, gun batteries and tanks. A window routine is
used to play the game over a wide area which should result in a game of
fast action allied with skilful control of the hovercraft in difficult wind
conditions.

2D Window Projector

The following routine produces on the screen a ‘window’ which has been
copied from a larger area of memory. The address of the top lefthand
corner of the window in the memory is stored at 251-252 and the
address of the top lefthand corner on the screen is stored at 253-254.
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Figure 10.7: Window Projection.
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These do get altered during the routine and will therefore have to be
reset. The width and height of the window and the ‘width of the
universe’ are all variable.
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‘LLO LDX #[Window Height|
:LL1 LDY #0

LL2 LDA (251),Y

STA (253),Y

INY

CPY #[Window Width]
BNE LL2

CLC

LDA 251

ADC #[Width of the Universe] Next line
STA 251

LDA 252

ADC #0

STA 252

CLC

LDA 253

ADC #40

STA 253

LDA 254

ADC #0

STA 254

DEX

BNE LL1 Finished?
RTS

} Copy window

A Defender landscape window

The landscape in the game Defender is interesting in that it scrolls both
ways. The player is restricted to a certain area — if he keeps on going to
the right he will loop and come out on the left. The effect of this is that
the game is played on an area many times larger than just the screen size
itself. The question is how to create the landscape and know what is
where as far as the game is concerned.

One solution is to store the landscape as a list of altitudes. If you
choose a list 256 entries long, then you will get automatic wrap-around,
and the playing area will have increased by a factor of 6.4 (see Figure
10.8). Each element on the picture can be thought of as being so many
lines above the base of the screen. The entire landscape is listed as a
series of heights which, when plotted like this, form a landscape. As you
are using wrap-around, you will have to make sure that the two ends
connect ‘smoothly’.

Now look at the ship in Figure 10.8. Suppose that it is at position X on
our landscape (0 <= X <= 255). As it’s in the middle of the screen and
we want to see the surrounding terrain, all we have to do is plot the
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Figure 10.8: Projecting a Landscape.
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values in the table in the range of, say, (X—15) to (X+15). To see if any
hostile ships are going to be drawn just check their positions to see if
they are in the range just described. This method makes the task of a
Defender landscape very easy. The values are stored in a table 256 bytes
long, a zero-page address points to the beginning of the table and, if you
use the indexed X addressing mode, then you can have access to any
entry in the table. On top of that, the wrap-around is automatic due to
the crafty determination of the size. Let’s look at a program to plot a
landscape:

TXA Ship is at position X
SBC #15 Plot to both sides of ship
TAX
LDY #30

:LOOP LDA (TABLE, X) Zero-page indirect mode
JSR PLOT Plot ship at coordinates
INX (Y,A)
DEY
BNE LOOP
RTS

The program is almost self-explanatory. The table of altitudes starts at
TABLE (zero-page vector). The routine is entered, with the X register
containing the location of the ship. The program draws on 30 different
parts of the terrain around the ship. The DEY could be replaced by a
more complicated compare with the X register, but it’s so much simpler
for the plotting routine if it’s given coordinates on the screen. The
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plotting routine receives two pieces of data: the number of lines up to go
from the base of the screen (A) and the number of lines to go across
(Y). Simple arithmetic computes these positions and plots the necessary
symbol. Don’t forget to clear the screen first, though, or one landscape
will overlay the next. When I first wrote this routine, it ran so fast that I
could only see the landscape when I stopped the ship from moving. It’s
much faster than a normal scroll.

FLEET MOVEMENTS

There are few games in which the enemy doesn’t consist of a number of
similar aliens. (And those few games are normally fairly boring
anyway.) Our problem is how to move around an entire fleet of ships in
smooth formation such as in Galaxian. The answer is very simple. All
you need is a routine to move one of them around and then use this
routine to move all the clones around. After all, all the aliens are
supposed to be identical anyway. If you think of an individual alien as a
normal variable, then a fleet of them is simply an array. You can move
them individually by simply altering any particular element, or you can
affect them all at once. Don’t shy away from using fleets in your games
as the resulting one-ship game can get very boring indeed.

There are essentially two ways of producing fleet movement. Firstly
there is the on-screen approach. This consists of having the aliens
existing on the screen and using an update program to scan the screen
and move them. The alternative is to keep all their positions and
attributes in a table, and have a separate routine to plot them on to the
screen. Each of these techniques has its advantages, and I shall discuss
each in more detail.

The beauty of the on-screen method is that what exists on the screen
is what exists in the game. If you blow something up with a bomb or a
gun then, to remove it from the game, you must erase the image. If a
table system is in use then erasure is not so simple: it is very infuriating
to shoot down an alien, watch it explode and disappear, only to see it
reincarnated the next second. The chief problem with the on-screen
approach is that, if one of the ships is accidentally removed during some
of the excitement, then the only record of its ever existing is in the
player’s mind, and causes a very poor sense of continuity. But the
introduction of new matter on to the screen is very simple — you just
plot it on wherever it is needed. When on-screen methods are in use
then, just as in scrolling and bombing (which is a particular example),
the scanning must be performed in the opposite direction to the
movement as otherwise you will have no idea of what has and what
hasm’t been updated. Of course, one way round this problem is to
change the character from one form into another, and then back again.
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The method involving the use of a table is more fiddly but, overall,
the superior method. What happens is that in the memory there exists a
table of addresses of all the different characters. This table is in fact a
machine code array and has the advantage that fleet movements can be
easily coordinated. The characters don’t have to be limited to one
square each, they can be whatever you feel is right — all you need is a
routine to plot a character at any address and you're away. (You may
like to use my alternative sprite routine in the previous chapter, which is
dedicated to manipulating large multi-square characters around the
screen.) The advantage of using a system like this is that it’s easy to
assign each character a movement vector simply by using a two-
dimensional rather than a one-dimensional array. All the update
program has to do is to read through the table, pick up the vectors and
add them on to the addresses. The removal of the previous image of the
character may also be desirable to prevent the character leaving a trail.
Using this vector method makes it a simple task to move asteroids
around the screen in many different directions.

Using both of these methods, the speed of the enemy’s movement can
be finely controlled. You can move one or two of them at a time or
move the whole lot. I personally like to move a few at a time to create
the rippling effect of the Space Invaders. Figure 10.9 shows the methods
used for using both of the described techniques. The use of a table in
machine code should already be straightforward for you, but just in case
it isn’t I'll describe the process now.

The first stage is to decide on the format of the table. For our
purposes it might appear like that in Figure 10.10: three sections; first
the address, then the movement vector, then the class of the alien. The
last section of the table is so that you can control more than one type of
alien at the same time within the same table. This uses four bytes per
entry and so, to go from one entry to the next, all you must do is add
four. The next stage is to decide where to put the table: find some
suitable place, say 49152 onwards, and base it there. To scan the table,
use a two-byte address contained in a pair of page-zero locations and use
the indirect X zero-page mode to look at the table. With the zero-page
address pointing to the first byte of the entry, you can obtain the
address, vector and code of the character, simply by incrementing X. To
move on to the next entry, zero X and add four to the memory location.

This then finishes our look at moving large numbers of objects around
— it’s quite simple after all. I'd like to make a few points before going
on to the routines. Don’t feel afraid to mix the methods by using an
on-screen approach to move the bombs and a table to move the ships.
This is a highly satisfactory method of producing the game, and an easy
one. Don’t limit your tables to one entry (ie address) only. As I have
already shown, you can have much larger tables giving your characters
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Figure 10.9: Moving a Fleet Sequentially, On-screen or by Table.
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Figure 10.10: A Typical Alien Table.
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more attributes and thus more realism. If you are using sound, then this
1s a good place to call the sound routine so you can synchronise it with
(or against) the motion. If you want to link it into the interrupt, then see
the section on the use of the interrupt, at the beginning of this chapter.
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Array routines

The following routine reads a table of addresses and plots characters (as
many bytes as you want) which start at these addresses. The base of the
table is stored in locations 168-169. These are not altered by the
routine. The subroutine PLOT plots the character at the address found
in locations 253-254. For simple shapes, you may as well write your own
routine but the alternative sprite system may be of use when
manipulating larger characters. The compare-Y instruction takes as its
operand twice the number of characters to be plotted (maximum of
127). This is because each character is represented by a two-byte entry.

:LLO LDY #0
:LL1 LDA (168),Y
STA 253
INY
LDA (168),Y
INY
STA 254
TYA
PHA
JSR PLOT
PLA
TAY
CPY #[2 x number characters]
BNE LL1
RTS

} Preserves the value of Y

Picks it up again

If you are simply plotting one character (eg a ‘*’), then the PLOT
routine should look something like this:

LDA #[Character Code]
LDY #0
STA (253),Y

The routine is fast and effective. Deleting an entire fleet is achieved by
plotting it in code 32s (the sprite routine does this for you). Moving any
particular character is done by adding a vector to an address in the table.
The following routine adds the same vector to every character in the
table. As before, the address of the base of the table is held in 168-169
(and remains unchanged), and the compare-Y takes twice the number
of characters as its operand.

:LLO LDY #0
‘LL1 LDA (168),
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CLC

ADC 251
STA (168),Y
INY

LDA (168),Y
ADC 252
STA (168),Y
INY

CPY #[2 X no.]
BNE LL1
RTS

The vector is contained in 251 and 252. To effect a move backwards, put
very large numbers in the vector (eg 65535 will subtract 1 from each
address). When a ship is hit and you want to destroy it, then it’s not
enough just to delete it from the screen — you must also delete it from
the table. The following routine searches the table for a match with the
address contained in 251 and 252. The value of the Y register which
points to the match is returned in the Y register and the routine also
stores this somewhere for future reference.

:LLO LDY #0
:LL2 LDA (168),Y
INY
CMP 251
BNE LL1
LDA (168),Y
INY
CMP 252
BNE LL2 Matches?
DEY Yes, so put Y to the start of it
DEY
STY 253 Store it at 253 for safety
RTS
:LL1 INY
CLC
BCC LL2

Once we know which parts of the table to delete, it's a simple matter to
delete them. Taking the X register to contain twice the number of
elements in the table (what we keep on comparing Y to) and the
Y-register the index to the table as produced by the search routine, then
the following routine deletes that element by overwriting the entry for
deletion by the final entry in the table and then removing the end entry
by decrementing the end pointer.
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:LLO DEX
DEX
STY 253
TXA
TAY
LDA (168),Y
LDY 253
STA (168),Y
INX
INC 253
TXA
TAY
LDA (168),Y
LDY 253
STA (168),Y
RTS

A loop could have been introduced but in the interests of simplicity it’s
clearer to do it this way. These table manipulation routines are designed
to work together: they use things such as the end pointer a lot, passing
the same piece of data around among themselves. Just because I have
used the immediate mode in the CPY instructions doesn’t mean they
will only work like that. If the size of the table is going to change from
time to time, this is a very poor approach anyway. The delete routine
could be accommodated inside the search routine itself, thus eliminating
the need for the JSR call, but don’t forget to initialise the X register
first. These routines are ‘modules’ with which to build your movement
routines: on their own they will work, but linked together they may
need a little service routine to synchronise parameter passing.

The Shuffie-march

Many games have the fleets of aliens approaching by a sort of
‘shuffle-march’: they move left and right until the edge is reached and
then jump down a line and move in the opposite direction. The logic for
actually moving like this isn’t so simple. Figure 10.11 shows how to work
out the movement vector for the fleet: you call it once per fleet update
and not once per ship. Two variables M1 and M2 are used. M1 contains
the first movement and M2 the second. If you follow the chart, you will
see how moving down and reversing direction is fitted into the sequence
of events. LEFT and RIGHT hand clear simply means checking down
that edge of the screen to see if the invaders are on the edge. This
checking should be done in machine code, although the fleets could be
maintained in BASIC with string variables. Best of all, keep it all in
machine code but keep it simple.
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Figure 10.11: Vector Determination for ‘Invader Shuffle-march’.
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RANDOM NUMBERS

The problem of getting random numbers in machine code has caused
many a would-be programmer to give up. The key problem is how to
make a machine like a computer, which follows a series of distinct
instructions, produce an unpredictable sequence of numbers? In
BASIC, of course, there is the RND(X) function. In normal machine
code there is nothing, but on the 64 there is a hardware random number
generator! Think for a moment about ‘white noise’. This is simply a
series of rapidly changing frequencies. It’s more than rapidly changing
— it’s random. The makers of the SID set one of the registers to the
output of voice 3. Thus if it’s in white noise mode then, by PEEKing the
location, we can get our random numbers. The frequency at which the
voice is operating determines the rate at which the numbers are being
generated. The output frequency is given by:

f = (16-bit frequency setting) x 0.0596 Hz
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This means a maximum of 3906 updates a second. To utilise the
generator then, the following steps are taken:

1) Switch on voice 3 for noise.

2) Disable output of voice 3 (set bit 3 of 54290).
3) Set frequency at 54286 and 54287.

4) Use PEEK(54299) for random numbers.

This gives us random numbers in the range 0-255. How do we construct
a random address? Simply put two random numbers back to back. By
taking one bit at a time and shifting in, we can construct numbers as
large as we like (Figure 10.12). Don’t, however, try adding two random
bytes together to obtain a random number in the range 0-510: you can
stick them together, but not add them.

Figure 10.12: The Correct Way to Add.

oL e o o] Tl [ e

' 8-bit random ’ ‘

8-bit random
| number l number

(T e e o -

» true 16-bit random number

The problem with adding is that it biasses the number towards the
centre of the range. Try tossing two dice and record how many times
each total comes up. Youw’ll find that there are many more sevens than
both twelves and twos put together. The result is a bell-shape curve like
that in Figure 10.13. Of course, this biassed distribution might be what
you want. The more components you add together the heavier the bias.
The way you make random numbers is largely up to you. Used
constructively they can help to spice up a game with an element of the
unknown. See Fleet Movements and Non-linear Movements, both in
this chapter, for details on how to use them.

NON-LINEAR MOTION

Some games call for the aliens to move with more intelligence than just
in the standard single direction. This may entail adding a random
component to the motion, forcing the alien to follow a predefined path
or even to ‘home in’ on a particular object. Undoubtedly this makes
games much more fun but, as always, to achieve this you must be
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Figure 10.13: The Result of Conventional Adding: Bias.
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prepared to work a little harder. To help illustrate this technique, some
of the examples will be written in BASIC so that you can follow them
and type them in more efficiently.

The first case to consider is the one where an extra component is
added to the object’s vector. Suppose that the object is a bomb falling
down the screen. Its vector is therefore +40. To liven things up a bit, we
might consider adding one of the numbers 1, 0 or —1 to the address as
well as the vector. The 0 obviously leaves the bomb unmoved while the
1 and —1 swing it to the right and left. There is nothing to stop us from
adding any number from the full vector range, but this would tend to
delay the bomb’s progress towards the bottom of the screen. The
following two programs will help explain this process.

Random Bomb

10 REM RANDOM BOMB

15 POKE 53281,1 : PRINT “[CLS]” : POKE 53281,0
20 S = 1044

30 DEF FNR(X) = INT(X*RND(1)+1)

40 POKE S,42

S0 S = S+42-FNR(3)

60 1IF $>2023 THEN RUN

70 GOTO 40

Random Motion

10  REM RANDOM MOTION

20 POKE 53281.1 : PRINT “[CLS]” : POKE 53281,0
30 S = 1368
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40 DEF ENR(X) = INT(X*RND(1)+1)
50 POKE S,46

60 S = S+2-FNR(3)+(2-FNR(3))*40
70 IF $<1024 OR $>2023 THEN RUN
80 POKE $,160

90 GOTO 50

Of course, true random motion is achieved by adding only a number
from the full vector range to the address. The process of randoml
extracting a number from a table in machine code is described below.

The first stage is to obtain a random number. This is done by
PEEKing 54299 (see the Random Number section earlier in this
chapter). Each entry in the table consists of two bytes (so we can
represent negatives as large numbers) and, as there are eight directions
there, we want the random number to take on one of the following
values: 0, 2, 4, 6, 8, 10, 12, 14. To get this range we simply AND our
random number with 14. A quick TAX moves the value into the
X-register, and we can look up the entry using the absolute X addressing
mode.

LDA 54299
AND #14
TAX

LDA TABLE,X gives the first entry and INX, LDA TABLE.X
supplies the second. This vector is simply added into the old address.

Non-random metion

The natural progression, from a random motion, is to one that has been
laid out. What [ mean is that you may want an alien ship to take a spiral
path down to the bottom of the screen and then return after the foray.
Instead of trying to establish an algorithm that will compute the next
position, the easiest way is to add in successive numbers from a table.
The structure is easy: you simply have a pointer keeping your position in
the table and to move the object on you simply increment the pointer
and look up the corresponding vector in the table. A null vector denotes
the end of the table and might cause the pointer to be reset to another
position in the table. This technique is illustrated in the next program.
where the vector table is contained in DATA statements.
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Dance

10 REM **DANCE

20 DATA 41,41,41,41,41.41,41,41,41,41,41,41,41,41,41,1,1,1,1,]
30 DATA -39,-39,-39,-39.—41,-41 —41 —4] —41

40 DATA -1-1,-1-1.-1 —~1-1-1-1-1,~1.41,39,39.39 39
50 DATA 1,1,1,1,1,1,1,1,1.0

60  DIM P(60)

70  L=1

80 READ P(L) : IF P(L)<>0 THEN L=L+1: GOTO 60
90 POKE 53281,1 : PRINT “[CLS]” : POKE 53281,0

100 S=1024 : L=1

110 POKE S,42 : L=L+1 : POKE S+P(L),42 : POKE S.46
120 IF P(L)=0 THEN L=10

130 IF S>2000 THEN END

140 S=S+P(L) : GOTO 110

The first stage is to read this table into an array and initialise the objects
position. The table is then worked through until the null entry is
reached, at which stage the pointer is reset to a new position inside the
table. The program continues like this for ever, with the result that the
object flutters down from the top left corner and proceeds to perform a
figure-of-eight dance. This method is easily adapted to machine code

use.

Figure 10.4: Homing Theory.
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Homing Motion

The natural progression from pre-defined motion is homing motion.
This is where an object homes in on another object. The classic Zombie
Island uses the principle to good effect. The mechanics of the situation
are also remarkably simple. The first stage is to break up the addresses
into a pair of X,Y coordinates like those used on a graph. For this
reason, sprites are the easiest to use as they are already expressed in this
fashion. Now look at Figure 10.14, which shows two points A and B. B
is the point towards which A is moving. To update A’s position apply
the following rules:

Figure 10.15: Home (Sx, Sy) on to (Tx, Ty).

Soe=Sx+l

Sx =Sx-|

55 =Sg+l

55 =Sy-|
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If X, > X, then increment X,
If X, < X, then decrement X,
If Yy, > Y, then increment Y,
If Y, < Y, then decrement Y,

If you study Figure 10.15, the reasons for these rules should become
apparent. This BASIC program updates sprites 1 to 7 towards the
location of sprite 0.

10 REM **SPRITE HOMING ROUTINE
20 HX=PEEK(53248) : HY =PEEK(53249)
30 FOR A=53250 TO 53262 STEP 2

40 X=PEEK(A)+SGN(HX-PEEK(A))

50 Y=PEEK(A+1)+SGN(HY-PEEK(A+1))
60  POKEA.X : POKEA+1.Y

70 NEXT : GOTO 30

1000 REM **SET UP SPRITES FOR DEMONSTRATION

1010 FOR A=53248 TO A+15 : POKE A,FNR(255) : NEXT

1020 POKE 53269255

1030 FOR A=2040 TO 2047 : POKE A0 : NEXT
~——FNR(X)=INT(X*RND(1)+1)-— -

This program drives sprites 1-7 towards sprite 0. It’s very slow, but the
program clearly shows how the algorithm works. The logic is in lines 40
and 50 which use the available SGN(X) function. This returns either a
—1, 0 or 1 depending on whether the number is less than 0, 0 itself or
greater than 1.

Run the 1000 subroutine first, to set up some sprites for a chase.

The machine code program which follows does the same thing, but
much faster. A clever way of using this routine would be to attach it to
the interrupt — see the section on the interrupt earlier in this chapter.
You can achieve the same effect using normal characters, but it’s far
more tedious. Eight sprites should be enough; try to avoid using up all
your sprites with other things.

Using non-linear methods will liven up your game, but don’t overdo
it. The methods outlined here are not the only ones, they are just the
simplest, so don’t hesitate to write your own custom-designed routines.
For example, to add some detail to the sprite routine you may consider
altering it, so that when a sprite arrives on the ‘target” it is automatically
disabled. This sprite routine almost constitutes a game in itself. The
player controls sprite 0 with a joystick and has to avoid being struck by
any of the other sprites.

The logic is a little complicated but if you run it through by hand, you
should see what’s happening. The Y register alternates from a 1 to a 0,
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so that the SBC 53248,Y instruction alternates between comparing X
and Y coordinates. The effect of two DEC instructions followed by an
INC is simply to produce one DEC instruction. If you follow the arrows
then you should see what’s happening.

:LLO LDY #1
LDX #14
:LL1 L.DA 53249 X
SEC
SBC 53248, Compare
-BEQ LL2 Equal?
BCC LL3 Negative?
DEC 53249,X Then it’s positive
(DEC 53249.X
'LL3 INC 53249.X

:LL2 TYA
} Toggle Y so that we compare

X & Y coordinates alternately

EOR #1
TAY
DEX
BNE LL1
RTS

This runs in under %1000 second and so is capable of producing a very fast
display indeed. Hooking it on to the interrupt can be quite fun, as well
allowing you to write an ‘Escape and Evade’ game in BASIC. For
details of how to remove colliding sprites see the section on sprites
earlier in this chapter.

THE COLOR MEMORY

The color memory has a lot to say for itself. For each character on the
screen, there is a corresponding color byte which dictates the colour of
that character. The paper colour set at 53281 controls the colour of the
background. This means that clever things can be done. One use is the
‘sudden appearance’ idea. This entails setting the paper colour to the
colour in color memory. If this is done, then something can be printed
on the screen and not be visible — yet it’s there. By simply changing the
paper colour the ‘hidden’ screen jumps out all at once.

By setting different sections of the color memory to different values,
we can obtain a colourful screen. The old Space Invader machines have
horizontal bands of colour created through strips of green and red
plastic taped over the screens. This effect can be simulated very easily
and may actually serve some purpose in a game (eg telling a player he is
in a dangerous zone — RED). If the color memory is set up at the start
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of each game, then you can forget all about it. On the other hand if you
are POKEing in the colour as you move the aliens about, the program
becomes complicated where it could be simple.

If some areas only of the screen are the same colour as the paper, then
they are in effect ‘invisible’ patches. What’s inside is unknown territory
— perhaps as the player explores, the contents are revealed. Doing this
saves having another section of memory which contains what should be
on the screen. Once again, doing something this way makes certain
tasks a lot easier.

The border colour pointer (53280) is another valuable location.
Strangely enough it actually has an effect on the paper colour. As far as
I can tell, the brighter the border the duller the paper. This gives us 16
shades for each paper colour! Personally I use the border to act as an
information source to the player or merely a guide to what level the
player is playing at. If you change the paper and border colours for each
attack wave, then this helps to keep the game fresh and exciting.
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APPENDIX A
Utility Programs

The appendices contain a large amount of information that didn’t seem
to fit in elsewhere in the book. There are utility programs, routines and
details of the machine, all of which should be of help to you.

CRASH RECOVERY

It will happen sooner or later — your program will just freeze and the
keyboard will go dead. (It’s a wonderful feeling when five hours work is
lost . . .) To start with, you should make a point of SAVEing every
half-hour at least.

But even when you do have a crash and the RUN/STOP +
RESTORE combination fails to respond, all is not lost (if you want to
disable the RUN/STOP + RESTORE then just change the vector
792-793). On the back of the machine you will find the ports as shown in
Figure A.1. Take a pair of conducting tweezers and short the reset pin,
as shown, for half a second. Let go. The screen will clear and the
Commodore title will flash up. Now type the following sequence of
numbers into, say, the tape buffer (anywhere will do) and call them with
the appropriate SYS.

Figure A.1: Grounding the Reset Pin.

USER PORT

POWER &
JOYSTICKS
IN HERE
—_——

BACK VIEW OF THE 64

CONNECT THESE TWO

&N

S S W .

1 234567 89101112

¢
GROUND RESET USER PORT (TOPSIDE) PINNING
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169,1,141,2,8,32,51,165,24,165,34,105,2,133,45,165,35,105,0,
133.46,76,94,166

Stand back and pray. Your program is now reincarnated.

Of course the clever ones amongst us will load in this routine
somewhere safe at the start of every day. Then on crashing, all that’s
needed is a quick SYS call. The code disassembles:

LDA #1

STA 2050  Reincarnate program
JSR 42291

LDA 34 Utility pointer
CLC

ADC #2

STA 45

LDA 35

ADC #0

STA 46 Pick up variables
JMP 42590 Finish

If you do keep the recovery routine resident all the time, then find
somewhere other than the tape buffer as this is cleared on RESET. Try
in the spare 4K RAM zone.

SITING THE PROGRAM AND MEMORY MANAGEMENT

If you’re running a BASIC program along with machine code support,
UDG and sprite data and large screen layouts, then the problem arises
of where to site the routines and, of course, where you can store your
machine code variables, parameters and tables. Don’t worry, this is a
64K machine — if you can fill up the memory with sensible code and still
be looking for more space then you are either crazy or you need a larger
machine.

Traditionally the abode of machine code routines on Commodore
machines has been the tape buffer. We still have this and it runs from
828 to 1019, but there is unused memory on either side of it extending
the range to 820 to 1023 — 204 bytes. This will house most collections of
‘assisting’ routines, but if you are really pushed then there is 4K
available from 49152 to 53247. Sprites site very well in the tape buffer
(they won’t go in many other places) so you may be forced to move up
to the 4K zone. This won’t affect the speed of execution at all.

The Programmer’s Reference Guide has a habit of using the middle of
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the BASIC workspace for such things as UDG tables. This seems crazy,
and it is, but you can get round the problem by moving the workspace
itself. This is, of course, the key to housing the really big programs.
Locations 43 and 44 contain the start of the workspace. PEEK them and
you’ll get the address 2049. 55 and 56 contain the highest address used
by BASIC — a value of 40960. Try pulling the top down to within 8K of
the base. You now have ample space for a BASIC program and over
30,000 bytes to play with for machine code purposes! Two important
points: first, POKE the top down before you create any variables and
then CLR to inform the 64; second, only POKE the base up outside a
program and then call a CLR (if you do this inside, then you’re going to
lose the bottom of your program).

This should have solved all routine-siting problems. The availability
of page-zero memory, however, is another matter. Page-zero is very
special and on the 64 there is very little spare. Of course, if you aren’t
using BASIC then it’s all yours (except 0 and 1). Locations 2, 251, 252,
253 and 254 are all free for the user, whatever. This is sufficient, but if
it’s really necessary some of the other locations are so rarely used
(especially tape registers) that you should get away with using them.
Another useful little hole is 679-767. But be very careful with page-zero
operations — they can cost you your program.

ENTERING MACHINE CODE FROM BASIC

This may seem trivial but the chances are that you know perhaps one or
two of the possible ways to enter machine code. There are five main
ways to do this. Each has its advantages and disadvantages, and so it’s
worth considering them instead of blindly using an SYS.

The SYS call is the standard entry. You simply use SYS (X) and call the
machine code subroutine at X as if it were a GOSUB command. This
method is quick and easy, but passing data to and from the routine can
get messy on the BASIC side.

This problem is overcome by use of the little-used USR(X) command.
This is treated just like a function such as SIN(X) or COS(X). The value
inside the brackets is evaluated and placed in the ‘floating-point
accumulator #1°. The associated machine code routine is then called.
The address is pre-arranged by placing it in the USR vector at 785 and
786. On completion of the routine the floating-point accumulator has its
value returned as the value of USR(X). Thus the routine is called like
this:

A=USR(1000)
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For details of the floating-point accumulator see Appendix C (BASIC
Text and Variable Storage). It consists of five bytes and can thus be used
to send quite a lot of data to and from machine code routines. By
altering the USR vector, a number of different routines may be called
throughout the program. If you are converting a program from an
earlier Commodore machine, take great care to change the vector
pointers from 1 and 2 to 785 and 786.

The interrupt provides another link into machine code. You simply pick
up the vector from 788 and 789 and re-point to your routine, taking
great care to chain the end of your routine on to the start of the interrupt
service routine at 59953. If you don’t do this and just stop with an RTI,
then you’re going to lose out on all the housekeeping routines. Entry by
the IRQ interrupt needs a little more foresight in programming but is
definitely worth the effort. Don’t forget that, if your routine takes any
longer than a sixtieth of a second to execute, then the clock (TI$) will go
all cock-eyed (slow). By pressing one of the CIAs into use, you can
even dictate your own interrupt signal schedule. There’s no doubt about
it — the interrupt is the chief way to harness the 64.

An underhand way of sneaking into machine code is to intercept the
BASIC interpreter while it’s happily scanning a line to see what it says.
The routine known as CHRGET supplies successive characters from a
line with each call. The routine is thoughtfully present in zero-page
RAM. This means that we can drive a ‘wedge’ in and divert the latter
half to a routine of our choice. By watching for a control character, the
possibility of adding a new command to BASIC is opened up. Have a
look at the CHRGET routine:

INCZ122
BNE 12
INCZ123

CMP #58
BCS 1 10
CMP#32
BEQ 1239
SEC
SBC#48
SEC
SBC#208
RTS

The trick is to replace the first SEC instruction with a JMP£820 (or
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wherever). Then at 820 we can do the following:

CMP #0

BEQ 1 [User routine]
SEC

SBC#48

etc etc

The only real problem is how to insert the JMP instruction without
causing an error (since it can’t all be done at once). The answer is to use
a separate piece of code to drive the wedge in. Like the interrupt, this
method is handy but fiddly.

By altering the vector to, say a LIST or SAVE routine, using that
command will cause a jump to the new vector. You may wish to modify
the effect of the old command or totally change its sense (fun). Sece the
table for some vector addresses you might like to play with. This is the
last of the five chief ways of entering machine code. There are more but
it’s really not worthwhile listing them here.

USER-DEFINABLE GRAPHICS

This section is devoted to the subject of UDGs and contains a little
editor. UDGs are simply graphics characters that the user has designed.
When you switch on, the 64 has a set of 256 different preset characters.
While these are remarkably versatile, it’s often better to define your
own. All that must be done is to draw out the shape of your new
character, lay a square grid over it (8 X 8) and decide which squares
should be filled. Then you simply add across each row considering it as
an 8-bit binary number to give eight numbers, and the definition is
complete.

The problem is that the standard character set is stored in ROM so we
can’t directly alter it. Instead we must copy it elsewhere, change the
appropriate matrices and tell the machine to look at the new set instead
of the old. Further problems arise as the ROM is not normally visible to
BASIC, so the ROM must be banked in: to do this safely, we must
POKE out the interrupt so that it doesn’t get upset when it finds that
someone is looking in the memory. The procedure is as follows:

1) Stop interrupt.

2) Bank in character ROM.

3) Copy the character definitions.
4) Bank the ROM out.

5) Restart interrupt.
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To stop the interrupt use POKE 56334,PEEK(56334)AND 251; to
restart use POKE 56334,PEEK(56334)OR 4.

To bank the ROM in and out use POKE 1,PEEK(1)AND 254,
POKE 1,PEEK(1)OR 254.

The character ROM starts at 53248 (it resides under the VIC-II chip).
If you copy the first 512 bytes then all the alphanumeric and special
symbols will be copied without copying the entire character set. In
BASIC this can take time and so a COPY routine is quite handy in this
sort of situation.

To re-point the address of the character definitions use:

POKE 12288, PEEK(12288) AND 240+X

Where X is an integer from 0 to 15 pointing to the start of the character
matrix — X X 1024. This may mean you have to move BASIC around a
bit to make space. For further details of UDGs consult the
Programmer’s Reference Guide.

A UDG Editor

The program listed here allows you to design your own UDGs with
great ease. When RUN, there is a short delay as the alphanumerics are
copied and the character matrix moved. Then the screen clears to reveal
an 8 X8 square on which to create your own graphics and a mini-menu
outlining the purpose of the function keys. On the square is a cursor
which may be moved around using the cursor keys. To fill a square,
simply press the space-bar; to clear a square use the left-arrow sign. The
function keys aid your design in the following ways:

F1: This works out the matrix for the figure on the design square and
prints the number opposite the corresponding row.

F2: This option requests a character for input. Simply type a character
(eg ‘A’) and press RETURN. The character matrix is then
interrogated and the matrix copied out on to the design square.

F5: This is the same as F2 except that it overlays the requested symbol.

F7: This evaluates the symbol in the design square and assigns it to the
POKE code that is requested.

Using these functions together you can look at the character for an ‘A’
or ‘Q” and see how Commodore designed them, you can mix two
graphics characters, alter them yourself using the cursor, and then
create your own personalised character set. Using UDGs in your games
will make a lot of difference to the final result. It’s even possible to
append a UDG section to the end of any BASIC program to spice it up a
bit without the program noticing. There’s no excuse for copying
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somebody else’s — all told there are 2 X 2 x 2 x 2 (etc 64 times)
different symbols possible on an 8 x 8 square. That’s about 1.8 x 10'%!

Editor

18 EEM UDG ERITOR

<8 POKESA334, PEEK (SE334 0aMD 254 FOEE L, FEE
KOl aANDbzst

38 FORA=ATOS11:POKELZ258+0, PEEK (SI248+45
THEST

44 POREL. PEEEC100R4: FOKESE 234 . PEEK ( S6334
20R1

DB POKESZZT 2, JPEEK (S32720aNDId@ +1 2

B8 FORKESIZEL. @ PRINT[CLSI s POKESIES] . 24
[ )

B FORA=1TOZ:PRINT" ..o .. ... "IHEXT

28 PRIMTULCLDILCDIF] - BREAK DOWM CHERACT

EE"

FEIMT"FZ - DRAW CHARACTER®

FEIMT"FS - OUERL&Y CHERGCTER®

FRINT"FT7 - RSSIGH CHaRaCTER®

F=1868: =48

GETA%: IFag=""THEN12R

U=3: TFa$="[CR]" THEH.=1

IFE$="[CL 1" THEMLI=-1

IFAE="[CUI " THEHU=~4&

IFp$F="[C0]"THEH=4&

IFFEEE P+ =48 OF FEEK(FP+Lr=1&0 0OF 1)

BTHEM 1360

U=F

IF U< THEM POEEFR. Ut P=P+li U=FEEK P

tFOKEF. 21

IF AF=" "THEMFOKEF, 160:1=160

IFaE="_"THEMFOKEF. 451 U=4¢

IFas="LFZ 1" THENGOSUE 5

Ak

[y

R I R T R s R Y )
AR AN ]

=3 LN
DAy W]

el e el e g ey S

1
1

Duos W]

Py an]

i,

= E GOTOLZE
18 PRINT"IHOMILCDILCHIICDICCDIICn LoD ]
CCLILCLICCDIICOIICDICCRILCDILCnICRIT
COICLITCIICDICCRICCD IO I nD]
IRMAN N
1818 RETURH
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2068 REM OUERLAY

2810 GOSUE1 066

2820 THPUT"CHARACTER 3 CF

I8 H=PEEK (1955
48 FORA=ETO7: D=FEEK( 1 Z2E8+H#S+0 )
B FORJ=GTO7: S=1065+a%48+.1: [Fa$="[FI]"
TH ES. 96
TEER P-Ii={[ THEN D=D-2*(7-T3:POKE
ZATE MEXTT, At U=PEEK (P RETLURM
IEEE FEM ASSIGH
3018 GOSUBLIEGE: IMNFUT CHERACTER CODE":C:
FC{BORC > 255 THEHTE1 @

IR FORA=8TO7: T=0: FORI=GTO7

2825 IFPEEEC1085+m%d@+ ] s= 1 8ATHEHT=T+2( 7
EA

SE38 HEXT:POKEL 2Z288+0%8+0, T HEY

3848 POKE18&3, CrRETURH

48868 REM Ual UES

4818 PRINTYLHOMIY

4028 FORp=ATO7: T=0

4EE0 FORI=GTO7T: IFFEEK 1 BES+a% 48+ To=168TH
EMT=T+2~{7-T3

4848 MEST:PRINT'L[CRIICRILCRILCRILCRILICR]
[CRICCRILCRILCRILCRICCRILICR] [
LICCLICCLICCLIECLIICLItCLINT

SGE58 HEST:RETURH

SPRITES

This short section is aimed at the superb sprite graphics facility available
on the 64. However, to use it well a lot of work must go into designing
the characters. Sprites are very similar to UDGs in that each dot is
controllable. They are much larger, being 24 dots across (three bytes)
and 21 dots down. Their definitions are stored as the chain of numbers
they represent if each set of eight bits is read (left to right) as a binary
value. There are eight sprites and the manual describes their use and

abuse in fuller detail, but I present here a flexible Sprite Editor.

The program produces a large square and cursor arrangement on
which a sprite can be created. The cursor is moved by the cursor keys
and the repeat facility can be used to good effect on the large square.
Each of the eight function keys serves a purpose as well as the space-bar

and left-arrow keys, which respectively plot and erase squares.
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Calculates the corresponding matrix numbers and prints them in

the appropriate position on the screen.

Re-RUNs the program — effectively clearing the square for

another design.

This reflects the left half on to the right half — very handy for

producing symmetrical sprites.

Exits the program.

‘PEN DOWN’ — This causes a permanent trail to be left after the

Cursor.

DUMP? YES — Sprite matrix calculated and entered into
DATA statements — just press RETURN over
them.

NO — Stores sprite symbol on to tape.

‘PEN UP’ — This stops the permanent trail effect of FS.

This loads DATA up from tape.

Sprite Editor
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APPENDIX B
Mini-assembler

Whether or not you already own an assembler, you should find
‘Mini-assembler’ a useful addition to your utility set. It is written in
BASIC but is very compact and has some handy features, including a
tast disassembler and an ingenious method of editing. The first part of
this appendix describes the program and its use. Then there are a
number of ‘tool’ programs, which run on the interrupt and are called by
the function keys. The appendix is concluded with a machine code
loader which loads a mini-toolkit, carrying all of the previous features,
on to the interrupt.

Mini-assembler makes great use of DATA statements: the list of
mnemonics, their opcodes, and the program for assembly are all stored
using them. This means that editing is simple — you use the flexible
screen editor as normal. You can have one instruction per line or
separate instructions via commas. Your program is written in the area of
lines 20-999. This will give you plenty of space. If you wish to POKE
down the top of BASIC then this should be done before RUNning.
Normally BASIC assemblers are slow and laborious but, by using the
editor in this fashion, all the assembling is done at once and the program
takes short-cuts through the mnemonic table from time to time with the
more common commands.

Program description

When RUN, the title routine at line 3000 is executed. This moves
straight on to the mnemonic loader at line 9000. With the arrays
dimensioned and data read in, control returns to line 3000 where the
user is asked for ASSEMBLY or DISASSEMBLY. Disassembly takes
place in line 2000-2999: assembly in lines 1000-1999. The data pointer is
first RESTOREQ, and then each mnemonic is read through in turn.
String-slicing routines extract details such as mode, three-letter
mnemonic and operand. If the mnemonic is commonly used then
short-cuts are initiated. Any problems are dumped to the screen beside
the offending code and, once the end-of-program flag comes up,
assembly ends. To economise -on program efficiency, the addressing
modes are represented by a single-character suffix straight after the
three-letter mnemonic. Consult Table B.1 for details of this, There is no
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provision for the use of labels, but relative branches are still calculatec
for you. Be careful to type in the DATA statements exactly — it wil
take some time.

Table B.1: Prefix Table for Mini-assembler.
ADDRESSING MODE PREFIX

Immediate ‘#

Absolute ‘¢’ — Listed as ‘ \ ’ in listing
Absolute X X’

Absolute Y Y’

Relative ‘1

Accumulator ‘A’

Implied 3-letter mnemonic only
Zero X uy

Zero Y A

Zero-page VA

Indirect ‘'

Indexed indirect ‘v

Indirect indexed “r

The Mini-assembler command is structured as follows:
[3-letter mnemonic] + [prefix] + [operand]

For implied instructions, only the 3-letter mnemonic is required.

In use
To make use of the disassembler, run the program and answer ‘yes’. The
prompt now requires a start address to commence disassembly. Once
this is done, the space-bar will produce one instruction per depression,
or you can hold the space-bar down. To leave the program, use the
RUN/STOP key. GOTO 2000 will restore you to the disassembler.
The assembler is used by first typing in the code into DATA
statements with line numbers <1000 and then running the program and
requesting the assembler. LOADing and SAVEing is easily done: just
save the whole thing along with your code. It might be a good idea to
keep a permanent copy full of blank DATA statements. Each
instruction is represented by the standard three-letter mnemonic, a
mode suffix and then an operand. Look at the following commands:

LDA#100 Load the accumulator immediately with 100
STAX1024 Store the accumulator at 1024+X
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BCC 1 851 Branch on carry clear to 851
LDA!251 Load the accumulator indexed indirect at 251
RTS Return from subroutine.

When RUN, the code is assembled by default to location 49152
onwards. This can be changed by use of the directive which simply
re-points the address of the next instruction to be assembled. The
directive is used like this:

*820

This starts assembly at location 820. The * command may be used
several times so that you can assemble more than one routine at a time.
The assembly listing shows the action of these commands by a reverse
field message.

Mini-assembler is a little strange, but after a short while you will find
it easy enough. The following routines are all printed in the ‘Mini’
format. Each routine performs some useful task based around the
function keys. These are widely-publicised attributes of the 64, but
nobody ever seems to use them for their intended purpose. I hope these
routines show you how to utilise them for yourself.

Mini-assembler

18 EEM ASSEMELY CODE FOLLOWS

15 DATAE2E

28 DATA LDE#0. STASIAZ4, THM, BHE~-222,.RTS
28 DATA Asla

16888 FEM ASSEMELER

181 G0TOZ688

16826 RESTORE: P=49152

1825 FRINT"ASSEMBLY COMMEMCES, ©

1838 READ CFIIF CH="#¥"THENFRIHT"GSSEME

LY COMPLETE. "t EMD

1835 FRIMT:PRINTF.C$" Yiio=0

1B3e IFLEFTSOCE: 10="¥"THENF=USL (RIGHT $: 0
¥ LENCCHF =100t PRINTY [RUSIF="3F3 : GOTOM
QG

ME=MIDECCF+CHREF A 4, 10

I$=LEFTE 0, 40 tBF=LEFTH(CF. 30

IFM$E=CHRE$ (0 THEN18S1

AE=RIGHT$CF, LEN(CHE—4 0

IFME " THEM1 B0

U=linl (Rg b -F-2 1 IFIKETHEMU=2SE+U)

e}
£
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w3 T LA O

ot ks b ok ot ek
=
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oy [xn]
mof =g o T Ju
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1E73 IFLBORY > 2SS THENPR INT "ERROR: "t FRINT
_'TRUSI'CS" OUT OF RAHGE":U=g

L=t m0Toie9a

W=Ual caE a s H= THT O 256 0 1 L=li-H¥ 255

PFES o L C THENG=24 § B0TOT 118

IFE$="SEC" THEMG=56: GOTO11 18

IFE$="J5R" THENS=321 50
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218 READAE: IFAF " * " THENSZ2 1@

PDIM MECZEEHECZES . 0F018, 26
FORA=ATOZES5: README a0 HECA D T HERT
B RETURH

User-definable Function Keys

This routine sets up the key F1 to type a maximum of 10 characters by a
single depression. The ‘phrase’ is stored at 820 onwards and is
terminated by a 13 which effects a carriage return. Using this routine,
you can set up the key to clear the screen and LIST or RUN the
program. It’s hooked on to the interrupt so that, once installed, you can
forget it and NEW the loader.

*49152
LDA£197
CMP#4
BNE 1 49174
LDX#0
LDAX820
STAX631
INX
CMP#13
BNE 1 49161
STXZ198
JMP£59953

Suppose we want to set up the key to print ‘LIST” followed by a return.
Use the following routine:

T$=“LIST”+CHRS$(13)
FOR A=1TO LEN(T$) : POKE 819+ A,ASC(MID$(T$,A 1)) :
NEXT A

Don’t forget to re-point the interrupt vector:

POKE788,0 : POKE789,192

Dynamic Halt

This routine allows you to stop the entire machine whatever it’s doing
(apart from during tape operations). When F3 is depressed, the machine
enters a ‘dynamic halt’ until the space-bar is depressed. This is
particularly useful when inspecting or debugging a listing and the CTRL
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key is no use. The internal clock, however, does stop during the halt.

LDAZ197

CMP#5

BNE 1 49167

JSR£65439 Scan keyboard
LDAZ197

CMP#60 Space pressed?
BNE 1 49158

IMP£59953

Once again (as with all these routines), the interrupt connection must be
made.

Quotes-mode Alleviator

You know the feeling? You’re editing a line with a PRINT staecment in,
and somehow you’ve got into quotes mode and the cursor controls seem
to be working against you. This routine restores sanity at the touch of F5
and plucks you out of quotes mode:

LDAZ197

CMP#6

BNE 1 49162

LDA#0

STAZ212 Exit quotes mode
IMP£59953

Sound and Sprite Mute

Playing around with sound and sprites often leaves you with a screenful
of sprites and a headache-inducing wail from the television. One quick
answer is the RUN/STOP + RESTORE combination. This, however,
clears the screen of useful information and resets the interrupt
(disabling these routines). This routine endows F7 with the mute
command — it’s just touch and go!

LDAZ197

CMP#3

BNE 1 49166

LDA#0

STA£54296 Mute sound
STA£53269 Mute sprites
JMP£59953
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Mini-toolkit

All these routines start at 49152. To mix them, you’ll have to re-point
the branches and chain them together — a good exercise to test your
proficiency. The following loader program simply reads in a machine
code program that combines all four of these routines and re-points the
interrupt. Once this is done, you may NEW the program and carry on
programming as normal, except you now have a Mini-toolkit on board.

6020
6030
6040

REM **MINI-TOOLKIT

REM ENABLE : POKE 788,0 : POKE 789,192

REM DISABLE : POKE 788,49 : POKE 789,234

P=49152

READ D : POKE P,D : P=P+1: GOTO 20

DATA 165,197,201,4,240,15,201,5,240,29,201,6,240,37,201,3,240
DATA 43,76,49,234,162,0,189,52,3,157,119,2,232,201,13,208,245
DATA 134,198,76,49,234,32,159,255,165,197,201,60,208,247,76,49
DATA 234,169,0,133,212,32,228,255,76,49,234,169,0,141,24 212
DATA 141,21,208,76,49,234

Type ‘RUN’.

Wait for ‘?0UT OF DATA ERROR’.
Enable as above.

NEW program.

F1:
F3:

FS§:
F7:

The

Type string at 820.

Enter dynamic halt.

Space-bar continues.

Escape from quotes mode.
Mute sound and remove sprites.

toolkit is totally relocatable — all branches are relative.

Incidentally, if you have a joystick in PORT 1 then the FIRE button
becomes another space-bar.
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Advanced Machine Characteristics

THE KEYBOARD AND ITS BUFFER

The section on interaction (Chapter 9) briefly skips over the keyboard
and its operation. However, an in-depth understanding of its operation
allows certain tricks in programming to be used. In some routines in this
book, I utilise the buffer to achieve certain things. In simple terms, the
buffer is simply a list of keyboard depressions that haven’t yet been
printed on the screen.

Every sixtieth of a second, our friend the interrupt runs round and
looks at the keyboard. If a new key has been pressed, this is recorded in
the buffer and the buffer pointer incremented. If the machine’s cursor is
flashing, then another routine empties the buffer. Thus while the cursor
isn’t flashing the buffer fills up — to a maximum of 10 characters. If you
list a program and jab at the keyboard, after the listing you will find a list
of the keys you hit.

The buffer runs from 631-640. The buffer pointer is 198. As we know
where it is, there’s nothing to stop us seeding the buffer with characters.
The characters are stored in ASCII format and this is exactly the
technique used for defining function keys. A command such as LIST is
entered into the buffer along with a RETURN (code 13). If you find the
keyboard buffer is causing problems then its size can be reduced by
POKEIing in a new size to location 649. Don’t exceed 10 as otherwise the
buffer will stray into dangerous territory (the operating system
variables).

The following routine POKEs M$ into the buffer.

FOR A=1 TO LEN(MS) : POKE 630+A,ASC(MIDS(MS,A 1)) :
NEXT
POKE 198,LEN(M$)

Clever use of the buffer allows programs to alter themselves by coming
across an END or STOP statement and then executing ‘auto-returns’
over a new line, and a CONT or GOTO command which picks up
execution again. This is rather straying from the purpose of this book
however.
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BASIC TEXT AND VARIABLE STORAGE

Although strictly not of machine code relevance, this section does have
indirect connections and, anyway, it's not in the Programmer’s
Reference Guide. Of particular importance is the description of the
floating-point variable as this is the format in which data is passed via
the USR(X) function. The way in which programs and variables are
stored on the 64 should allow you to write your own routines such as a
renumber and trace routine.

Programs start at location 2049. Each line is stored as a record in a file
and is held in ascending order of line number. The format of each record
is as follows.

The first two bytes contain what is known as the ‘link address’. These
two bytes constitute the address of the start of the next record. This
makes it easy to chase through the program without having to search
every character. The next two bytes contain the line number. This is
why there is a limit placed on the magnitude of line numbers. After this
the record is simply a string of bytes terminated by a zero byte. The next
byte is the lo-byte of the next link address. Keywords such as GOTO,
GOSUB and PRINT are represented by ‘tokens’. These are one-byte
values unique to that keyword and thus represent a large saving on
memory. Figure C.1 explains this structure.

Figure C.1: BASIC Text Storage.
LINK ADDRESS

LO HI
o | w | TOKENISED LINE 0
\ LINE NUMBER
LO HI
1o | w | TOKENISED LINE | 0
LO HI

TOKENISED LINE 0

~

Locations 45 and 46 hold the start of the BASIC variables. There are
many types: real, integer, real array, integer array, string, string array.
For each type, there is a particular representation. Real variables are
stored in seven bytes. The first two hold the ASCII values of the name.
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Thus, as far as storage is concerned, a variable takes up just as much
space as two characters as it would as one. The next five bytes constitute
the value. Scientific notation is used. The method is that every number
can be represented in the following manner:

* a X 10" where 0 < a < 1 and x is an integer.

The only difference on the 64 is that 10 isn’t used. As it’s a computer, 2
is used. The ‘X’ or ‘exponent’ is stored in the first byte. To allow the use
of negative numbers it is stored in ‘excess 129’ notation. This means that
129 is added to its real value. Thus the actual range of x is —129 to 126.
Don’t think that a negative exponent means a negative number — it
simply means very small (107> = .001).

The ‘mantissa’ (the ‘a’ part) is stored in the next four bytes. It is
stored in Binary Coded Decimal form. This means that each byte is split
up into a pair of 4-bit nybbles, each representing a number. This means
that 8-bit precision is attained. The first bit of the first mantissa byte
contains a sign bit.

Figure C.2: Real and Integer Variable Storage.

VARIABLE EXPONENT MANTISSA
NAME
VAN
f—L\ /7 N
REAL
VARIABLE VALUE UNUSED
NAME
4 N/ /H N
INTEGER

For the sake of completeness, I'll describe the integer variable. Once
again a seven-byte representation is used. The first two hold the name,
distinguished from ‘real’ by having ASCII codes + 128, The next two
bytes hold the lo-hi values, followed by three dummy zeros (you only
economise on integer arrays). Figure C.2 should graphically present
these methods of variable storage.

THE CIAs
In the beginning there was the VIA — the Versatile Interface Adaptor.
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This was (and still is) described as a remarkably flexible peripheral chip
for both I/O and timing.

The 64 contains not one but two CIAs — Complex Interface Adaptor.
These are extremely powerful chips, only nobody seems to use them
much. One of the CIAs is in charge of the IRQ interrupts. Each of the
CIAs contains a full am/pm clock, two connectable 16-bit timers, an
alarm feature and a full handshaking capability. For the purposes of this
book I will just discuss the timers and their control for IRQ scheduling.
The Programmer’s Reference Guide describes them briefly in ‘jargonese’
but for a full appreciation the data sheets from the manufacturers are
required.

The two timers are known as A and B. For each timer there is a 16-bit
latch from which they count down. Thus when the timer reaches zero
the value in the latch is reloaded ready for the next countdown. An IRQ
is also generated when either reaches zero. Each timer can operate in
either a one-shot mode or continuously. In the one-shot mode, the timer
stops on reaching zero and then latches in again. It then awaits a start
signal. In the continuous mode the value is repeatedly relatched ad
infinitum. The timers count 1 for every cycle of the main CPU clock
(1,000,000 Hz). On switching on, timer A is initialised to interrupt every
sixtieth of a second.

Both timers are controlled by a timer control register. The lower five
bits perform the following functions:

Bit 0:  Start/stop. This bit starts and stop the timer. If set, then the
timer is running.

Bit 1: Not relevant here.

Bit 2: Not relevant here.

Bit 3: SET = one-shot. CLEAR = continuous.

Bit 4:  If SET this immediately relatches the start value, whatever the
timer is doing.

So that you can use the timers and not interrupts for timing, an interrupt
mask is provided. This simply refuses to let an IRQ originate from that
source. The timers may be individually masked. On switching on, timer
A is capable of interrupting while timer B is refused. The masking
register is 56333. Bit 7 determines whether to clear or set a mask. If bit 7
is clear, then any ones written to 56333 will remove the corresponding
source’s ability to generate an interrupt. The converse is true for a zero.
Timer A is bit 0 and B is bit 1. Timer B can be made to count, not clock
pulses, but underflows from timer A. This means that if timer A has an
interrupt mask on, the two timers work together to create a maximum of
a 32-bit timer. The count method is dictated by the state of bits 5 and 6
in 56335: 00 means ‘count clock pulses’; 10 means ‘count timer A
underfiows’.
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To set a latch value, simply POKE it into the lo-hi timer location.
PEEKing these supplies the present count. The following table supplies
all the locations we are going to need for CIA#1:

56324 Timer A lo-byte.

56325 Timer A hi-byte.

56326 Timer B lo-byte.

56327 Timer B hi-byte.

56333 IRQ control register.
56334 Timer A control register.
56335 Timer B control register.

Let’s watch the timers in action. The flashing cursor is flashed via the
interrupt. Try the following POKE and watch the cursor:

POKE 56325,20

Try the repeat facility on the cursor keys — notice anything? The cursor
is flashing three times as fast! If you want your interrupt routines to
work faster, then this is the way to do it. Don’t forget that TIS$ is also
changing three times as fast. Let’s bring in timer B:

POKE 56335,1 Switch on.
POKE 56327,64 Set latch.
POKE 56333,127+1+2 Remove IRQ mask.

The result of this is that timer A is causing interrupts every hundred and
eightieth of a second, while B is working a third as quickly. Play around;
it’s the only way to learn. Try not to disable all IRQ lines as this causes a
loss of keyboard interaction (and other things).

The second CIA has all these facilities, but it's not connected to the
IRQ line. Both CIAs can send and receive these puise trains through the
ports with great ease. Here I have merely touched on the use of a CIA
to generate a complex pulse train. A whole book could be devoted to
their use — don’t stop here. If the IRQ is the key to the 64, the CIA #1
is the key to the IRQ.

SID AND VIC MEMORY MAPS

Despite being informative and concise, the Programmer’s Reference
Guide tends to demand a lot of page-turning when writing programs.
This is due to the complexity of the SID and VIC-II chips — it takes a
long time to learn all their memory locations off by heart. Furthermore
the format is not easy to scan through quickly. Here I present some
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Figure C.3: SID Reference Chart.

I o il
FREQUENCY FREQUENCY FREQUENCY
LO HI LO Hl LO HI
54272 |54273 54279 | 54280 54786 |54787
[ CONTROL:54276 CONTROL: 54283 CONTROL:5424¢
[¥] caTE : =rr: T P c-c: = BTAR L GATE: [ = START
TR > mitia it B
a FILLY :W_
AAALAA A1 AAA AAAAAA
AfaYa"a™ (¢ ]
[NeRE G NG
—{PULSE GAP PULSE. GAP PULSE GAP
LO HI 0 Hi LO Hi
54274 | 54275 54281 |54287 54288 | 54789
ENVELOPE. ENVELOPE ENVELOPE
ATTACK |SUSTAIN ATTACK |SUSTAIN ATTACK |SUSTAIN
DECAY RElE\;E DECAY E DECAY RE(_Q.SE
54277 |54278 54284 154285 54291 |54292
D+l6 xA [R*16 xS D+I6xA [R+16 xS D+l6xA | R*+16 xS
FILTER CONTROL # [ : 54245
FILTERI 7 FILTER IT ? FILTER IIT ?
BIT ¢ BIT | BIT 2
FILTER RESONANCE : BITS 4 -7
FILTER_ FREQUENCY [FICTER CONTROL # 2
) HI 54296
54293 |54294

by b
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Table C.1: Sprite Reference Chart.

SPRITE  CTRL X Y COLOUR M.POINTER
VALUE
0 1 53248 53249 53287 2040
1 2 53250 53251 53288 2041
2 4 53252 53253 53289 2042
3 8 53254 53255 53290 2043
4 16 53256 53257 53291 2044
5 32 53258 53259 53292 2045
6 64 53259 53260 53293 2046
7 128 53260 53262 53294 2047

Use ConTRoL value to set bits in the following sprite control registers:

53264 Most significant bit of sprite X coordinate.
53271 Expand sprite vertically.

53277 Expand sprite horizontally.

53278 Sprite + sprite collision log.

53279 Sprite + background collision log.

53280 Colour of the border.
53281 Colour of the screen (paper).

0 Black 1 White

2 Red 3 Cyan

4 Purple 5 Green

6 Blue 7 Yellow

8 Orange 9 Brown

10 Light red 11 Gray #1

12 Gray #2 13 Light green
14 Light blue 15 Gray #3

charts which I use. They show clearly what each location does and how
to use them. The SID diagram in particular (Figure C.3) helps show the
complex arrangement of voices and filters, the structure of which is
difficult to perceive otherwise.

NB. These charts assume you already understand the operation of the

SID and VIC-II chips. They make no attempt to teach their function
and use.
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APPENDIX D
Laserbike

Here is a game that uses a few of the ideas in this book. You have to ride
a bike around a cylindrical world of which only a small portion is ever
visible. Everywhere you go, you leave an uncrossable blazing trail — to
cross it means death.

The objective of the game is to collect all the keys (‘$ signs) required
on that level and exit through the Time-Gate (‘#’ sign). To keep you
alert, there-are bombs littered around the playing area — if one goes off
then it’s curtains. The Navascan directs you to these so that you can
defuse them. You have three bikes, and if you stop moving they may
overheat. Extra points may be gained by picking up bonus fruit (**’) on
the way. To move the bike use *,’ for left; ‘.” for right; ‘Q’ for up; ‘A’ for
down.

As it stands, the game is interesting but not brilliant: it’s simply
designed to show you the sort of things possible with machine code
backup. Two machine code routines are used: the window routine which
projects the window on to the screen; and a fill routine which clears out
the playing area after each play. You might like to spice things up a bit,
but ‘Laserbike’ was only written in one afternoon to test out the window
routine. Improvements might be to hook a UDG switch on to the
interrupt, so that the trail really blazes, and you could improve on the
standard Commodore Graphics used.

8 FEM *+*+*LH ER BIRE® ¥

18 Goo

12 SRS

15 DEF FHR(: sa=IHT O RND L o +1 2

38 GOSUB1866: REM GAME

1 PRINT"LHOMILCDR®

23 ME="GAME OUER":GOSUBLA

48 PRIMT"LCLILCD IO 5

S8 IFSCHHETHENFRIMT Y LEL
JILCE] A HEW HIGH S

53 FORT=1TO3G00E: NEXT

e8 GOTO3E
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Machine code games routines for the Commodore 64

16868 REM GAME

1816 LU=0:SC=8: LB=3: TP=8: CT=1553
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Appendix D Laserbike
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Muchine code games routines for the Commodore 64

SCORE: "
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Appendix D Laserbike
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Machine code games routines for the Commodore 64
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Index of Routines

Routine
Alternative Sprite
System

Array Add

Array Delete

Attribute Flasher

Array Search

Block Fill

Bomb Update

CHRGET Wedge

Crash Recovery

Delay

Dynamic Halt

Defender

Landscape Window

Description
Character-based sprite
system

Adds vector throughout
array/table

Deletes element in array
Automatically flashes
any screen lines
Searches array/table
Straightforward fill
routine

Scans screen and moves
bombs down a character

A special gateway into
machine code

System reset without
program loss

Three different delay
routines

Freezes and restarts
computer on request

Projects landscapes

Location

Chapter 9,
Alternative Sprite
System

Chapter 10, Fleet
Movements

Chapter 10, Fleet
Movements

Chapter 9, Inverting
and Explosions

Chapter 10, Fleet
Movements

Chapter 9, Filling
Memory

Chapter 9, Updating
Bombs

Appendix A, Entering
Machine Code

Appendix A, Crash
Recovery

Chapter 9, Delays
Appendix B, Dynamic
Halt

Chapter 10,
Large-scale Games
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Machine code games routines for the Commodore 64
8

Function Keys

Assign

Interrupt Tunes

Invert

Line Blank

Memory Copy

Mini-assembler

Mini-toolkit

Rectangle Fill

Quotes-mode
Alleviator

Screen Scanning

Scroll

Sound and Sprite
Mute

Spiral Screen Fill

Sprite Collisions

Sprite Homer

168

Assigns a text string to
F1

Plays tunes on the
interrupt

Two routines to flash the
screen

Scrolling accessory
routine

Copies memory from one

area to another

Four handy function key
assignments

Fills in a rectangle in a
different code to main
area

Sorts out the irksome
cursor controls!

Simply scans the screen

Three scrolling routines

Cuts sound and sprites
without data loss

Fills screen from inside
out as if drawing a spiral

Removing sprite
collisions

Homes sprites 1-7 on to
0

Appendix B, Function
Keys

Chapter 10, Sound
Chapter 9, Inverting
and Explosions
Chapter 9, Scrolling
Chapter 9, Copying
Memory

Appendix B,
Mini-assembler

Appendix B,
Mini-assembler

Chapter 9, Filling

Memory

Appendix B,
Quotes-mode
Alleviator

Chapter 6

Chapter 9, Scrolling

Appendix B, Sound
and Sprite Mute

Chapter 6

Chapter 10, Sprites

Chapter 10,
Non-linear Motion



Sprite on Joystick

Sprite Vectoring

String Printer

Tune

2D Window
Projector

Moves sprite 0 in
accordance with joystick

Automatically moves
sprites 0—7

Prints out a given string

Plays a tune stored in a
table

Projects 2D window on
to screen

Index of Routines

Chapter 9, Interaction
Chapter 10, Sprites
Chapter 9, Text and
String Printing

Chapter 10, Sound

Chapter 10,
Large-scale Games
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Other titles from Sunshine

SPECTRUMBOOKS

Artificial Intelligence on the Spectrum Computer

Keith & Steven Brain 1SBN 0 946408 37 8 £6.95
Spectrum Adventures

Tony Bridge & Roy Carnell 1SBN 0 946408 07 6 £5.95
Machine Code Sprites and Graphics for the ZX Spectrum
John Durst ISBN () 946408 51 3 £6.95
ZX Spectrum Astronomy

Maurice Gavin 1SBN 0 946408 24 6 £6.95
Spectrum Machine Code Applications

David Laine 1SBN 0946408 17 3 £6.95
The Working Spectrum

David Lawrence 1SBN 0 946408 00 9 £5.95

Inside Your Spectrum
Jeff Naylor & Diane Rogers 1SBN 0 946408 35 1 £6.95

Master your ZX Microdrive
Andrew Pennell 1SBN 0946408 19 X £6.95

Graphic Art for the Commodore 64
Boris Allan 1SBN 0 946408 15 7 £5.95

DIY Robotics and Sensors on the Commodore Computer
John Billingsley 1SBN 0 946408 30 0 £6.95

Artificial Intelligence on the Commodore 64
Keith & Steven Brain 1SBN 0 946408 29 7 £6.95

Machine Code Sound and Graphics for the Commodore 64
Mark England & David Lawrence 1SBN 0 946408 28 9 £6.95

Commodore 64 Adventures
Mike Grace 1SBN 0946408 11 4 £5.95
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Business Applications for the Commodore 64
James Hall 15BN 0 946408 122 £5.95

Mathematics on the Commodore 64
Czes Kosniowski 1SBN 0 946408 14 9 £5.95

Advanced Programming Techniques on the Commore 64
David Lawrence 1SBN 0 946408 23 8 £5.95

The Working Commodore 64
David Lawrence 1SBN 0946408 02 5 £5.95

Commodore 64 Disk Companion
David Lawrence & Mark England 1SBN 0 946408 49 1 £7.95

Commodore 64 Machine Code Master
David Lawrence & Mark England 1SBN 0 946408 05 X £6.95

Programming for Education on the Commodore 64
John Scriven & Patrick Hall ISBN 0 946408 27 0 £5.95

Writing Strategy Games on your Commodore 64
John White 1SBN (0 946408 54 8 £6.95

ELECTRON BOOKS

Graphic Art for the Electron Computer
Boris Allan 1SBN 0 946408 20 3 £5.95

Programming for Education on the Electron Computer
John Scriven & Patrick Hall ISBN 0946408 21 1 £5.95

BBC COMPUTER BOOKS

Functional Forth for the BBC Computer
Boris Allan 1SBN 0 946408 04 1 £5.95

Graphic Art for the BBC Computer
Boris Allan 1SBN 0 946408 08 4 £5.95

DIY Robotics and Sensors for the BBC Computer
John Billingsley 1SBN 0 946408 13 0 £6.95

Artificial Intelligence on the BBC and Electron Computers
Keith & Steven Brain 1SBN 0 946408 36 X £6.95

172



Essential Maths on the BBC and Electron Computers
Czes Kosniowski 1SBN 0946408 34 3 £5.95

Programming for Education on the BBC Computer
John Scriven & Patrick Hall 1s8N 0 946408 10 6 £5.95

Making Music on the BBC Computer
Ian Waugh 1SBN 0 946408 26 2 £5.95

Advanced Sound & Graphics for the Dragon

Keith & Steven Brain 1SBN 0 946408 06 8 £5.95
Artificial Intelligence on the Dragon Computer

Keith & Steven Brain 1SBN (0946408 33 5 £6.95
Dragon 32 Games Master

Keith & Steven Brain 1SBN 0946408 03 3 £5.95
The Working Dragon

David Lawrence 1SBN 0 946408 01 7 £5.95

The Dragon Trainer
Brian Lloyd 1SBN 0 946408 09 2 £5.95

Atari Adventures
Tony Bridge ISBN (0946408 18 1 £5.95

Writing Strategy Games on your Atari Computer
John White 1SBN 0 946408 22 X £5.95

Introduction to Simulation Techniques on the Sinclair QL
John Cochrane I1SBN 0 946408 45 9 £6.95

Home Applications on your Micro
Mike Grace 1SBN 0 946408 50 5 £6.95
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Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best selling software and books and up-to-the-
minute details of the latest games. Other features in the magazine
include regular hardware and software reviews, programming hints,
computer swap, adventure corner and pages of listing for the Spectrum,
Dragon, BBC, VIC 20 and ZX 81 and other popular micros. Only 40p a
week, a year’s subscription costs £19.95 (£9.98 for six months) in the UK
and £37.40 (£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year’s
subscription (12 issues) costs £10 in the UK and £16 overseas.

MICRO ADVENTURER

The monthly magazine for everyone interested in Adventure games,
war gaming and simulation/role-playing games. Includes reviews of all
the latest software, lists of all the software available and programming
advice. A year’s subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year’s subscription costs £10 in the UK
and £16 overseas. '

For further information contact:
Sunshine

12-13 Little Newport Street
London WC2R 3LD

01-437 4343

Telex: 296275
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The magic of the power of the Commodore &4 lies in
the use of machine code. This book will show you how
fo hamess the enormous potential of the Cé4,

opening up new vistas of programming possibilities.

In this book Paul Roper shows that machine code
regramming on the Commodore &4 can be simple to
er ﬂ:?h&%y showing how to use machine code
pregrams and then explores the
essential techniques required for programming the
6502 processor.

The approach fo games programming is tackled in
mwﬁrﬂﬂm mﬂphx
Some com hine
code games and then presents a collection of
code su nes for you 1o use in your own
games designs.

Topics such as scroll window projecting and
lpﬂhml'uri‘:qurl uulnlﬂ':nwptﬂram

explored and explained. There is also a host of useful
and essenfial machine code subroutines
in this book, including an assembler and an editor.

Faul Roper has been interested in com s @ver
since the emergence of the first hob machines.
He is now living In Hompshire as a part-time freelance
programmer and consuliant,
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