" IMPOSSIBLE
ROUTINES

—

ORTH
COMMODORE 64

~ KEVIN BERGIN



Impossible
Routines
for the
Commodore 64

Kevin Bergin

Duckworth



First published in 1984 by
Gerald Duckworth & Co. Ltd.
The Old Piano Factory
43 Gloucester Crescent, London NW1

©1984 by Kevin Bergin

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the
publisher.

ISBN 0 7156 1806 7

British Library Cataloguing in Publication Data
Bergin, Kevin
Impossible routines for the Commeodore 64.
1. Commodore 64 (Computer)
I. Title
001.64'04 QA76.8.C64

ISBN 0-7156-1806-7

Typeset by The Electronic Village, Richmond
from text stored on a Commodore 64
Printed in Great Britain by
Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham




Contents

Preface
Introduction

Symbol Chart

. Supermon 64
Entering Supermon
Testing Supermon
Saving Supermon
Using Supermon
Supermon colours

Instructions

. Protection

A trick of the trade?

Internal protection
Disabling run/stop & restore
Other vectors
Moving Basic
Scrambling programs
Screen and character set

A faster version!

11

12

13
13
13
27
27
27

28

30
30
30
31
36
37
37
1

42



Other forms of protection
Protected software
Auto-run

A limited auto-run

. Printer, Disk, Tape and Other Utilities
Hard copy
Old for new
Some disk routines
Disk error display
Disk commands
Disk error messages
Disk directory
Disk directory and auto-load
Tape control
Tape search
Word proccessor
Sell that 1540
Dumping the screen
More memory
Merging and appending programs
Merge

Append

45

51

51

g &

g

57

62

70
74
74
75
76

77

77



4. New Commands and Interrupts 81

Interrupts 81
Using charget to add commands _ 85

5. Kernal Routines 89
Kernal and ROM routines 93
Error codes 115
Other Kernal and ROM routines 115
Vectors 119

6. 64 to FX-80 123
Downloading the character set 123

7. General Utilities, Hints and Tips 127
Reserved words 127
Customising Basic 128
Both sides! 131
Joysticks 131
Input routine 132
Cursor control 133
String memory 135
Hex to Dec 135
Code to Basic 137
Hi-res 139



Borders

Basic border
Code border
Colour border

Basic graph

Appendices:
64 memory map revisited
Key values

Basic tokens

S 6o w »

Machine code instruction set

m

Screen display codes
F. Ascii values

G. Basic error messages

Further Reading

Index

149
150
150
163

156

168
177
179
181
201
203
205

207
210



Preface

This book was written using the Commodore 64, a 1541 disk drive and
an Epson FX-80 (oh! and a TV with me pushing the keys occasionally).
The programs were formatted using the Epson’s facilities. The book
was largely inspired by my sleepless nights huddled over my Vic and
later my 64 trying to get commercial software to work.

So my thanks go to the incompetent software houses for their blunders
and to Jim Butterfield for his excellent Supermon 64. Thanks are also
due to many friends and colleagues including Nick Hampshire for the
job, and especially to my publishers for supporting and indulging me.

The programs and information in this book expose areas of the 64 not
often talked about and offer different ways of tackling the problems
this presents. All the routines are fully explained, including parts of
the 64's operating system.

| have included some utility routines which should also prove useful.
The end result for the reader should be a more understandable 64.

K.B.



| dedicate this book and the leaves within to all those who are ‘locked
in’ and don’t know, also to Mary Smythe who resides with the dust
now, but knew what it was like to be here.

10



Introduction

My career as a programmer started at Middlesex Polytechnic, where
| was studying to become a primary school teacher. One day | spotted
a notice labelled ‘Terminal room’, and having determined that it wasn’t
a place in which overwrought students were disposed of, | asked about
this curious room full of odd objects and tense humans.

It turned out to be the college’s computer system, a Dec 10, which
was spread over five colleges and had 120 people using the system
at any one time. | was not scheduled to use the system for some two
years, so | nagged for permission to ‘challenge’ the machine until |
was eventually given a number. The following three months saw me
in the computer room for two hours every day with a ragged and
inadequate manual, trying to discover if | was telling the machine what
to do or the reverse.

Having managed to come to grips with Basic by spending too much
of my study time on it, | invested in a Vic-20 and spent all of my time
and money on that, often to the exclusion of sleep.

At this point | decided that | had better make micros my career. | be-
gan work on Commodore Computing International, where | carried
on with my obsession. This book is probably more a result of the past
four years than any other writing | have done, and | hope that you
enjoy it.

The title of the book refers to those moments when everything you
want to do or try to do with the 64 seems impossible. It also refers
to those particular routines and techniques which are at certain levels
impossible. In general, Impossible Routines is intended to be a very
usable guide to those tricky and lesser-known areas of the 64. 1 hope
that you will be able to use it in this way and enjoy the process.

1



Symbol Chart

Included here is a chart of the abbreviations used in the listings to in-
dicate the 64's control characters. This should avoid any confusion.

[CD}
[CR]
[CL]
[CU]
[CLR]
[HME]
[F1]—[F8]
[BLK]
[WHT]
[RED]
[CYN]
[PUR]
[GRN]
[BLU]
[YEL]
[SH]
[LO]

CURSOR DOWN
CURSOR RIGHT
CURSOR LEFT
CURSOR UP

SHIFT AND CLR/HOME
CLR/HOME

FUNCTION KEYS

CTRL &1

CTRL & 2

CTRL& 3

CTRL & 4

CTRL &5

CTRL & 6

CTRL &7

CTRL & 8

SHIFT (with character following)

LOGO (with character following)

The shift and logo keys are used for the graphics and any numbers
inside the square brackets indicate the number of characters.

12



1. Supermon 64

| have included a copy of Jim Butterfield’s excellent Supermon, which
you will definitely need. This kind of utility is usually placed at the back
of books. It was decided in this case to place Supermon at the front
as it will be in constant use.

Unfortunately Supermon is rather a large program. It occupies the ad-
dresses from 2048 decimal $0800 hex to 4591 decimal $11 EF hex, some
2543 bytes.

In order to make entering Supermon as smooth as possible and avoid
previous confusions, it is presented here as a Basic program with a
checksum; a memory dump is also included as you may well want
to see it. A disassembly would have been too long and untidy.

Entering Supermon

In order to enter Supermon we must first leave enough room for it
by moving the beginning of Basic, so before you start tapping away
enter the following in direct mode:

POKE 8192, 0:FOKE 44,32 <press return>

This leaves enough room for us to enter Supermon. Now start the
laborious task of entering the program with all the data statements
exactly as shown. Itis best to keep track of your position by marking
it with a pencil when you have (eventually) finished. Then save the
program onto tape or disk in the normal way.

Testing Supermon

Now that you have a copy of the Basic program, RUN the program.
There will be a pause and a message will tell you when Supermon
has been entered. If you got it right first time, congratulations. If you
didn’t it's back to the drawing board to discover the error. If you make
any corrections don‘t forget to re-save the program before trying again.

13



10 POKES3280,2: POKES3281,8: PRINT"PLEASE WAIT.....

20 MEM = 2048:COUNT = @

3@ READ NUM:IF NUM =-1 THEN&®

4B POKE MEM,NUM:MEM = MEM +1:COUNT = COUNT + NUM

50 GOTO3@

60 IF CO <> 283598 OR ME <> 4591 THEN PRINT"DATA

ERROR SHOULD BE 283598 ";" NOT"3;CO:END

78 PRINT" DATA ENTERED OK NOW ENTER FINAL POKES"

8@ END

9@ DATA®,26,8,100,8,153,34,147,18,29,29,29,29,83,
85,80

1@@ DATALY,82,32,54,52,45,77,79,78,0,49,8,110,0,1
53,34

11@ DATA17,32,32,32,32,32,32,32,32,32,32,32,32,32
, 32,32

120 DATA®,75,8,120,0,153,34,17,32,46,46,74,73,77,
32,66

130 DATABS,84,84,49,82,78,73,49,76,648,0,102,8,130
,2,158

14@ DATA4@,194,48,52,51,41,170,50,53,54,172,194,4
2,52,52,41

150 DATA17@,49,50,55,41,0,0,8,170,178,170,178,170
,170,170,170

168 DATA170,170,170,170,170,17@,170,17@,172,170,1
70,17@8,170,170,170,170

17@ DATA145,45,133,34,165,44,133,35,1465,55,133,36
,165,56,133,37

180 DATA160,0,165,34,208,2,198,35,198,34,177,34,2
28,460,165 ,34

19@ DATAZO8,2,198,35,198,34,177,34,248,33,133,38,
165,34 ,208,2

200 DATA198,35,198,34,177,34,24,101,36,170,165,38
,101,37,72,165

21@ DATASS,208,2,198,56,198,55,104,145,55,138,72,
165,%5,208,2

220 DATA198,56,198,55,104,145,55,24,144,182,201,7
9,208,237,165,55

238 DATA133,51,165,56,133,52,108,55,8,79,77,79,79
,173,230, 255

240 DATAG@,141,22,3,173,231,255,0,141,23,3,1469,128
,32,144,255

2%5@ DATAG,0,216,104,141,62,2,104,141,561,2,104,141
,60,2,104

2608 DATA141,59,2,104,170,104,148,56,138,233,2,141
,58,2,152,233

27@ DATAG,®,141,57,2,186,142,63,2,32,87,253,0,1462
,66,169

280 DATA42,32,87,250,0,149,82,208,52,230,193,208,
6,230,194 ,208

29@ DATAZ,230,38,%96,32,207,255,201,13,208,248,104

14



,104,169,158,32

0@ DATA21@,255,169,0,0,133,38,162,13,169,46,32,8
7,250,8,169

310 DATA1S8,32,21@,255,32,62,248,0,201,46,240,249
,201,32,240,245

X2@ DATA14Z,14,221,183,255,0,208,12,138,10,17@,18
9,199,255,0,72

%3@ DATA189,198,255,8,72,96,202,16,236,76,237,250
,0,165,193,141

340 DATASE,2,165,194,141,57,2,96,169,8,133,27,160
,9,0,32

158 DATAB4,253,8,177,193,32,72,258,0,32,51,248,0,
198,29,208

34@ DATA241,96,32,136,250,0,144,11,162,8,0,129,17
3,193,193,240

=70 DATA3,76,237,250,0,32,51,248,0,198,29,76,169,
59,133,193

380 DATAL1L9,2,133,194,169,5,%96,152,72,32,87,253,8
,104,162,46

i9@ DATA76,87,258,8,169,158,32,210,255,162,0,0,18
9,234 ,255,0

402 DATAZZ,210,255,232,224,22,208,245,1608,57,32,1
54,248,0,173,57

41@ DATAZ,32,72,25@,8,173,58,2,32,72,250,0,32,183
,248,0@

420 DATASZ,141,248,0,240,92,32,62,248,0,32,121,25
2,0,144,51

ax@ DATA3Z2,105,25@,8,32,62,248,0,32,121,250,0,144
,40,32,105

a4@ DATAZS0,@,169,158,32,2108,255,32,225,255,248,6
2,166,38,208,56

45@ DATAL&S,195,197,193,165,196,229,194,144,46,16
2,58,32,194,248,0

440 DATAIZ,65,250,0,32,139,248,0,248,224,76,237,2
=2,2,32,121

478 DATA2S@,0,144,3,32,128,248,0,32,183,248,0,208
,7.32,121

480 DATAZS@,Q@,144,235,169,8,133,29,32,62,248,0,32
,161,248,0

490 DATAZ@B,248,74,71,248,0,32,207,255,201,13,240
,12,201,32,208

<p2 DATAZ®9,32,121,250,0,144,3,32,128,248,8,169,!1
s8,32,210,255

=10 DATA174,63,2,154,120,173,57,2,72,173,58,2,72,
173,59,2

520 DATA72,173,68,2,174,61,2,172,62,2,64,169,158,
32,210,255

=30 DATAL74,63,2,154,108,2,160,160,1,132,186,132,
185,136,132,183

540 DATA132,144,132,147,169,64,133,187,169,2,133,
188,32,207,255,201

15



558 DATA32,240,249,201,13,240,56,201 ,34,208,20,32
,207 ,255, 201,34

568 DATAZ40,16,201,13,240,41,145,187,230, 183,200,
192,164,208,236,76

578 DATA237,25@,8,32,207,255,201,13,240,22,201 ,44
,208,220,32,136

588 DATA250,@,41,15,240,233,201,3,240,229,133,186
,32,207,255,201

59@ DATA13,96,108,48,3,108,50,3,32,150,249,0,208,
212,169,158

6D@ DATA3Z2,218,255,169,0,0,32,239,249,0,145,144,4
1,16,208,196

618 DATA76,71,248,8,32,150,249,0,201 ,44,208,1846,3
2,121,2%0,0

620 DATA3Z,105,250,0,32,207,255,201,44,208,173,32
,121,250,0, 165

632 DATA193,133,174,145,194,133,175,32,105,250,0,
32,207,25%5,201,13

640 DATA208,1%52,169,158,32,210,255,32,242,249,0,7
5,71,248,0,165

450 DATA194,32,72,258,0,165,193,72,74,74,74,74,32
,96,250,0

668 DATA170,104,41,15,32,96,25@,0,72,138,32,210,2
55,104,76,210

678 DATA255,9,48,201,58,144,2,105,6,96,162,2,181,
192,72,181

482 DATA194,149,192,104,149,194,202,208,243,96,32
,136,250,0,144,2

49@ DATA133,194,32,136,250,8,144,2,133,193,96,169
,0,0,133,42

708 DATA32,62,248,0,201,32,208,9,32,62,248,0,201,
32,208,14

71@ DATA24,96,32,175,250,0,10,10,1@,10,133,42,32,
62,248,0

72@ DATA32,17%,250,8,5,42,56,96,201,58,144,2,105,
8,41,15

738 DATA96,162,2,44,162,08,8,182,193,208,8,180,194
,208,2,2302

740 DATA3B,214,194,214,193,96,32,42,248,0,201,32,
240,249,96,169

758 DATAQ,0,141,0,0,1,32,204,250,0,32,143,252,0,3
2,124

768 DATAZ50,8,144,9,96,32,62,248,0,32,121,250,8,1
76,222,174

778 DATA&LS,2,154,16%9,158,32,21@,255,169,63,32,210
,25%5,74,71,248

78@ DATAB,32,84,253,0,202,208,250,96,230, 195,208,
2,230,196,96

79@ DATA162,2,181,192,72,181,39,149,192,104,149,3
9,202,208,243,96

800 DATA165,195,164,196,56,233,2,176,14,136,144,1

16



1,165,40,164,41

818 DATA76,51,251,0,165,195,164,196,56,229,193,13
3,38,152,229,194

820 DATA1&8,5,30,96,32,212,250,0,32,105,250,08,32,
229,250,0

830 DATA32,12,251,0,32,229,250,0,32,47,251,0,32,1
25,250,0

840 DATA144,21,166,38,208,100,32,40,251,8,144,95,
161,193,129,195

85@ DATA32,5,251,0,32,51,248,0,208,235,32,40,251,
0,24,165

860 DATA3@,101,195,133,195,152,101,196,133,196,32
,12,2%1,0,166,38

870 DATA208,61,1461,193,129,195,32,40,251,0,176,52
,32,184,250,0

880 DATA32,187,250,8,76,125,251,0,32,212,250,0,32
,105,250,0

89@ DATA32,229,250,8,32,105,250,8,32,42,248,8,32,
136,25@,0

90@ DATA144,20,133,29,166,38,208,17,32,47,251,0,1
44,12,165,29

91@ DATA129,193,32,51,248,0,208,238,74,237,250,0,
76,71,248,0

920 DATA32,212,250,0,32,105,258,0,32,229,250,08,32
,105,250,0

93@ DATA3Z,62,248,0,162,8,0,32,62,248,0,201,39,20
8,20,32

94@ DATA&LZ,248,0,157,16,2,232,32,207,255,201,13,2
40,34,224,32

9%@ DATAZOB,241,240,28,142,0,0,1,32,143,250,0,144
,198,157,16

96@ DATAZ,232,32,207,255,281,13,240,9,32,136,250,
0,144,182,224

97@ DATA3Z2,208,234,134,28,169,158,32,210,255,32,8
7,253,0,162,0

98@ DATA®@,160,0,0,177,193,221,154,2,208,12,200,232
,228,28,208

99@ DATAZ43,32,65,250,0,32,84,253,0,32,51,248,0,1
66,386,208

1200 DATA141,32,47,251,0,176,221,76,71,248,0,32,2
12,2%0,0,133

101@ DATA3Z,165,194,133,33,162,0,0,134,40,169,147
32,210,255, 169

1020 DATAL%2,32,218,255,169,22,133,29,32,106,252,
e,32,202,252,0

1038 DATA133,193,132,194,198,29,208,242,169,145,3
2,210,255,76,71,248

1240 DATAD,160,44,32,194,248,0,32,84,253,0,32,45,
250,0,32

1850 DATAB4,253,0,162,08,0,161,193,32,217,252,0,72
,32,31,253

17



1860 DATAD, 104 ,32,53,253,0,162,6,224,3,208,168,164
,31,240,14

107@ DATA16%,42,201,232,177,193,176,28,32,194,252
,8,136,208,242,6

1880 DATA42,144,14,189,42,255,08,32,165,253,0,189,
48,255,0,240

1@9@ DATAS,32,165,253,0,2082,208,213,96,32,205,252
,8,170,232, 288

1120 DATA1 ,20@,152,32,194,252,0,138,134,28,32,72,
250,0,146,28

111@ DATAD6,165,31,56,164,194,170,16,1,136,101,19
3,144,1,208,96

1128 DATA168,74,144,11,74,176,23,201,34,240,19,41
,7+9,128,74

1132 DATA17@,189,217,254,0,176,4,74,74,74,74,41,1
5,208,4,160

1142 DATA128,149,0,0,170,189,29,255,08,133,42,41,3
,133,31,152

1158 DATA41,143,170,152,160,3,224,138,240,11,74,1
44,8,74,74,9

1168 DATA3Z2,136,208,250,200,136,208,242,96,177,19
3,32,194,252,0,162

1170 DATA1 ,32,254,250,0,196,31,200,144,241,162,3,
192,4,144 ,242

1188 DATA96&,148,185,55,255,0,133,40,185,119,255,0
,133,41,169,0

1198 DATAD,16@,5,5,41,38,40,42,136,208,248,105,43
,32,210,255

120@ DATAZ@2,208,236,169,32,44,169,13,76,210,255,
32,212,250,0,32

1218 DATA1@S,2%0,8,32,229,250,0,32,105,252,0,1462,
2,0,134,40

1220 DATA149,158,32,21@,255,32,87,253,0,32,114,25
2,0,32,202,252

1230 DATA®,133,193,132,194,32,22%,255,240,5,32,47
,251,0,176,233

1242 DATA74,71,248,0,32,212,250,8,149,3,133,29,32
,62,248,0

125@ DATA32,161,248,0,208,248,165,32,133,193,145,
33,133,194,76,70

1262 DATA2S2,0,197,48,240,3,32,210,255,96,32,212,
250,0,32, 105

1272 DATAZ2S0,0,142,17,2,142,3,32,204,250,0,72,202
,208,249,162

1280 DATA3,1@4,56,23%,43,160,5,74,110,17,2,110,16
v2,136,208

1298 DATAZ44,202,208,237,162,2,32,207,255,201,13,
240,30,201 ,32,240

1300 DATA245,32,208,254,8,176,15,32,156,250,0,164
,193,132,194,133

1310 DATA193,169,48,157,16,2,232,157,16,2,232,208

18



,219,134,40,162

1320 DATA®,@,134,38,240,4,230,38,240,117,142,0,0,
134,29,165

1338 DATA38,32,217,252,08,166,42,134,41,170,188,55
,255%,8,189,119

1348 DATAZSS,0,32,185,254,0,208,227,162,6,224,3,2
28,25,144,31

1350 DATA24@,21,165,42,201,232,169,48,176,33,32,1
91,254,0,208,204

1368 DATA3Z,193,254,8,208,199,136,208,235,6,42,14
4,11,188,48,255

1378 DATAD, 189,42,255,0,32,185,254,0,208,181,202,
208,209 ,240,10

1380 DATA32,184,254,0,208,171,32,184,254,0,208,16
6,165,40,197,29

139@ DATA208,160,32,105,250,0,164,31,240,40,165,4
1,201,157,208,26

1408 DATA32,28,251,08,144,10,152,208,4,165,30,16,1
0,76,237,250

1410 DATAQ,200,208,250,165,308,16,246,1464,31,208,3
,185,194,0,0

1420 DATA145,193,136,208,248,145,38,145,193,32,20
2,252,08,133,193,132

143@ DATA194,149,158,32,210,255,160,65,32,194,248
,0,32,84,253,0

1440 DATA32,45,250,0,32,84,253,0,169,158,32,210,2
55,76,176,253

14%5@ DATAD,148,32,191,254,0,208,17,152,240,14,134
,28,166,29,221

1460 DATA16,2,8,232,134,29,166,28,40,96,201,48,14
4,3,201,71

1470 DATA96,56,96,64,2,69,3,208,8,64,9,48,34,69,5
1,208

1480 DATAB,64,9,64,2,69,%1,208,8,64,9,64,2,69,179
,208

1490 DATAS,64,9,8,0,34,68,51,208,140,48,0,08,17,34
,68

1500 DATAS1,208,148,68,154,16,34,48,51,208,8,64,9
,16,34,68

151@ DATAS1,20@8,8,64,9,98,19,120,149,8,0,33,129,1
30,0,0

1520 DATA®,0,89,77,145,146,134,74,133,157,44,41,4
4,3%5,40,36

1539 DATAB9,0,0,88,36,34,0,0,28,138,28,35,93,139,
27,161

1540 DATA157,138,29,3%,157,139,29,161,0,0,41,25,1
74,105%,168,25

1558 DATA3S,3s4,83,27,35,36,83,25,161,0,0,26,91,91
, 165,105

154@ DATASL,36,174,174,168,173,41,0,8,124,0,0,21,
156,109,156

19



1578 DATA146S,105,41,83,132,19,52,17,165,105,35,16
2,216,98,90,72

1580 DATA3S,98,148,136,84,48,200,84,104,68,232,14
8,0,0,180,8

1590 DATALS2,116,180,40,11@,114,244,204,74,114,24
2,164,138,0,0, 170

1600 DATAL&2,162,116,116,116,114,68,104,178,50,17
8,0,8,34,0,0

1610 DATAZG,26,38,38,114,114,134,200,196,202,38,7
2,68,68,162, 200

1420 DATASS,%9,82,77,71,88,76,83,84,70,72,48,80,4
4,55,66

1630 DATA249,0,53,249,0,204,248,0,247,248,0,86,24
9,0,137,249

1640 DATAB,244,249,8,12,250,8,62,251,0,146,251,0,
192,2%1,0

1650 DATASG,252,8,91,253,0,138,253,8,172,253,8,70
,248,0,255

1660 DATA247,0,237 ,247,8,13,32,32,32,80,67,32,32,
g3,82,32

1678 DATA&S,&7,32,88,82,32,89,82,32,83,80,0,0,0,0
1688 DATA-1

READY .

B#*
PC SR AC XR YR 8P
.;0008 38 Q0 08 0O Fé

.:0808 20 1A 08 &4 @@ 99 22 93
:@8@8 12 1D 1D 1D 1D 53 55 50
.:108108 45 52 20 346 34 2D 4D 4F
.10818 4E @@ 31 08 &4E 0D 99 22
.:0820 11 20 20 20 20 20 20 20
.:@828 20 20 20 20 20 20 20 20
.:@838 0@ 4B @08 78 0@ 99 22 11
.:@838 20 2E 2€ 4A 49 4D 20 A2
.:1@840 55 54 54 45 52 46 49 A5
.1@3848 AC 44 Q0 &6 08 82 @0 9E
.1@858 28 C2 28 34 33 29 AA 32
:@858 35 36 AC C2 28 34 34 29
.:10868 AA 31 32 37 27 00 00 G0
.:@8468 AA AA AA AA AA AA AA AA
.1@878 AA AA AA AA AR AA AA AA
.:@878 AA AA AR AA AA AA AR AA

20



. : 28608
. 310888
. 20890
. 20898
. s 08AA
. 108A8
. 2 @8B0A
. : 0888
-3 @8C0
.2 08C8
. :@8Da
- $@8D8
. 1 OBED
. s @8ES8
.t A8F@
. s08F8
. 10900
. 10908
~.s@910
.:10918
. 30920
. 20928
. 80930
. 10938
. 3$@094@
.1@3948
. 50930
. 1 @958
.1 0960
. 1 @948
.10970
.30978
. 30960
- 3 @988
. 10992
. 310998
. 1 09A0
. 1@9A8
. 2 898G
.1 Q9B8
.1@9C0O
.31@9C8
. 3$@39DA
. $@9D8
. s @9EQ
. 2 B9E8
. $@9FQ
.1 O9F8
. : 3A0A
. £ 2A@8
.1 2A10

21



.:1@A18
. 1 BA20
. 1 0A28
. $@A30
. 3@A38
. 1 BA40
.1 BA48
. 1 BASA
. :@AS8
.t BALA
. 10A468
. 1BA7Q
. 10A78
. 1 0ABA
. 10AB8
.31 BA98
. 1@A98
. 1 BAAB
. 1 BAAB
. s BABB
. 1 @ABB
. s BACB
. 1@ACE
. 1 3ADD
. 10AD8
. 1 OAED
. 10AEB
. 1 DAFQ
.t @AF8
. 1 2B20
. 10808
.10B12
.10B18
.10B20
. 10B28
.t OB3Q@
.1 @B38
. 1 8B40
. 18848
. $ OB50
. 1 @BS8
.10B&60
.1 0B&8
.1 0B70
. 10878
. s OBBA
. 12888
.t BB90
. 1@B98
. 1@BAA
. 1@BA8



. 10BBA
. 1@8BB8
.t @BCA
. :@BC8
. $@BDO
. 1@BD8
. 1@BEQ@
.t @BE8
. 13BFQ2
. 10BF8
. 10C0a
. 18Ca8
.1@0C10
.1@C18
. 1@8C28
.10C28
. 18C30
. 10C38
. 1@C40
-1 08CA8
. 31 OCSa
. 3 @C58
. 10C60
. 10C48
.1@C70@
.21@C78
.10C8a
. 3@0C88
. 10C9a
.1@3Co8
. 10CAR
. 1CAB
. :@CBO
. 21 @CB8
. 18CCO
.1 @CC8
. 1 3CDO
. 18CDh8
- 1 @CEQ
. 18CES
. 10CF@
. 1@CF8
. s @Dboa
. 1@Da8
.31@D1@
-10018
- 3 8D203
. 1@D28
. 18D30
. 18D38
. 1 @D4G

23



. 1@D48
. 1@3D50
. 18D58
- 1@D6O
. 31 @D&6B
. 10D70
.1@D78
. 1 QD80G
. 10D88
. $@D90
. 1@D98
. 1 BDAG
. 1 @DAB
.1 8DBA
. 1 3DBB
. 1@8DCA
.1 08DC8
. 1 @DDA
. 1@DD8
. 1 @DEQ
. 1 @DEB
. 1 @DFQ
.1 @DF8
. 1 BE@G
. 10EA8
.3 PELD
.3QEL18
.t BE20
.1 0E28
. 10E30
. 1@E38
. 1BE4Q
- 10EAD
. $BESS
. 1 BESS8
.t BE6D
. 1@E&L8
.1 QE7@
.1 @E78
.1 0EBB
.1 BESS
. 10E9@
. 1BE98
. $@EAB
. 1 @EA8
. s BEBO
. 1 @EB8
. 1 0ECB
.t @EC8
. 10ED@
.1 @EDB8

24



. 31B0EEQ
. s @EEB
.t BEFQ
. s OEF8
. 3 OF20
. 3 BFQ8
~.s@F10
.18F18
. 1 OF2@
. 1 OF28
. 1 BF30
.1 @F38
. 3 @F40
. 1 @OF48
. 1 OFS0
. 1 OF 58
. 10F 6@
. 1@0F &8
. 10F78@
.1@F78
. 10FB8a
. s @F88
. $OF9@
. 1OF98
. 1BFAB
. 1 @FAB
. 10FBO
. 1t @FB8
.1 OFCa
. 1@FC8
. 1 @FDO
. 1 @FD8
. 1 OFEQ
. 1 OFESB
.t OFF@
. 1 OFF8
. 11000
. 31008
.310102
.21818
-.11020
.5 1@828
-.11030
. 11838
.1 1040
. 110348
- 11050
. 210858
.31060
- 318468
.31078

25



.21078
.:1080
. 11088
.11090
.11098
.3 10A0
.110A8
.110B@
. 11088
.110C8
.510C8
.318D@
.11@8D8
.1 10EQ
.1 10E8
.110F@
.3 18F8
.11100
.11108
.11110
.11118
.11120
.31128
.:1113@2
.31138
.11140
.21148
.31150
«.11158
.21160
.21168
.11170
.11178
.2118@
.11188
.211190
.11198
.111A0
.3111A8
.:111B@
.311B8
.:11C02
.:111C8
.211D@A
.211D8
.3 11E@
.211E8

26



Saving Supermon

When your Basic program has successfully entered the data, you will
need to save the machine code version of Supermon. To do this, enter
the following in direct mode:

FOKE 44,8:FOKE 45,235 POKE 46,17 : CLR <press return>

You now have a working copy of Supermon in memory, and a normal
save to tape or disk will save it for you.

Using Supermon

To load Supermon use a normal load and run. This will load and
initialise Supermon. It is advisable to exit the monitor at this point (see
exit command) and new the Basic area. To re-enter Supermon enter
5YS 8 < press return > in direct mode: this command will always take
you back to the monitor unless run/stop and restore has been pressed.

Supermon colours

Anvyone familiar with Supermon 64 will be aware that the colours are
none too good on an ordinary television (I must buy a real monitor),
so using the advice Jim gave in an article for those of us who don't
like the colour combination | changed them! You may not like my
choice, so | will explain how to change the colours.

Load Supermon and run it. This will put you into the monitor with
the colours | set. To change the colours temporarily enter the following
command:

.H 9TED 9FFF A9 98 20 D2 FF

This should give you one or possibly two locations. Change the 98
to the ASCII code for the colour you require.

Now you will need to change the other colours. Enter the following
command:

H 37ED 9FFF A% SE 20 D2 FF

27



This will give you about thirteen locations. Change the 9E (ASCII
code for yellow) to the colour you require. This will only give
temporary changes; to make permanent changes you will need to

make the hunt from the beginning of Basic:

JH Q828 11EF. ..

Instructions

Below is a full list of Supermon 64 instructions. The left-hand column
gives the command, the middle column contains the syntax, and the
right-hand column the action.

Command

Simple Assembler

Disassembler

Printing
Disassembler

Fill memory

Go run

Hunt memory

Load

28

Syntax

LA Cog@ LDY #4020

.D Coou

F Cona Clo9

F Code Clo@ AA

G Chon

H Cod@ C12a@ STAR

.L"filenane", @8

Action

starts assembly at
$C000 hex.

disassembles from
$C000 hex onwards

disassembles to
printer once
engaged with
OPEN4,4.
CMDA4:SYS8.

fills memory from
CO000 to C100 with
the hex byte AA.

jumps to $C000 hex
and executes
program there.

hunts through
memory $C000 to
$C100 hex for the
ASCIi string STAR.

loads a program
from disk into
memory.



Memory display

Register status

Save

Transfer memory

Exit to Basic

M Coge Coza

LB8%nn", 08, Coaa, C120

LT Cogn Clog C200

displays memory
from C000 to C020
hex.

displays current
register values.

saves memory from
C000 to C100 hex
onto disk and calls
it nn.

transfers contents
of memory in the
range CO00 to C100
hex to new start
address of C200
hex

return to Basic and
perform a CLR
before doing
anything else

29



2. Protection

A trick of the trade?

The word ‘protection’, when applied to computer programs, often con-
jures up the idea of an impenetrable defence. However, protection
is merely a trick of the trade, in other words some fancy routines that
a programmer has added to his program in order to make it harder
to unravel and examine or copy it.

There is still a lot of talk and speculation about pirating, but not much
action. The software houses would look pretty silly if they tried to sue
one of their customers who made a one-off copy for a friend. Although
they should be protecting themselves against large-scale copying and
selling, perhaps profits don‘t warrant it.

Having decided that there is no such thing as a piece of totally pro-
tected software and that any program is only as well protected as the
programmer wishes to make it, we can look at various aspects of pro-
tection relating to the 64.

| always think of protection as being two distinct areas and label them
internal and external protection. The terms are very easily explained.
internal protection refers to all methods of protection within the main
program. That is, routines that stop the user from examining, saving
or abusing the main program in any way after the program has been
loaded and executed.External protection is any routine used as a loader
for the main program, and is normally only used for this purpose and
then discarded, e.g. an auto-run would only be used to load and exe-
cute a program and then would be of no further use. External protec-
tion may well be used in more than one way, but is not used once
all the programs have been loaded and executed.

Internal protection

Any protected program will have several layers of protection. If the
program is tape based then some of the layers will be inside the pro-

30



gram. Probably the best internal protection | have seen has come from
Terminal and Legend software. There are several points to remember
when writing internal protection:

1. The run/stop and restore keys should be disabled or reassigned.
2. Unwanted 1/0 facilities should be disabled or reassigned.

3. The program should be hidden and perhaps scrambled.

4. On the 64 the ROM could be switched out as could the Kernal (tricky
though); Valhalla achieves this nicely.

5. The program will be hard to copy or examine if it is split up.
6. The screen, character set and the start of RAM can be moved.

7. More than one of these routines should be used - possibly two or
three.

8. A final caution is to reset the 64 or preferably crash it if all of the
above fail, thus protecting the program by brute force.

It may well be a good move to purchase one of the advanced books
on the 64, giving memory maps and descriptions of the chips, if you
have not already invested in one. This information does not come
within the scope of my book. However, you will be able to use the
information in this book on its own.

To put the above suggestions into action you will need to have a good
understanding of how they work, so read on.

Disabling run/stop & restore

Much has been written about disabling these keys on the 64, but it
will not hurt to recap on the information. The ‘key’ to the run/stop
and restore keys on the 64 is in locations 808 and 809 decimal, $0328

and $0329 hex. This is the Kernal stop routine vector.

The contents of these locations need to be altered to disable one or
both the these keys. Try entering the following in direct mode:

PRINTPEEK(828), PEEK({883) <return>

31



The result should be 237 and 246, unless you have already been med-
dling with these locations. The meaning of these numbers is simply
a jump to a Kernal routine that checks for the stop key being pressed.
The routine when intialised sits at location 63213 dec. $F6ED hex.

The stop key and the stop and restore keys can be disabied from Basic
with a simple poke, but this produces complications, as we will see.
First, let's experiment a little by loading a program that is written in
Basic and then entering the following in direct mode:

POKE 288,251 <return>

Now list your Basic program and try to stop the listing by pressing
run/stop. It worked? Good, now list the program again and press both
run/stop and restore keys. Not so good, the listing stopped and the
run/stop key is no longer disabled.

One more experiment: enter in direct mode:

POKE 808,237 <retumn >

to reset the stop key. Then enter, again in direct mode:
FOKE 808,225 <return>

Try pressing the run/stop and restore keys together, and hey presto!
it worked. However, if you list your Basic program you will get a weird
display on the screen. Don’t worry, the program is still there but the
listing is corrupted. In fact the program will still run: try it. Perhaps
that is worth remembering.

What our experiments have shown is that these two methods are not
very clean and a little less than perfect. What we actually need to do
is to change the vector to point at a routine of our own, so that we
can disable the run/stop and restore keys or set them up to do our
own bidding.

Below are two assembly listings which will do this. They can be located
in any available memory and may be overwritten if they are no longer
required. This would stop anyone working out how you changed the
vector. Of course you may also use the knowledge to improve upon
it or write your own routines, which is the whole idea. The routines
are given as disassembly listings, and there is also a memory dump
which is easier to enter using your by now working copy of Supermon!

32



Disable 1

This first routine will reassign the run/stop and restore keys so as to
disable them. An explanation of the routine is hardly needed, but brie-
fly, the first instruction sets the interrupts; the second instruction loads
the new high byte for the stop vector; the third instruction stores the
new high byte in the high byte of the stop vector; the fourth instruc-
tion loads the low byte of the new stop vector; and the fifth instruc-
tion stores it in the low byte of the stop vector.

Once this part of the routine has been called, any time the run/stop
key is pressed Disable 1 points to a new routine which starts at loca-
tion 4109 decimal $100D hex. This part of the routine simply places
the value to disable the run/stop into the accumulator and returns.

The run/stop and restore keys are now disabled. The first part of the
Disable 1 routine is used to point to the routine at $100D hex, but the
second part can be set to do just about anything!

B*
PC SR AC XR YR SP
.}0008 30 20 00 @0 Fb6

1880 78 SEl

1081 A9 @D LDA #$0D
100X 8D 28 03 STA $0328
1006 AT 10 LDA ##10
ioes 8D 29 @3 STA $0329
1008 58 CcLI

100C 4@ RTS8

10@D AS 91 LDA #71
100F &0 RTS8

.11008 78 A? @D 8D 28 @3 A? 10
.21008 8D 29 @3 58 6@ AS 91 A0

33



Disable 2

Only the second part of this routine need be explained, from location
4109 decimal $100D hex, as the first part is identical to Disable 1. With
this routine any press of the run/stop key will point to our new rou-
tine starting at $100D. A jump is then made to location $FCE2 which
is the entry point for the reset routine and will reset the 64.

Although this looks quite good and seems to be effective, there are
drawbacks. After the 64 has been reset with a call to $FCE2, any Bas-
ic program in RAM has the first two pointers removed, but the rest
of the program is still there and can be recovered. Secondly, if the
program in memory is in machine code then the whole program is still
there intact and can be got at with a good machine language monitor
and enough knowledge.

B*
PC SR AC XR YR SFP
.3 0008 33 B0 @@ @0 Fb6

1000 78 SEl
1001 AT @D LDA #s$@D
10@3 8D 28 @83 STA #2328
1006 AT 10 LDA #¥10
198 8D 29 @3 STA %0329
i00B 358 CLI
i@ac &0 RTS8

10@D 20 E2 FC JB8R $FCE2

.11000 78 A9 @D 8D 2B @3 A? 10
.11008 8D 29 B3 58 4@ 20 E2 FC

34



Disable 3

This routine has the edge on the above two for internal protection.
It does not actually stop the program at any point or lock the run/stop
and restore keys. In essence it re-runs the program if the run/stop key
is pressed. For our purposes it has been set up to re-run a Basic pro-
grarn, but could easily be altered to point to the beginning of a machine
code program or indeed to point to some other position of any program.

Again the first part of the routine is the same as the first two routines.
The second part at location $100D executes a JSR to $AB5E, which
is the entry postion for the CLR instruction. The next instruction is
a JSR to $AB8E, which is the entry point for the back-up text pointer
routine, and the last instruction executes a JMP to location $A7AE,
which causes the program in memory to re-run. This should keep a
great number of people busy for a long time.

B#*
PC SR AC XR YR 8P
.3 0028 30 00 00 B3 F&

1820 78 8E1

1001 A9 @D LDA ##%@D

1003 8D 28 83 STA %0328
1006 A9 10 LDA ##10

1@@e8 8D 279 @83 STA $@329
1008 58 CLI

100C &2 RTS

180D 28 SE A6 JBR $ALSE
1018 28 8E A6 JBR $ALBE
1013 4C AE A7 JMP $A7AE

B#*
PC SR AC XR YR SF
.3 0008 3@ 00 OB A0 Fé

.11080 78 A9 OD BD 28 @3 A7 1@
.11008 8D 29 @3 58 40 20 5E A&
.:11010 2@ BE A4 4C AE A7 0B o2

35



Other vectors

At this point it is only fair to mention that there are many other things
that it may be necessary to take into account when protecting a pro-
gram internally. | will attempt to cover as many as possible, but you
must remember that the only sure method of protection is to blow
up the 64; anything that falls short of this is likely to be tampered with
eventually.

If you happen to have an adequate copy of the 64's memory map then
you may have noticed a number of vectors from location 768 to 819
decimal; most of these can be altered so that programs can’t be listed,
saved or loaded. The error messages can be altered or disabled as can
the warm start vector, the open and close vector — in fact all the vec-
tors can be disabled or altered. How they are aitered and in what way
depends very much upon your individual needs.

The routines given above outline one way of disabling or resetting these
functions, and | advise that a similar method is used. However, most
of these vectors and links can be altered from Basic and in order to
give you a taste of what is possible | have included here a list of the
pokes and what they do to include in your programs and experiment
with.

To disable the ‘list' command is very easy. Simply enter POKE 775,200,
and this will prevent any prying eyes from looking at your listing. To
return to normal enter POKE 775,167.

To disrupt the load and save commands is fairly easy; the two pokes
given simply swap commands: POKE 816,237:POKE 817,245:POKE
818,165:POKE 819,244 < return > . Any load or save command will now
produce the opposite. To disable the error messages enter POKE
768,226:POKE 769,252 < return >. This will cause any error encoun-
tered to simply reset the 64. You may wish to alter it to point to some
other routine in ROM or a routine of your own. Although this is fairly
simple, it may be important to change the load and save commands.
If this is so it would be better practice to set the 64 to crash on any
1/0 operations. Resetting location one on an 1/0 operation would
achieve this nicely. Don’t forget the open and close command vec-
tors and the 1/0 links.

36



Moving Basic

Although this is not in itself a protective measure, it can be added to
aid you in your attempts to fool, confuse and generally beat potential
pirates (don‘t get paranoid, though!).

When the 64 goes through its power up routines the start of Basic
RAM is normally at 2048 decimal $0800 hex. This can easily be altered
by changing locations 43 and 44 decimal (start of Basic pointer). By
changing the contents of location 44 decimal the page that Basic starts
at can be altered and by changing the contents of location 43 the num-
ber of bytes from the top of the page can be altered.

At power up location 44 contains 8 and location 43 contains 1. This
points to location 2049 decimal, although in reality Basic starts at lo-
cation 2048. The first position of the start of Basic must contain a zero
or very strange things happen. Every 1 added to location 44 moves
Basic by one page and every 1 added to location 43 adds 1 byte to
the start of Basic. To set the start of Basic to 2304 decimal (up one
page) enter the following:

POKE 2304, 0 :POKE 44,9 <return>

This not only moves the start of Basic but also leaves some room for
machine code routines from 2049 to 2303.

To re-cap, so far we have covered some of the possibilities for inter-
nal protection. They include disabling and resetting the run/stop and
restore keys; locating and changing other vectors and links; and moving
Basic. Once you have mastered the above you will begin to see how
powerful protection can be. There is much more, however, so read on.

Scrambling programs

It is possible to save programs in a scrambled form and use the same
routine to unscramble them. This is very useful because it is difficult
to unscramble the program unless you know how it was scrambled
in the first place.

Scrambling programs is almost but not quite as simple as scrambling

eggs. The idea is very simple, but effective. The key is the exclusive
or (EOR) instruction. Using this command different bytes of memory

37



may be scrambled. The magic comes when you use the EOR instruc-
tion on the same part of memory a second time: it restores it to its
original state.

The power of this is fairly obvious: you will be able to make your pro-
grams meaningless until they go through the scrambling routine a se-
cond time. The way | use the routine is to scramble the programs and
save them, then have the same routine unscramble them when they
are loaded and before any attempt to run them is made, since they
will not work until they are put through the routine a second time.

Warnings

There a few things to remember before using this method. The pro-
gram you wish to scramble should be EOR‘d with a stable part of
memory (in the example, $A000 hex on) like the ROM. It is no good
if the part of memory used is unstable.

Secondly, the first routine given below is a simple version of the two
pass scrambler and only deals with one page of memory (256 bytes).
It is fairly easy to make it do more, but first you should check the size
of the program you are attempting to scramble carefully. Then see
the second routine below.

The first routine scrambles a page of memory from 2112 decimal $0840
hex. The routine starts at 49152 decimai $C000 hex and is called by
SYS49152. The best way to get to grips with it is to experiment. Load
a program that uses normal memory and execute the routine. Try list-
ing the program, which should be garbage now, but don‘t panic! Ex-
ecute the scramble routine again and list the now restored program!

B
PC SR AC XR YR SP
.30008 30 20 00 2@ Fo6

cooe A2 20 LDX #$00

Cea2 BD 40 @8 LDA $084@,X
Cees SD 00 AB EOR $ADGA,X
cees8 9D 40 @8 8STA $0840,X

CeeB EB INX
ceac Do Fa BNE #C002
COQE &40 RTS8

38



.1COB0 A2 @@ BD 40 @8 SD 8@ AQ
.:Con8 9D 4@ @8 EB DB F4 460 Q0

To extend the number of pages that are scrambled you will need to
add some more instructions. For instance, to scramble four pages start-
ing from 2048 decimal $0800 hex the routine would look like this:

B*
PC SR AC XR YR 8P
.30008 30 QB @2 09 F&

Ceae A9 AD LDA #$A0
ceez 85 FC 8TA $FC
Coo4 A7 @8 LDA #5020
Cols 8BS FB 8TA $FB
coes A9 @8 LDA #$28
COBA 85 FE S8TA $FE
coac A9 20 LDA #5022
CORE 85 FE STA $FE
C212 A2 2a LDY #$0@
ceiz Bl FD LDA ($FD),Y
ce14 51 FB EOR ($FB),Y
Cais 91 FD 8TA ($FD),Y
ceis C8 INY

cai9 D@ F7 BNE $C@12
CoiB E& FC INC sFC
CoiD Eé6 FE INC $FE
COIF AS FC LDA $FC
Ce21 C? A4 CMP #$A4
Co23 D@ EB BNE $CO10
caz2s &8 RTS

.1C02@ AY AB 85 FC A7 @@ BS FB
.1CO@8 A9 @8 8% FE A% @0 85 FE
.31CO0i® A@ 00 B1I FD Si FB 91 FD
.1CB18 CB D@ F7 E&6 FC E& FE AS
.1C0Z@ FC CY A4 DD EB &2 80 00

39



This is slightly different from the first scramble routine in that it actu-
ally uses four zero page locations to store the current ROM and RAM
bytes, the Y register is used as an offset and the program continues
until the check $C021 is true and four pages of RAM have been scram-
bled. This program must be used again to restore the program.

Finally, here is a third scramble routine. In essence it is the same as
the above except that it uses $FF hex to ‘exclusive or’ the program
and it is not necessary to use the ROM. It is set to go through the
normal RAM from $0800 hex to $9FFF hex. You may alter this if you
wish, by altering the value in the CMP instruction.

B
PC SR AC XR YR SP
.30008 30 02 20 BB Fé

Cooo A9 o8 LDA #%08
cea2 a5 FC 8TA $FC
cCoe4 AT 22 LDA #%00
ceas 85 FB STA $FB
coes A0 208 LDY #$0@
CodA B1 FB LDA ($FB),Y
colC 49 FF EOR #$FF
CeRE <91 FB STA (S$FB),Y
ceio C8 INY

ceii D@ F7 BNE $CO0A
cei3 E6 FC INC $FC
Ce1%5 E6 FE INC $FE
Ca17 AS FC LDA $FC
Cai9 C9 A0 CMP #%A0
Co1B D@ EB BNE $C@es
CoiD &0 RTS

.1CO00 A9 @8 85 FC A9 @@ 83 FB
.1Coe8 A@ @@ Bl FB 49 FF 91 FB
.1C010 C8 DB F7 E6 FC E& FE AS
.1C018 FC C? A2 D@ EB &2 @0 00

40



In some cases it may be necessary to replace the first three bytes of
RAM by hand {locations 2048 ,2049 and 2050), so check these before
you scramble the program. '

These routines are called with a SYS 49152,

Screen and character set

It is also possible to have more than one screen and character set on
the 64. This is included here because it can aid protection, though it
is not any protection on its own, as is the case with many of these
routines. The keys to moving the screen are the screen memory pointer
at location 648 decimal $0288 hex and location 56576 decimal $DD00
hex which switches banks.

At power up the content of location 648 is 4, which points to 1024
(4 x 256). By altering the contents of this location we can move the
screen. Try poking a higher value into 648 — it's messy — sowe need
to alter some other things in order to set up our new screen.

In order to move the screen it is necessary to make sure that the VIC
chip can access all the information it needs. This means changing the
screen pointer, switching banks, switching character sets and ensur-
ing that the VIC chip is looking at the right part of memory.

To show how to do this, there is a Basic program which places the
screen at 50176 decimal, the character set at 53248 decimal, and selects
bank 3, which looks at memory from 49152 decimal $C000 hex to 66535
decimal $FFFF hex.

1@ FPOKE S56333,127:REM #xx SET INTERRUPTE ##%

20 POKE 1,51:REM ##*#% SWITCH IN CHARACTER GENERATOR
ROM %%

30 FOR I=0 TO 4095:REM #**x LOOP TO #*#%x

4@ POKE 53248+1,PEEK (53248+1):REM ##% MOVE COMPLET

E CHARACTER SET #x#

5@ NEXT 1:REM #x% END OF LOOP #¥x

6@ POKE1 ,55:REM *x%* SWITCH OUT CHARACTER GENERATOR
ROM %%*

70 POKE S56333,129:REM w+#x RESET INTERRUPTS %%

8@ POKE 648,196:REM #x#% SET POINTER FOR SCREEN #%*#%
90 POKE S56576,4:REM #%# SELECT NEW BANK #%¥

100 POKES3272,21:REM: ENSURE VIC CHIP KNOWS WERE T

0 LOOoK

41



11@ PRINT" NEW SCREEN READY":REM ##% CLEA
R SCREEN AND DISPLAY MESSAGE #%#%
120 END

READY.

The program is documented with REM statements, but briefly: the
interrupts are set; the character generator ROM is switched in; the
character set is read in; the character generator ROM switched out;
the interrupts are reset. So far this is fairly common stuff, but line 80
resets the screen pointer, and the next poke switches banks. Finally
the VIC chip is set to ensure that it can see the screen and the charac-
ter set.

To place the screen elsewhere in memory you will need to change the
screen pointer at location 648 decimal, the bank selection at location
56576 decimal and the pointer to the character set 53272 decimal. You
may also need to place the character set elsewhere in memory. Good
luck with your calculating! It is worth mentioning that the colour
memory on the 64 is not movable, so that's one less headache.

A faster version!

If you have just entered and tried the above Basic program and are
at this moment cursing me and kicking your 64 because it doesn‘t seem
to be doing anything, my apologies. The routine does work, but takes
an awful long time to transfer the complete character set. Here’s the
same thing in machine code with a memory dump for those of you
in a hurry. It is incredibly quick and does the same thing as the Basic
program.

B*
PC SR AC XR YR SF
.30008 B1 27 @1 C4 Fé

100@ 78 SE1

1081 A% 33 LDA #$33
1283 85 @1 STA $01
1005 A7 D@ LDA #$DO
1207 83 FC STA $FC
100% A7 20 LDA #$00
100B 85 FB STA $FB
100D AQ 02 LDY #$00
180F Bi FB LDA ($FB),Y
1211 91 FB 8STA ($FB),Y
1813 C8 INY

42



1214 DO F? BNE $100F

1816 E& FC INC $FC
1218 AS FC LDA $FC
121A C9 E@ CMP #$EO0
19iC D@ EF BNE $1@0D
1B1E AT 37 LDA #$37
1228 €85 01 STA $01
1@22 58 CLI

1823 A7 C4 LDA #$C4
1225 8D 88 02 STA %0288
1828 A9 @4 LDA #%$04
1M2A 8D @@ DD STA $DDR@
1@2D A9 15 LDA #$15

1@2F 8D 18 D@ STA $D@18
1032 2@ 44 ES JSR $ES44
1835 60 RTS

This routine uses the same technique as the scramble routine. The
position it occupies can of course be easily changed to please you.
The assembly listing is provided and will explain what it is doing. A
final point to mention is that the character set has not been re-defined,
but just swapped; anyone wishing to add user-defined characters must
add their own.

Other forms of protection

All other forms of protection are tricks that are either external protec-
tion or a mixture of internal and external. The first point to make is

43



that any program loaded from tape uses the cassette buffer and places
the name.of the program and the start and end addresses of the pro-
gram in the buffer. Address 828 decimal $033C hex holds the secon-
dary address for the load. In other words, whether it is a LOAD”” or
LOAD””,1,1 or LOAD"”,1,3. The first is an ordinary load; the second
loads back into the memory it was saved from and the third signifies
an auto-run!

The start and end addresses of programs are held in addresses 829
to 832 decimal. 829 holds the low byte and 830 the high byte of the
start of the program, 831 holds the low byte and 832 the high byte
of the end of the program. So it is sometimes possible to calculate
where in memory a program is using these locations. The filename
is also stored in the locations after 832 decimal. Experiment with this
and see what you get?

Protected software

Most commercial software has some protection. For some reason a
number of games writers still use loaders for the 64. Usually these load-
ers set up some parts of the 64 and load the main program. The load-
ers often look like the sample below (for tape):

19 C=C+1:IF C=2 THEN SYS 43132
20 LOAD"", 1.1

This is a simple example, but we can learn something from it. In line
10 the variable ‘C’ is not initialised; on the 64 it is assumed to be zero
if there is no other reference to it. So on line 10 ‘C’ is set to one and
a check is made for C having the value of two. On the first pass it
has a value of one and line 20 then loads the next program on the
tape into the memory it came from.

This of course applies only to machine code programs. If the variable
‘C’ was not used and we had a loader like:

1@ LOAD"", 1,1
20 5Y5 459152
it would never be called as line 10 would be repeated eternally! This

is because after a load from a program a run is performed and the
circle begins. This kind of loader can also apply to programs from disk,

a4



but is normally only used to load more than one program from disk.
An example might look like this:

1@ C=C+1:IF C=3 THEN §¥549152
2@ IF C=2 THEN LDAD"file 2",8
3¢ LOAD"file 4.8

This will load two programs into the 64 from disk and call one of
them. It is always worth paying a lot of attention to loaders. They
are often used to protect things from prying eyes as well as set up
sprites and character sets.

It is interesting to note that any ‘awkward’ program could usefully
be explored by the command OPEN1 for tape, which will find the
header and stop. If there is a routine in the header it will then have
been loaded and will probably be in memory somewhere above or
below the filename (tape buffer). Have a look at the tape buffer to
discover if anything has loaded or have a look around location $0351
hex or $02A5 onwards.

Auto-run

A complete auto-run does not come within the scope of this book,
but we can still discuss it in detail. The idea is to have a program loaded
into the 64 and on completion of the load execute the program. The
secret is in how it is saved. One very effective way of doing this is
to save the loader and the ‘run’ in the header. To do this you will need
to write a short program that actually saves a piece of code in the
header and then saves the main program. The save and load may not
be done in the usual way and wili take some practice before you get
it perfect. It is a good idea to have a look at an already existing auto-
run, so | will include a limited auto-run and some other techniques
to get you started. First, it is possible to manipulate a program from
tape or disk using the keyboard buffer which is located from 631
decimal $0277 hex to 640 decimal $0280 hex. This gives you ten
locations, and although it is possible to extend the keyboard buffer
it is not always advisable.

Any characters stored in the keyboard buffer remain there until the
program halts unless they are overwritten or the number exceeds the
limit of the buffer. Therefore commands can be placed in the keyboard
buffer and left there to execute when the program stops. You could

45



also force a program to stop and execute commands in the buffer and
then jump back to the program.

It is equally easy to use the buffer from Basic or machine code. You
should always remember that location 198 decimal $C6 hex, which
is the pointer for the number of characters in the buffer, should be
written to. Let's have a look at a small example:

18 POKE 631,131:POKE 198.1
2@ END

This will put 1 into the buffer counter and the token for SHIFT/RUN
into the first location of the keyboard buffer and will load and run the
next program on tape. Itis also possible to put most other commands
into the buffer (though not all at once) and have them execute when
the program stops.

The ASCII codes for the commands can be calculated from the tables
in your manual. If we wanted to hide the fact that anything was
happening, the colours the commands were printed in could be set
to the background colour, although messages would still have to be
visible.

Each Basic command has a token, and this may be placed in the buffer
rather than the full command (e.g. L SHIFT O instead of LOAD). In
fact each command has a single number as a token. This is harder
to calculate but may be gleaned by looking at the keyword table $AO9E
to A19D hex. This will allow you to place more commands into the
buffer.

A limited auto-run

Now on to the auto-run. | have placed it from location $C000 to $COE2
hex. This may not suit your needs. Remember to change the jumps
and storage if you relocate the routine.

B#*
PC SR AC XR YR SP
.;0008 3@ 00 0@ @0 Fé

Cooe AS 2B LDA $2B
coez2 80 D9 Co STA $CAD?
cees AS 2C LDA $2C

coa7 8D DA CO STA $CADA

46



coon
caac
E8eE
cail
cai3
co1s
ceis
ceiAa
ce1p
Co1F
caz2
coaza
cozé
cezs
cazaA
cezc
Co2F
casz2
CB33
cass
cess
caza
caxc
Ca3F
cesz2
caa4
cea7
co49
co4ac
C@4E
ceS1
cas3
cass
cess
cesa
ceasb
CasF
Cas&2
Cos4
cas7
Cos7
CasB
Cca&b
CasF
co71
ca74
cezé
ca7e
ca7B

cazD
ca7r

a3

a3
ca

ce

ce
a2

El
El
coe
ce

ce

ce

23
23
a3

a3

FF

FF

FF

LDA
8TA
STA
LDA
STA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDX
LDA
STA
DEX
BPL
JSR
LDA
8TA
JSR
LDA
8TA
LDA
STA
L.DA
STA
LDA
STA
LDA
sSTA
LDA
STA
LDA
s8TA
LDA
STA
LDA
sSTA
L.DA
LDX
LDY
JSR
L.DA
JSR
LDX
LDy
L.DA
JSR

#+AS
$2B
*0302
#3502
$2C
$23@3
2D
$CaDB
$2E
$Ccapc
#+03
$2E
#5024
*2D
#4355
$CRa3,Xx
$02A5,X

$CO2C
$E1D4
#$03
$B9
$E159
$COD?
$2B
$CODA
$2C
$C@DB
$2D
$Cenc
$2E
#S$ED
$0332
#SFS
0333
#$683
$0302
#$A4
$0383
#500
$9D
#$01
o1
#$01
$FFBA
#$00
$FFBD
$2D
$2E
#$2B
$FFD8

47



ces2 &0

ce83 A7 83
cesS 8D @z a3
cas8 A% A4
CasA 8D QO3 03
cash A7 0@
CasF 85 9D
ce?i 28 DS FF
Ca94 A% 01
CR96 AA

cas7 A8

ce9s8 20 BA FF
Ca9B A9 00
CasD AZ 0@
CQ9F AD @@
CoAl 20 BD FF
CoA4 A9 FB
Coas BD 28 B3
CBAT A% F&
CoAB 8D 29 03
CRAE A9 @2
Cero 8Db 20 D2
C@B3 A7 0@
C@BS 28 DS FF
cCepB8 86 2D
COBA 86 2F
CeBC 86 31
CeBE 84 2E
cece 84 3@
cecz 84 32
CaC4 A9 F&
Clcs 8D 29 @3
Cece A9 ED
Cece 8D 28 @3
CaCE A? @@
Caped 20 SE Aé
CaD3 20 8E AL
Capné 4C AE A7
caDp? oo

tCOBd AS ZB 8D
:C2e8 DA Ca A%
:C210 83 A9 02
:Cai18 AS 2D 8D
:CO20 DC C3 A9
10028 85 2D A2

RTS
LDA
8TA
L.DA
STA
LDA
8TA
JSR
L.DA
TAX
TAY
JSR
LDA
LDX
LDY
JER
LLDA
8STA
LDA
STA
LDA
STA
LDA
JSR
8TX
8TX
sTX
sTY
8TY
sSTY
LDA
8STA
LDA
STA
LDA
JSR
JSR
JMP
BRK

D% Ce
AS B85
85 2C
DB Co@

5SS BD

#$83
$A302
#$A4
$0303
#£00
$9D
$FFDS
#$01

$FFBA
#+Q20
#$00
#$00
$FFBD
#$FB
8328
#EF 6
$0329
#£02
$DR20
#$00
$FFDS
$2D

$2F

$31

$2E

$30

$32

#$F6
$0329
#$ED
0328
#$20
$ALSE
$ALBE
$A7AE



.:CO3@ AS @2 CA 1@ F7 2@ D4 EIl
.:C@838 A7 B3 85 BY 2@ 59 E1 AD
.:C@48 DY C@ 85 2B AD DA C@ 85
.:C@48 2C AD DB CO 835 2D AD DC
.:C@858 Co B85 2E A9 ED 8D 32 @3
.2C058 A FS 8D 33 @3 A9 83 8D
.:C06@ B2 @3 A? A4 8D @3 B3 A9
.:C0B48 0@ B85 9D A% 01 A2 @1 AG
.:CO70 @1 28 BA FF A% 08 20 BD
.:C@78 FF A4 2D A4 2E A9 2B 20
.tCOB80® D8 FF 60 A7 B3 8D B2 @3
.:CaB8 A9 A4 8D B3 @3 A9 @@ 85
.:C@39@ 9D 2@ DS FF A? B1 AA AB
.:10@98 20 BA FF A7 02 A2 @0 A0
.:CoA@ OB 20 BD FF A9 FB 8D 28
.:COAB @3 A9 F& BD 29 @3 A7 @2
.:COB@ 8D 20 DD A9 ©@ 20 DS FF
.tCOB8 86 2D 8& 2F 86 31 B4 2E
.:COCO 84 3@ 84 32 A7 F& 8D 29
.:CAC8 B3 A% ED 8D 28 @3 A7 @0
.:CODB 28 SE A6 20 BE A6 4C AE
.:COD8 A7 DO 0@ 20 B0 @2 2@ 20

The first part of the routine stores the values for the start of Basic
and the start of Basic variables. It then resets the start of Basic to
677 decimal $02A5 hex (a good place for machine code). The loop
from $C02C to $C034 takes the code from $CO8A onwards and stores
it at $02A5 onwards.

A save is then performed with a name given by the user. This saves
off the code at $02A5 and the start of Basic and the other pointers
are restored. The main program is then saved off immediatedly after
this and the program ends.

The way to use this routine is by entering the following in direct
mode:

S¥S 49152"filename"

This will do the trick for a tape auto-run; the filename is optional.
When you load the program back the routine from $02Ab5 is
executed. It loads the rest of the program and disables the run/stop
key. At the end of the load a run is executed and the program starts.
This particular method is just one way of achieving an auto-run and
may not suit your needs. Try experimenting with the program.

49



One warning when saving a program with this routine: do not try to
stop it with the run/stop key. Other features could be built into the
routine like scrambling the program or a routine to reset the machine
if the run/stop is pressed. A routine to wipe out the auto —run after
it has done its work may be a good idea.



3. Printer, Disk, Tape and Other
Utilities

Some of these utilities originated from Germany (author unknown).
| have updated and revised them, but my thanks for the ideas.

Hard copy

This is a hard copy routine. Although it is not a hi-res dump it can
be quite useful. The routine is placed in zero page around the area
labelled as the tape input error log ($0100 to $0200 hex}. Some reading
and experimentation will show that this area is also used for other
things, and any routines should be placed here cautiously. However,
one advantage of placing routines here is that you don‘t get an ‘out
of memory’ message and have to new the Basic area, as you do with
routines loaded at $C000 hex, for example. The routine can be loaded
and executed in program or direct mode and is called with SYS 300.

It first places the current device number (in this case 4 for printer) into
$00BA hex and the logical file number into $00B8 hex. The secondary
address of 4 is placed into location $00B9 hex and the routine then
branches to the Kernal routine at $FFCO hex, which opens a file to
the printer.

The next instruction opens the channel for output with a branch to
the Kernal routine at $FFC9. The screen is dumped to the printer by
using locations $0071 and $0072 hex as a pointer to the start of the
screen and loading them into the accumulator where they are formatted
for output.

A branch to the Kernal routine at $FFD2 hex (output character to
channel) prints out the contents of the screen one line at a time. This
continues until the end of the screen is reached and the two Kernal
routines are used. The first, $FFCC hex, closes all input and output
channels and the second, $FFC3 hex, closes the logical file. If nothing
else this routine is a good example of using the Kernal routines on
the 64, of which more later.

51



B#®

PC SR AC XR YR 8F
.joe@8 72 @0 01 21 Fé

e12C
212E
2130
2132
2134
2136
2138
213A
213C
@13E
2142
2143
@145
21438
@i4A
@14C
@14F
2152
2154
aisé6
2158
215A
215C
@15E
2160
2162
0164
2166
2168
Q168
216C
@16E
28170
2171
2172
2174
8176
2178
ai17Aa
ai7e
@17D
@17F
@182
2185
@187

52

Ca FF

C? FF

D2 FF
E1l FF

D2 FF

L.DA
8TA
LDA
STA
LDA
LDY
STA
STY
STA
STA
JSR
LDX
JSR
LDX
LDA
JER
JSR
BEG
LDY
LDA
sSTA
AND
ASL.
BIT
BPL
ORA
BVS
ORA
JSR
INY
cPY
BNE
TYA
CL.C
ADC
8TA
BCC
INC
DEX
BNE
LbA
JSR
JSR
LDX
JMP

#$04
$BA
#$7E
$B8
#$00
#$04
$71
$72
$B7
$B9
$FFCO
$B8
$FFC9
#$19
#$0D
$FFD2
$FFE1
$0182
#$00
($71),Y
$67
#$3F
$67
$67
$0164
#$80
$0168
#$40
$FFD2

#$28
$0156

%71
$71
$017A
£72

$214A
#$0D
$FFD2
$FFCC
#$7E
$FFC3



.:012C A9 B4 B85 BA A9 7E B85 BB
.1@134 AT @@ AG 04 B85 71 84 72
.1@13C 85 B7 B5 B? 28 C@ FF A&
.:@0144 B8 28 C9 FF A2 19 A% @D
.31@14C 28 D2 FF 2@ El1 FF F@ 2E
.18154 AB @@ Bl 71 85 &7 29 3IF
.51@15C @6 &7 24 &7 10 02 B9 B8O
.10164 70 @2 @9 4@ 20 D2 FF C8
.1016C C@ 28 D@ E& 98 1B 65 71
10174 85 71 90 B2 E& 72 CA D@
.1@17C CD A% @D 28 D2 FF 2@ CC
.1@184 FF AZ 7E 4C C3 FF 00 o0

Old for new

Although there a few routines around that restore a program that has
been NEWed (excluding Simon’s Basic, unless you’ll trust it), this one
is in here as it is written for use at any time. It does not have to be
in memory before the accidental NEW is entered. It can be loaded and
called after you have lost the program and will quickly soothe the nerves
and cure the cursing.

The routine is again located at $012C hex 300 decimal and is called
with SYS 300. It does not really require a detailed description. It simply
restores the pointers to the beginning of the program and restores your
Basic program. Of course the best advice is always to save programs
under development, making this sort of program obsolete.

B
FC SR AC XR YR 8P
.30008 72 @@ @1 21 Fé

@12C AS 2B LDA $2B

Q12E A4 2C LDY $2C
2132 85 22 STA $22
@132 84 23 STY %23
@134 AB @3 LDY ##$@83
B136 C8 INY

@137 B1L 22 LDA ($22),Y
@139 D@ FB BNE #0136
@13B C8 INY

213C 98 TYA

@13D 18 cLe

@13E &5 22 ADC $22
@140 AR @0 LDY #$@8



@142
2144
@146
@148
2149
@14B
@14C
B14E
2150
@152
@154
B1356
2158
@159
2158
215D
@15F
D16l
D163
@165
@aie7

.:2@312C
.1 0134
.1013C
.:0144
.t @14C
.10154
.+ @15C
.:10164

AS

28
AS

B1
22
o

2K
a3
18

a3
22

85

A4
cs
&5
69
E&
De
@z
2

STA
LDA
ADC
INY
STA
DEY
L.DX
INC
BNE
INC
LDA
BNE
DEX
BNE
LDA
ADC
STA
STA
ADC
STA
JmP

2C
Bl
22
oo
22
Fa
85
4C

($2B) ,Y
$23
#500

($2B) ,Y

#$03
$22
$0154
$23
($22) ,Y
$B14C

$@14E
$22
#$02
2D
$23
#$00
$2E
$ALET

84
FB
91

Eé6
F3

2e

Some disk routines

Disk error display

Any disk errors generated on

the 64 have to be collected as they are

not given, only indicated by an infuriating flashing light. The format
for doing this usually looks like this:

54



1@ OPEN1,8,15:REM OPEN CHANNEL

2@ INPUTH#1,A,B$,C,D:REM GET ERROR
39 FRINT A;B$;C;D:REM DISPLAY ERROR
49 CLOSE1:REM CLOSE FILE

5@ END:REM END OR STOP ROUTINE

The above will give the error, but it can be awfully annoying to have
to type this in, usually at the beginning of a program you are working
on. Below is a routine in machine code that can be loaded and called
at any time and will display the error.

The routine sits at $012C hex 300 decimal and will not disturb anything
else. First the current device number is stored at $B8 hex (current device
number). The secondary address is stored in location $B9 hex and the
secondary address is sent after ‘send talk’ has been called with the
Kernal routine at $FF96 hex.

The next two Kernal routines input a byte from the serial port $FFAb
hex and output character to channel $FFD2 hex. The routine branches
to collect the next byte until a carriage return is found and a command
is sent to the serial bus to ‘untalk’ with $FFAB hex, when the routine
stops.

B*
PC B8R AC XR YR 8P
.30008 72 2@ @1 21 Fé6

212C A9 @8 LDA #$@8
Q12 83 BA STA $BA
2132 20 B4 FF JSR $FFB4
D133 AT &F LDA #$6F
@135 85 BY STA $B%

@137 20 96 FF JSR $FF96
B13A 20 AS FF J8R $FFAS
@13D 2@ D2 FF JSR $FFD2

@140 C9 @D CMP #$@D
@142 DA Fé& BNE $@13A
@144 20 AB FF JBR $FFAB
@147 60 RTS

55



.1@12C A9 08 85 BA 20 B4 FF AY
.1@134 &F 85 BY 20 96 FF 20 AS
.1@13C FF 20 D2 FF C9 @D D@ Fé
.18144 20 AB FF 60 00 02 00 00

This may well be the best place for a list of the 1541 disk commands
and error messages, and a comprehensive explanation of their
meaning. An interesting thing about error messages is that they are
often used to protect programs on disk. A particular error can be
written on disk with a check in the program to collect and make
sure it is the correct one. | believe writing a 29 error is currently
popular.

Another way of protecting disks (probably the most effective) is to
damage the disk physically and have the program check that a
particular track and sector are damaged, and if it is not abort the
program or wipe the disk clean.

The other method is to have a security key, as the word processor
| am using (Paperclip) does. This can be very effective. With
Paperclip you can remove the key while the word processor is in
use and the 64 will freeze until the machine is turned off or the key
re-inserted. This should stop any nosey or clumsy colleagues from
copying or destroying your work.

Disk commands

OPEN OPEN15,8.15 <return>
Opens a file (15). The device number is set to 8 (disk)
and a command is sent {15)

BACK UP PRINTH#15."D{x}> = {y>" <return>
Two drives are required for this operation and all files
from drive y are copied to drive x.

DIRECTORY LOAD"$",8<return>
This will load the directory of any disk into memory,
but replaces any program in memory.

VALIDATE PRINTH1S, "VU" <return>
This will validate a disk, but can take some time. It
will often sort out any corrupt disks!



CLOSE

HEADER

RENAME

SCRATCH

INITIALISE

CLOSE < device number > <return>
Closes a file

PRINTH15,"N: {diskname}, {id}" <return>

This will place a name of up to 16 characters with an
iD of two characters. It will erase all information on
the disk and takes approx. 80 seconds.

PRINTH15. "R:newnane=cldname" <return>
The new name will replace the old name on the disk

PRINTH1S,"S: filename" <return>

The action here takes the filename out of the directory,
but does not wipe out the program, as is often
assumed. Therefore the program can be restored!

PRINTH#15,"I"

You should not really need this command as the drive
should do the work for you. But you may need it one
day.

That is about it for disk commands. The list is, as | am sure you will
agree, quite insignificant compared to the Basic 4.0 commands. This
is why utilities are constantly written for the 64. It has virtually no
peripheral support - could it be a plot?

Disk error messages

Should you get it wrong or make a ‘beep’ up then you may get a
flashing light on your drive. Having tollected it with a puzzled brow,
your brow could well be more puzzled by the error message. We had
better have a look and try to decipher them.

0, OK, 00, 00 no errors were
encountered

01, files scratched, 0<n>, 00 Returns the number of
files scratched in <n>.

block header not found, 20, T, S A block header was not

found. Either the header
has been destroyed, an
illegal sector number was
encountered or your 64

57



no sync character, 21, T, S

data block not present, 22, T, S

checksum error in data block, 23, T, S

byte decoding error, 24, T,S

write verify error, 25, T, S

write protect on, 26, T, S

has flipped. In any event
this spells trouble.

Either there is no disk
present {silly!) or the read-
write head is misaligned.
At the very worst it could
indicate a hardware
failure.

This message indicates an
illegal track and/or sector.

This could be a general
error on the checksum of
the data or a problem with
grounding (who wants to
be grounded?).

This may also indicate
grounding problems or an
invalid bit pattern in the
data byte. Don’t ask me
what to do, just keep
struggling.

Only generated when the
written data and the data
in the DOS memory does
not match.

This indicates that a write
operation has been tried
while the write protect
switch is down. In other
words you have probably
got a write protect tab on
your diskette which you
must remove, or use
another disk, or write
down the program on
paper? N.B. this message
is not always generated
by a write protect, which
is confusing.



checksum error in header, 27, T, S Again there maybe
grounding problems,
certainly if all three of
these errors are occuring.
it may just be a data error
in the header.

long data block, 28, T, S Caused by a bad diskette
format or a hardware
failure!

disk id mismatch, 29, T, S The diskette either needs

initialising or the header
on the diskette is bad. Try
causing this error.

general syntax, 30, T,S The 1541 cannot make
sense of the command
just sent. Either thereis an
illegal number  of
filenames or the patterns
are illegally used.

invalid command, 31, T, S The command you sent
was completely
unrecognisable.

long line, 32, T, S The command you sent
was too long!

invalid file name, 33, T, S Pattern matching is in-
valid in the save or open
commands

no file given, 34, T, S The filename was omitted

or a mark or : was
omitted.

invalid dos command, 39, T, S An unrecognised com-
mand was sent

record not present, 50, T, S An INPUT# or GET#
statement selected a
record beyond the current
end of file. This is only an

59



overflow in record, 51, T, S

file too large, 52, T, S

write file open, 60, 00, 00

file not open, 61, 00, 00

file not found, 62, 00, 00

file exists, 63, 00, 00

file type mismatch, 64, 00, 00

no block, 65, T, S

error if you are attempting
to read a record, not if
you are positioning to the
end of the file to write
new records to an old file.

A PRINT# statement
was used to write more
than the allowed number
of characters to a relative
file.

The current record posi-
tion will result in a disk
overflow on the next write
operation to disk.

The file being used for a
write is already open after
being used for a read.

This message is usually
generated when the file
being accessed has not
been opened. This may
not generate a message.

The file being accessed
does not exist.

There is already a file on
the diskette with filename
being used in the
command.

The file being used does
not match the directory
entry for this filename.

This message is
generated when the
B — A command finds the
block to be allocated has
already been allocated.
The numbers give the



illegal track and sector, 66, T, S

illegal sys/track & sector, 67, T, S

no channel, 70, 00, 00

dir, 71, 00, 00

disk full, 72, 00, 00

dos mis-match, 73, 00, 00

next available track and
sector. If zero then all
blocks are in use.

This message is
generated when an
attempt has been made to

access a sector that does
not exist. The track or
sector is out of range.

An attempt has been
made to access a
reserved sector.

The channel is not
available or too many files
are open.

The diskette needs
initialising as the BAM
does not match the
internal count. You may
lose some files with this
one.

Either the disk is full {all
blocks used) or the
number of entries is at its
limit (152). When the disk
is nearly full it may be
difficult to write @ a file.
In this case scratching the
file and re-saving should
work.

This error is generated
when an attempt is made
to write to a disk initialised
on a different DOS.
However, you may read
disks initialised by
different versions of the
same DOS.

61



drive not ready, 74, 00, 00 The drive will not accept
commands, commonly
because the drive door is
open or there is no
diskette in the drive.

Disk directory

The usual way of viewing the directory is to joad it into memory and
list it. This can be a pain as it means that any program currently in
RAM will be overwritten, and you will have to save it off first and then
load the directory. After this you will have to load your program back
into the 64 in order to continue. This can be very time consuming.

Therefore a routine that allows you to display the directory of the disk
without loading it into memory is a must. This is exactly what the
following routine does.

It is located at our favourite position $012C hex 300 decimal and is
therefore loadable and usable at any time. The routine is called with
SYS 300. The routine first sets the parameters and calls the Kernal
routine to send ‘SA’. It then calls the Kernal routine to command the
serial bus to ‘talk’ $FFB4.

The next call is to the Kernal routine to send the secondary address
$FF96 and the call to $FFAB calls the routine to input a byte from the
serial port. The routine to print a line number is used to display the
directory $BDCD and the routine to output the character to channel
$FFD2 completes the program until the directory has been displayed
and the call to $F642 sends an ‘untalk’ before quitting the program.

B#*
PC SR AC XR YR SP
.30008 72 @@ @1 21 Fé

@12C AT 24 LDA ##%24
212 85 FB 8TA $FB
2130 A? FB LDA #$FB
@132 85 BB STA $BB
2134 A9 @2 LDA #$080
8136 85 BC STA $BC
2138 A7 01 LDA ##01
@13A 85 B7 STA %B7
@813C A9 @8 LDA #$@8
@13E 85 BA STA $BA

62



214@ A9
2142 85
@144 20
@147 AS
2149 20
@14C AS
@14E 2@
2151 A9
2153 85
2155 AG
2157 84
2159 20
@i5C 85
Q15E A4
2160 DA
2162 20
8165 A4
2147 DO
2169 A4

2148 88

@16C D@
B1&6E Ab&
2178 20
2173 A9
2175 2@
2178 20
@17B Abé
@17D DO

@17F AA

2189 FO
2182 20
2185 AC
2188 A9
218A 20
218D AG
@16F D@
2191 28

2194 &8

.1@012C
.1@3134
.3@313C
10144
.3@14C
- 10154
. 1815C

DS F3
B4 FF

96 FF

AS FF

AS FF

Cb BD

D2 FF
AS FF

D2 FF
78 o1

D2 FF

42 Fé

LLDA
8sTA
JSR
L.DA
JSR
LDA
JSR
LDA
8TA
LDY
sTY
JSR
STA
LDy
BNE
JSR
LDY
BNE
L.DY
DEY
BNE
LDX
JSR
LDA
JER
JSR
LDX
BNE
TAX
BEQ
JBR
JMP
LDA
JER
LDY
BNE
J8R
RTS

#$60
$B9
$F3D3
$BA
$FFB4
£ -1
$FF9é
#$00
$90
#$03
$FB
$FFAS
$FC
%90
0191
$FFAS
%90
$2191
$FB

$0157

*BDCD
520
$FFD2
$FFAD
9@
$0191

%0188
$FFD2
$0178
#%08D

$FFD2
#$02

$a157
$Fb42



.:@164 FF A4 90 DB 28 A4 FB 88
.1@16C DB E? A& FC 28 CD BD A9
.1@174 20 28 D2 FF 20 AS FF A&
.1@17C 50 D@ 12 AA FB @6 28 D2
.13184 FF 4C 78 @1 A9 @D 20 D2
.1@18C FF AB @2 DO Cé 20 42 F6
10194 40 00 00 G2 0@ @0 B0 o0

Disk directory and auto-load

This program will display the directory in a different format and only
a page at a time. Each file is given a letter and may be loaded by
pressing that letter as long as it is a program and not a sequential or
relative file.

The program also mixes Basic with machine code and will be useful
to explain how to achieve this. This routine was converted from a
similiar one written for the PET, which has been substantially modified.

The Basic program should be entered exactly as shown, as the machine
code is placed directly after the Basic program and will not function
if any additions or deletions are made. The 64‘s control characters have
been replaced by more readable and understandable characters: refer
to the symbol chart at the beginning of the book for details.

After entering the Basic program, save it and verify it to make sure
that you have a correct copy. At this point it is advisable to turn your
64 on and off again. You will now need to load a monitor to enter
the machine code.

If you are using Supermon then load and run it. Use the ‘X' command
to quit the monitor and ‘new’ the program. Re-enter the monitor with
SYS8<return> and enter: M 0D44 0DB4. This is where the code is
to be entered. Using the memory dump below enter the code careful-
ly and save it with the foliowing command:
SAVE”CODE”,08,0D44,0DBC, or SAVE"CODE”,01,0D44,0DBC for
tape.

At this point you have a copy of the Basic program and the code, hope-
fully both correct. They now need to be merged and saved together.
To do this, reload the Basic program and afterwards reload the code.
This can be done by entering Supermon and loading the code. Both
the programs need to be saved to tape or disk. To do this save the

64



programs with the following: SAVE” < filename >”,08,0801,0DBC or
SAVE” < filename >,01,0801,0DBC for tape. The program can now
be loaded from Basic in the normal way and will load both Basic and
machine code programs into the right place.

This is the time to try the program. Enter run and see what happens.
You should get a nicely formatted display of the directory with the
letter for each file on the far right of the screen. If this is so, well done!
Try loading a program, if this works then you succeeded first time and
can go to the top of the class.

if the program does not work and crashes the 64 or does something
equally odd, you have an error in the code or the Basic program is
the wrong length. You will have to check both carefully, make the
changes, and then save the whole thing as described above.

If you get a Basic error message then the problem may only be an
error in the Basic program. After correcting it, however, you will need
to save it in the way described above. Good luck with this one, and
let me assure you that the results are worth the effort.

1 REM ##%x AN EASY WAY TO LOAD THE DIRECTORY AND L
0AD A PROGRAM FROM DISK
G6O0TO32
Fis="
":FIs=LEFT$(FI$,EE)
X$=MID$ (STRS (PEEK (252) #2556+PEEK (251)) ,2) : RETURN
SYS(C):GOSUB4: Z¢ (R)=F I $: C=3399
GOSUB14&
FORB=1TOBB: 8YS(C) : GOSUB4: Z$ (B) =F 1 $: IFSTTHENB=BB
+1:60T014
Q@ 2% (B)=X$+8S2%+Z%(B)
1@ PRINT" "Z$(B)3;:PRINTTAB(3I3)",..[ON] "CHR$(VR)"
[OFF1": VR=VR+1
11 IFPEEK (DO)<22THEN14
12 GOSUB17:VR=65:G=G+1
13 GOSUB1&
14 NEXT:PRINTVWS:GOSUB1S
15 G0OTO43
16 PRINTRR$W$"DISK NAME [ON1"Z$ (@) DF$SS$DF$IRET
URN
17 PRINTYS®
18 GOSUB3@: IFFI$=" "ANDB<BBTHENRETURN
19 IFFI$=" "THENA43
20 IFASC (FI1$)<&65S0RASC(FI%) >(VR-1)THEN18
21 NN=ASC(FI$):1NN=(NN-64)+146%#(G-1)sRE$=Z% (NN):RE#
=MID$ (RE$,8,16)
22 IFMIDS$ (Z$ (NN) ,25,3)="PRGB"THEN27

N 2N

65



23 PRINTOTS$"[ONJERRORCOFF3.. CCLINOT PROGRAM..SPA
CE TO CONTINUE"

24 GOSUB3@: IFFI$<>" "THEN24

25 IFB<BBTHEN17

26 PRINTVVS3:G0TO18

27 P=LEN(RES$): IFRIGHT$(RE$,1)=" "THENRE$=LEFT#(RE
%,P-1):60T027

28 PRINT"[CLRILOAD"CHRS (34)RE$CHRS (34)",088":PRINT
“[4 CDIRUN":CLOSE1:CLOSE1S

29 POKE&31,191POKES32,13:POKES3S, 131POKEL?8,31END
30 GETFI$: IFFIs$=""THEN3O

31 RETURN

32 PRINT"CCLR]":POKES3272,23:C=3396:6=1: VR=465: D0=
214: BB=245:EE=24: OPEN15,8,15

33 DIMZ$ (BB):0PEN1,B8,0,"$@":60SUB41

%4 DF$=CHR$ (13) :10T$="CHMEI[(23 CD]1":W$=DF$+DF $

35 RR$="{CLRI (CGN]1 [SH DISK] AUTO LOADLONI] F
OR THE [SH CBM]1 &4 [OFF1"
36 Sig=" "182¢=" "

37 VW=OT$+"LOAD TYPE <LETTER>...TERMINATE <SPACE

38 Y$=0T$+"CONTINUE <SPACE>...LOAD <TYPE LETTER>"

39 S8S$=DF$+"“[ONILSH BLOCKSILOFF1 (ON]ILSH PROGRAM
TITLE1"

49 SS$=55%$+"[0FF1] LONJESH TYPELONI] tONILS

H LOADLOFFJ1:B0T0&

41 INPUT#15,EN$,EM$: IFEN$="00" THENRETURN

42 PRINT"CCLR] CLONICSH D1ISK [SH ERRORILOFF1"DF#

EMS

43 CLOSE1:CLOSE1S:END

Using the disassembly given below we can dissect the machine code
part of the program. The first thing the routine does when calied is
to perform two jumps to other routines in the program. | suppose you
could say that there are three separate routines here.

The first jump to $0DIE sets the input device and branches to the in-
put routine. The rest of the routine collects the directory from the disk
and stores it at $085B onwards, this is line 4 of the Basic program,
into FI$. This is yet another reason to ensure that the Basic program
is entered exactly as shown, including the REM statement and the
following comments.

Now for a look at the Basic program: the first active instruction at line
2 jumps to line 32. The screen is cleared and the variable ‘C’ set, the
64 is then put into lower case with POKE 53272,23. Other variables
are initialised and a file opened to disk. Line 33 is obvious except for
the OPEN1,8,07$0", try it, it's interesting!

66



At line 40 control jumps to line 6 of our Basic program and our machine
code routine is called for the first time using the value of (C). Then
a branch to line 4 collects the value of FI$ and takes the block count
for the file from temporary storage in $FB and $FC hex. The variable
‘C* is reset 3 higher than its original value and the program branches
to the routine to display the directory at line 16.

The file name and block count are collected for each disk entry and
displayed until it ends or PEEK (DO) is equal to 22. The value of DO
is 214. This is the current line the cursor is on. So the display stops
when the cursor has moved 22 lines down the screen.

A message is printed giving a choice of continuing with the directory
or loading one of the programs displayed. Lines 28 and 29 in the Basic
program load and run the program. This is done by clearing the screen
and printing ‘load’ and the first quotation mark CHR${34). The file-
name is dispiayed RE$ and the closing quotes printed. The cursor is
positioned four lines down and ‘run’ is printed.

At this point the files to disk are closed. Line 29 places three charac-
ters in the keyboard buffer: they place the cursor at the home position
and two carriage returns, one over the load and the second over the
run. The program is of course loaded and run as fong as it is a pro-
gram entry on the disk.

B
PC SR AC XR YR 8P
.30008 72 28 @1 21 Fé

@D44 4C FE @D JMP $@DSE
@D47 AC 4A @D JMP $@DAA
@D4A 28 A4 @D JBR $@DA4

@ap4D AS FB LDA $FB
@D4F C9 &4 CMP #%64
@psS1 B@ 12 BCS $@D&S
2pS3 A9 20 LDA #$20
@D55 E8 INX

@Dp56 9D SB @8 8TA $@83B,X
25?7 AS FB LDA $FB
@D3B C? @A CMP #$0A
@DSD B@ @6 BCS $@D&S
@D5F A9 20 LDA #$2@
@D&61 EB INX

@Dsé2 9D SB 08 STA $0835B,X
@D&65 AG B4 LDY #$04
@Ds67 C8 INY

@D&B AS 90 LDA $90

67



@D6A
@D&c
BD&F
@D71
@D73
@D735
an7é
@D77
@aD7a
aDp7C
@D7E
apai
@82
aDs4
aD8s
@pas
@DBeA
apac
@DBE
D91
@D92

aD9s
@ps7
aDp99
aD9B
@D9D
@DSE
@DA1
@DA4
@DAb
aDAa9
@DAB
@DAE
@DnB1
@DB4
@DBé&
@DBY?
@DBB

-18D44 4C 9E @D 4C 4A @D 208 A4
-t@DAC @D AS FB C9 &4 BO 12 A9
.:B8D%4 20 €8 9D SB 88 A5 FB C?
.1@DSC @A B2 B6 AT 208 EB 9D TB

68

F1

F1

Fi

@D
@D

F2
F1
F1

F1

$0D99
$F157
#$22

$@D73
$@D67

SF137
w$22
$@D84
@858, X

*$@D73

SF197
#$29
$@D8E
#$20
$@a85B, X

#$20
$@D99
*@D84
#4500
99

$@DA4
$@BD6S
#4501
$F20E
#5020
$F157
$F157
$F157
$FB
$F137
$FC



-10D&4 08 AD 04 CB AS 98 DO 2D
.18D&C 20 57 F1 C9 22 F@ 02 DO
.3@D74 F2 C8 EB 20 37 F1 C9 22
-.2@D7C F@ @6 D 5B 08 38 BO F1
.:@DB4 168 28 57 F1 C? 29 B2 @2
.1@DBC A% 20 9D 5B @8 ES8 C8 Ca
.18D94 20 FO @2 DD EB A? B0 83
-1@D9C 99 60 20 A4 @D 4C 465 @D
.1@DA4 A2 O1 20 BE F2 A2 00 20
.:@DAC 57 F1 20 57 F1 20 57 F1
.1@DB4 85 FB 28 57 F1 85 FC 60

Tape control

First, here is a Basic program that gives you control over the tape
motor.

19 A = PEEK(1) OR 32:B = PEEK (1) AND 16

20 POKE 192, A:POKE 1.A

3@ PRINT "[CLRI TAPE MOTOR STOFFED"

40 IF B (> & THEN 68

5@ PRINT "[CD] PRESS STOP ON TAPE"

60 IF PEEK (1) AND 16 = 1 THEN 6R

70 PRINT "[CD] ALL SWITCHES OFF"

20 END

This small program might be better written in machine code as it uses
the all too sensitive location 1. The variable ‘A’ is set up in line 10 and
used in line 20 to stop the tape motor by placing ‘A’ in location 1 and
location 192 (tape motor interlock). Line 30 merely confirms that the
tape motor has stopped, and line 40 checks to see if the play key is

pressed. Lastly line 60 waits until all the keys on the tape are off.

If you intend to write programs that directly control the tape motor
then it is advisable to become familiar with location 1 and location 192.

69



‘Tape Search

This is another Basic program that uses tape control. It simply allows
you to load your programs quickly by saving them at set points on
the tape. Tape Search can be useful for saving programs onto tape
and locating them quickly in order to load them.

The program actually eliminates a lot of the drudgery from using a
cassette deck and waiting sleepily while the program is found and then
loads. As listed here the programs have been given dummy names
(PROG 1 to PROG 9), and your program names should be inserted
in these places, giving you a menu of your tape.

Tape Search should ideally be placed at the beginning of each cas-
sette used and the program names added to the menu. You could
have many more than the nine places made available in this program.

There are several ways of using the program. You could place the pro-
grams on the tape and then alter the timing within the program to stop
at the the right place. Alternatively Tape Search could be recorded
on the cassette and each program added and recorded as you go along.
This would be a simpler and faster method, as the timing could be
adjusted simply and quickly to stop the tape at the correct position.

Tape Search is set up to present a menu of nine programs giving the
user fast access to the position on the tape of any one of those pro-
grams. When the program is RUN the menu is displayed on two
screens. To move between these screens use the F7 {forward) and
F5 (back) keys.

To load a program choose the relevant number (1—9). The program
then checks for the PLAY button on the recorder and if itis depressed
displays a message and waits for it to be released. Once this has been
accomplished the program asks for the fast forward button to be
depressed and searches for the program using the Tl function and the
user input.

Once the program has reached the required time it halts, waits for the
fast forward button to be released, NEW(s) itself, LOAD(s) and RUN(s)
the program at that particular position on the tape. It is probably best
to leave about ten cassette digits between programs.

70



Explanation

A detailed look at the program is probably the best way to explain how
to use it.

Line 200 resets two Basic pointers, assuming that other programs may
have been in memory. You may have to add other statements to reset
the 64 if you have been using programs which alter important pointers.
Line 300 sets screen and border colours and prints the title.

Lines 400 — 1100 are two screens of instructions for using the program.

Lines 1200 — 1300 format the screen headings.

Lines 1400 — 1500 and lines 1900 — 2000 are the spaces for the titles
of user programs to be inserted.

Line 1600 branches to the routine that waits for F7 to be pressed.

Line 2100 waits for the F7 key (select) or the F5 key (return to start
of menu) to be pressed.

Line 2300 returns the program to the start of the memory if the Fb
key is pressed.

Line 2500 is the input for the number of the program the user wishes
to access. The number selected is put in the variable J.

Line 2600 checks that the input was within range, in this case between
1 and 9.

Line 2700 jumps to the routine to load the first program if 1 is selected.

Lines 2800 — 3500 set the variable Q according to the value held in
J. The number placed in Q is used to determine the positioning of the
tape.

Lines 3700 — 3800 both look at memory location 1, which is the 6510
1/0 port, and bit four, which is the switch cassette sense. Line 3700
checks to see if any keys on the cassette are depressed. If they are
it prints a message. Line 3800 waits until the key is released.

VA



Line 3900 prints a message.

Line 4000 checks location 1 (bit 4) and waits until a key is pressed on
the tape. This is checking for any button on the cassette so make sure
you depress the fast forward.

Line 4100 prints a message and sets A equal to Tl

Line 4200 halts program execution until the statement is true and then
continues. Therefore by adjusting the values of Q the user may length-
en or shorten this delay while the tape continues.

Line 4300 stops the cassette motor with a poke to location 1 (bit 5)
and a poke to location 192. Both of these locations have to be altered
to start or stop the tape motor.

Line 4500 waits for the fast forward key to be released.

Line 4800 puts five into the count for the keyboard buffer and pokes
the values for NEW, LOAD and a carriage return into the keyboard
buffer. These statements come into effect as soon as the program
finishes.

Lines 4900 — 5100 are the routine to wait for the F7 key to be pressed.

If you attempt to alter this program, be sparing with any random ex-
periments affecting location 1, as any mistakes will probably cause
your 64 to nod off, and to wake it you will have to power down!

120 REM =%» RESET BASIC POINTERS

208 POKESS, 160: POKES2,16@:CLR

300 POKES3280,1:POKES3281,2:PRINT"{CLRI"SPC(14)"(
5 CDICYELITAPE SEARCH"

400 PRINTSPC(14)"[3 CRIFOR QUICK"

5@@ PRINTSPC(14)“[3 CDIAND EASY ACCESS":PRINTSPC(
14)"({3 CDITO YOUR PROGRAMS"

680 PRINTSPC(14)"L[3 CDILONIPRESS F7 TO CONTINUE"

708 GETAS$: IFA$<>"(F7]1"THEN72@

800 PRINT"ICLRIL4 CD1"SPC(1@)"SIMPLY PLACE THE":

PRINTSPC(1@)"[3 CDINAMES OF YOUR"

908 PRINTSPC(1@)"[3 CDIPROGRAMS IN THE BLANK SPAC

ES [1]

1200 PRINTSPC(1@)"[6 CDICONIPRESS F7 TO CONTINUE"
1108 GETAS$: IFA$<>"{F71"THEN1100

1208 PRINT*[CLRISPC(9) "LCYNIMENU" : PRINT"LCDILYEL]
#"SPC (4) "PROGRAM"

1308 PRINT"L[WHTIC12 SH E1I"SPC(3)"[12 SH E1"

72



1408 PRINT"L2 CDl 1"SPC(14) "PROG 1":PRINT"C2 CD)
2"SPC(14) "PROG 2"

1508 PRINT"[2 CD1 3"SPC(14) "PROG 3":PRINT"L2 CD3J
4"SPC(14) "PROG 4":PRINT"2 CD1 S"SPC(14) "PROG S"
1622 GOSUB4900

1702 PRINT"[CLRJ"SPC(?)"ECYNJNENU"=PRINT"ECD]EYEL
1 #"8PC (4) "PROGRAM"

1800 FPRINT"[WHTIL12 SH E1"SPC(3) "[12 8H EI*

19@@ PRINT"LCD1 &"SPC(14) "PROG 6"t PRINT"LCD] 7"SP
C(14)"PROG 7"

2088 PRINT"L[2 CD1 8"SPC(14) "PROG 8":PRINT"L2 CD1
?"8PC(14) "PROG 9"

2100 PRINT"L2 CD3 [ONIPRESS F7 TO SELECT":PR
INT"LCD] OR F5 TO RETURN TD MENU"

2200 GETAS:IFA$<>"[F7]"ANDA$<>"£FSJ“THEN2203

2300 IFA$="[F5]1"THEN120@

2408 REM #%% SET Q@ FOR TIMING

2500 INPUT"L2 CD1] SELECT # :";JsPRINT

2608 IFJ<10RJ>9THEN1200

2700 IFJ=1THEN44(00

2800 IFJ=2THEN@=1.5

2908 IFJ=3THENG=2.8

30028 IFJ=4THENG=3X,7

3108 IFJ=STHENG=4.5

3280 IFJ=ATHEN@=6&.7

3300 IFJ=7THEN@=7.6

3408 IFJ=BTHEN@=8. &5

3500 IFJ=9THENG@=12.9

3480 REM ##% SET UP CASSETTE AND GO FORWARD

3700 IF(PEEK(1)AND16)=BTHENPRINT“[CLRJ[12 Cbhirte C
RIPRESS STOF ON CASSETTE"

3800 IF (PEEK(1)AND1&)=0THEN3IS0@

39@8 PRINT"[CLRIL11 CDIC1@ CRIPRESS FAST FORWARD"
:PRINT

4000 IF (PEEK(1)AND16)=146THEN420@

4100 PRINT"[CLR1I":PRINTSPC(2@) "[11 CDIOK":PRINT:A
=TI

420@ IFABS(TI-A)< (A*3460) THEN422@

4300 Z*PEEK!&):PDKE192,ZOR32=PDKE1,ZOR32

3&@0 PRINT"ILCLRIL11 CDIC1@ CRIRELEASE FAST FORWAR
4500 IF (PEEK (1)AND14)=@THEN4SOQ

4608 PRINT"LCLR]I"

4700 REM *»% NEW PROB AND LOAD PROG

4800 PDKEI?B,SIPOKE631,7B|PDKEb32,69IPOKE633,B7IP
OKE&634, 131 POKEG3S, 13131 END

4900 PRINT"LX CD1 CONIPRESS F7 TO CONTINUE
L

S00@ GETAS$: IFA$<>"[F71"THENS20@
5108 RETURN

READY.

73



Word processor

A short routine that could be built into a word processor. It will work
as it stands on any Commodore machine.

The program does not produce a prompt, but waits for any input {(max-
imum of 88 characters). It will carry on inputting and displaying charac-
ters until a carriage return is executed. This is a simple way to start
inputting and displaying formatted text on the screen.

1@ OFEN4,B:REM OFEN KEYBOARD AS A DEVICE

2@ PRINTCHR$(147)3: REM CLEARS SCREEN

3@ DIM A% (10@):REM SET UP ARRAY FOR TEXT STORABE
42 INPUTH#4,A% (1)

S8 FOR I = @ TO 10@:REM INPUT LOOF FOR TEXT

6@ PRINT:REM SKIP TO START OF NEXT LINE

7@ IF A$(I) = """ THEN I=10@:REM TEST FOR END OF PR
INT LOOF

88 NEXT:REM END OF INFUT LOOF

9@ FOR I = @ TO 1@0@:REM PRINTING OF TEXT LOOP

100 IF A% (I) = "" THEN 17@:REM TEST FOR END OF PR
INT LOOP

118 FOR J = 1 TO LEN(A$(I)):REM LOOF FOR LENGTH OF
STRING

120 B = MID$ (A$(I1),J,1):REM B$ = JTH CHARACTER F
ROM STRING

130 IF B$ = "!" THEN FRINT:B0TOZ00

148 REM DO CARRIABE RETURN IF EXCLAMATION MARK

158 PRINT B#$;:REM PRINT CHARACTER OF TEXT

16@ NEXT J,I:REM CLOSE LOOPS

17@ CLOSE 4:REM CLOSE KEYBROARD CHANNEL

18@ END

Sell that 1540

If you happen still to have a 1540 drive then there is a way to load
some programs from the 1540 into the 64. This will work with most,
but not all programs.

The problem with loading programs from the 1540 into the 64 is the
screen refresh. The 64 will keep the screen on while it tries to load
programs from the 1540. This will cause the 1540 to whirr madly and
not much else.

74



However, if the screen is turned off before loading, saving or verify-
ing from the 1540, you will have more success. The 64’s screen is turned
off with POKE 53265, 11 and on again with POKE 53265,27. This proves
to be tricky as one has to type blind, so here is a little tip for setting
up the screen to load, save or verify.

The screen should look like this:

POKE 53265,11:REM top line of screen

(leave blank)

(leave blank)

LOAD” <prog name > "“,8:REM load prog

(leave blank)

{leave blank)

{leave blank)

(leave blank)

POKE 53265,27:REM bring screen back

To do this the first statement should be on the top line of the screen.

DO NOT press return until all the lines have been typed in, instead

press SHIFT RETURN. Having typed in the last line, press HOME (un-

shifted) and press RETURN, which will blank the screen. The next

return should load the program and the last bring the screen back.
Dumping the screen

This is a Basic program that will dump the screen to printer. It is set

up for Commodore printers, but with small alterations should work
on most. The routine is formatted specifically for the 64's screen.

10 OPENG,4,6:PRINT#6,CHR$(18):CLOSELS8
2@ OFEN4,4:CMD4

3@ FORI=@TO24

4@ FORJ=@TO39

350 A=PEEK (1824+1I%48+J)

60 GOSUB200

75



70 PRINTA1$;A2$; A3S;
80 NEXT

98 PRINT

100 NEXT

118 PRINT#4:CLOSE4

12@ END

208 Al$=""3AZE=""1AZE=""

210 IFA1>127THENA1$=CHRS (18) : A3=CHR$ (146) : A=A—128:
RETURN

220 IFA<3I2THENA2$=CHR$ (A+64) : RETURN

230 IFA>31ANDA<LATHENAZ$=CHR$ (A) : RETURN

248 IFA>63ANDAL 96 THENAZ$=CHRS (A+128) : RETURN

250 AZ$=CHR$ (A+&4) : RETURN

More memory
If you should feel cheated by the amount of RAM that is actually avail-
able when you switch the 64 on (see power up screen), study the fol-
lowing short routine:
7@ LDA $01
7082 AND H$FE
7004 5TA $@1
7006 RTS
This will give you another 8K of usable memory (from $A000 to BFFF
hex} but be warned that this can only be done in machine code. At-
tempts to use a Basic program to do this will only crash the 64.
To return the 64 to the normal configuration use the following routine:
70A2 LDA $@1
T8A2 ORA #$01
7T0A4 STA $01

TOAG RTS

76



Merging and appending programs

Merge

This is a tricky little routine that will merge two Basic programs from
tape. The technique was first outlined by Jim Butterfield.

First, save the lines to be merged onto tape with:
OPEN1.1,1, "FILENAME":CMD1:LIST <return>
When this operation has finished, enter:
PRINT#1:CLOSEL <return>

To merge the program you have just saved with the program in memory
rewind the tape (of course). Now enter:

POKE19,1:0PEN1 <return>

When the ready message appears, clear the screen (shift and
clr/home). Press the cursor down key three times and enter the
following:

PRINTCHR$(19): POKE198,1:POKE631,13: POKE153, 1 <return>

The tape will finally stop and return an error message. For once you
can ignore this, as all is well. Have a look and you will find that your
two programs are now merged!

Append

Now for a routine to join one program to another. This, unlike the
merge program, does not renumber the lines. It merely joins one Bas-
ic program to the end of another, and the one being joined should
have higher line numebers if the routine is to make any sense at alll

To do it from Basic is fairly simple, but will give us a good insight into
the general technique. Enter the following:

102 PRINT"THIS IS THE SECOND PART"

77



119 PRINT"OF OUR APPEND PROGRAM"

12@ PRINT"HWE ARE WRITING IT FIRST"

130 PRINT"SO THAT IT CAN BE SAVED"

149 PRINT"BEFORE WE ENTER THE FIRST"

158 PRINT"PART AND AFFEND THIS PART"

169 END

Now save the program to disk or tape and enter the following:

12 PRINT"[CLRITHIS IS THE FIRST PART"

2@ PRINT"OFF OUR PROGRAN AND THIG®

30 PRINT"WILL REMAIN IN MEMORY"

40 PRINT"WHILE KE TAG THE SECOND™

5@ PFRINT"PART ON T THE END"

Now clear the screen and enter the following in direct mode:
PRINT PEEK(43),PEEK(44) <return>

You will get 1 and 8, or at least you should. Scratch your head a lot
if you don’t. These numbers represent the start of Basic. You may
need to remember them.

Now some more entering in direct mode:

POKE 43, PEEK(453-2:FOKE 44, FEEK(46) <return>

LOAD"PART THO™ <return >

When the ready message comes back enter:

FOKE 43,1:FOKE 44, 8 <return>

The two programs are now merged and can be saved to tape or disk.

The key here is to take the start of Basic pointers (43 and 44) and alter
them to point at the end of the current program, using the end of pro-

78



gram pointers (45 and 46). You can then load in the program to be
appended and save the program off only after the start of Basic pointers
have been reset {43 and 44).

Now that you understand the method in general we need a program
that will do this for us. The program below starts at location $012C
hex 300 decimal.

The idea is the same as outlined above with our two Basic programs.
Line numbers must not be duplicated, but should be consecutive. The
routine first sets up a load by placing a zero in location $0A hex and
then branches to the routine to set the parameters for the load ($E1D4
hex).

The pointer for the start of Basic variables is set to the actual end of
the program. This means that the zeros indicating the end of the Bas-
ic program are subtracted from the pointers. The program to be load-
ed is then called from tape or disk ($FFD5 hex) and the routine to
re-chain the Basic lines is called ($A533 hex).

The rest of the routine loops through the program until the Basic pro-
gram is appended and the pointers are reset. This routine is called in
the following way:

SYS3e0" (filename}",dn<return>

where filename is the name of the program to be appended and ‘dn’
is the device number.

B#*
PC SR AC XR YR SP
-30028 30 00 @@ A0 Fb

@12C A9 B8O LDA #$00
@12 85 @A STA $0A
2138 20 D4 E1 JSR $E1D4
8133 AS 2D LDA $2D
@135 38 SEC

2136 ET 02 SBC #$@2
@138 AA TAX

8139 AS 2E LDA $2E
@138 E9 0@ SBC #+00
@13D A8 TAY

B13E AS B8A LDA $08A
214Q 20 DS FF JSR $FFDS
@143 28 33 AS JSR $AG33

79



@145 AS
2148 A4

214A 38

@14B E9
214D 85

B14F 98

2158 E9
28152 85
2154 AQ
2156 Bl
2158 DO

215A C8

2158 Bl
@15D D@
@15F AS

2161 18

Q162 &%
23164 85
Q166 85
2168 85
2146A AS
Q16C &9
B16E 85
@178 83
@172 85

0174 &0

2175 AB
2177 Bi
@179 85

@17B C8B

217C b1
@17 83
2188 AS
2182 85
2184 4C

.1@012C
.30134
.1013C
.20144
.3014C
.:10154
«.3015C
.30164
.2@16C
.:0174
.8@17C
.10184

$2D
$2E

#$02
$57

#$00
58
#$00

($57) ,Y

$01735

($357),Y

$@175
57

#$02
*2D
$2F
31
58
#3500
$2E
30
32

#+00

($57) ,Y

39

($57),Y

*38
39
$357
0154



4. New Commands and
Interrupts

Having just spent most of the night trying to write a ‘pop’ command
for the 64, | thought this must be the place to talk about adding
commands to Basic. | don’t think my 64 would agree with me, as it
cowers in the corner from the night’s abuse.

Interrupts

So perhaps we will look at interrupts first. The interrupt is a routine
in the 64 that does all the housework, checks the keyboard and updates
timing and the screen. It does all this approximately 60 times a second.

If one is very careful, the interrupts can be momentarily diverted from
their housekeeping to a routine that we have written. There are some
elementary rules to remember. The routine that the interrupt is diverted
to will add time to the interrupt and the last instruction in our routine
should send the interrupts back to their housekeeping.

We are aiming to have the interrupt check our routine and speed it
up. Below are two interrupt-driven routines that will demonstrate the
technique and enable you to understand it better. They both slow the
64 down considerably, but will serve as demos. Both of these routines
are serious only in as much as they are meant to explain how to start
using the interrupts for your own routines.

It is vital when developing interrupt-driven routines to make sure that
the instruction SEI (set interrupts) is issued before changing the
interrupt vector and that the instruction CLI (clear interrupts) is issued
before leaving the routine.

81



Interrupt 1

In the first example the interrupt vector is changed to point at $100D
hex, by replacing the the interrupt vector at $0314 and $0315 hex with
$100D, in low byte high byte format. The routine places characters
on the screen and changes them and their colours constantly.

The routine that the interrupts are directed to must always end with
a jump back to the normal interrupt routine or else you are in trouble.
The last instruction should be JMP $EA31, which jumps back to the
normal interrupt routine. To call this routine enter SYS 4096 <return > .

B
FC SR AC XR YR 8P
.;0008 32 20 A2 28 F&

100 78 SEI

1201 A% @D LDA #$@D
12@3 8D 14 @3 STA $0314
1006 A 1@ LDA #$10
10@8 8D 15 @3 STA $@315
ioeB S8 CL1

12@aC &0 RTS

10@D A% o2 LDA #$22
10@F 85 FB STA $FB
1011 A7 @4 LDA #£04
1013 B85 FC STA $FC
1015 A9 @0 LDA #$00
1217 85 FD STA $FD
1219 A% D8 LLDA #$D8
1@1B 85 FE 8TA $FE
181D AD 20 LDY #$00
181F Bl FB LDA ($FB),Y
1021 69 01 ADC #%01
1223 %1 FRB STA ($FB),Y
1225 B1 FD LDA ($FD),Y
1027 69 01 ADC #+01
1029 21 FD STA ($FD),Y
182B C8 INY

102C DB F1i BNE $101F
182E 4C 31 EA JMP $EA3ZI

82



.:1880 78 AY @D 8D 14 B3 A7 1@
.:1008 8D 15 @3 58 40 A9 0@ 85
.:121@ FB A9 B4 B85 FC A% 0@ B85S
-:1@218 FD A? DB 85 FE A® Q0 B1
-:1020 FB 69 @81 91 FB Bl FD &%
.:11@28 @1 91 FD C8 DB F1 4C 31
-:1038 EA 00 20 20 20 20 00 @D

Interrupt 2

The second routine is slightly longer, but in fact the interrupt-driven
part of the routine ($1040 hex onwards) does less. The routine puts
the 64 into lower case, clears the screen, sets the screen and border
colours. The next part of the routine puts two messages on the screen.

Finally the interrupt-driven routine is called at $1040 hex and the rou-
tine exits. What is happening? Well, the screen is being scrolled con-
tinuously except for the top row. Try clearing the screen and typing
something on the top line. It's easy, but slow.

Now move the cursor down a few lines and try typing something sen-
sible. Not so easy, is it? The message is set to start at $1071 hex, but
I'have chosen to leave you to put the hex equivalent of the message
in. The number of characters as the routine stands is 23: have fun!

Bx
PC SR AC XR YR SP
-30208 F@ C7 @8 40 Fé

1082 A7 17 LDA #$17

12002 8D 18 D@ STA $DB18
1005 A% 93 LDA #$93
1087 20 D2 FF JSR $FFD2
100A A7 @0 LDA #$00
19@8C 8D 20 D@ STA $DO220
106F A% 01 LDA #%01
1811 8D 21 D2 STA $D@21
1014 A9 70 LDA #$90
1016 20 D2 FF JSR $FFD2
1819 A2 A6 LDX #$00
1218 BD 71 1@ LDA #1@71,X
121E 9D @0 24 STA $0400,X
1221 EB INX

1822 EB 17 CPX ##17
1824 DB FS ENE #101B



1026 A2 0@ LDX #$00

1028 BD 88 10 LDA %$1@88,X
i@2B 9D EQ @5 STA $05EG, X
102E EB INX

182F E@ 1C CPX #$1C
1@31 D@ FS BNE #1028
1833 78 SEI

1834 AP 40 LDA ##40
1034 8D 14 @3 STA #8314
1839 A7 10 LDA #+10Q
1@3B 8D 15 @3 STA #0315
103E S8 CLI

183F &0 RTS

1048 A% 28 LDA #$28
1042 AZ 18 LDX #%18
1044 85 57 STA %57
1046 A9 @4 LDA #%04
1048 85 58 STA $358
104A AD Q0 LDY #$0@
104C B1 57 LDA ($57),Y
104E 85 59 B8TA $59
1050 C8 INY

1051 Bl 57 LDA (#$57),Y
1053 88 DEY

1054 91 57 STA ($57),Y
1856 C8 INY

1057 98 TYA

1858 C9 27 CMP #%27
105A D@ F4 BNE $1050
185C AS 59 LDA #$59
10SE 91 57 STA ($57),Y
1060 AS 57 LDA $357
1062 18 cLc

1063 69 28 ADC #%28
1865 B85 57 STA $357
1867 90 @2 BCC #1@4B
1069 E& 58 INC %58
104B CA DEX

1046C D@ DC BNE $184A

1B6E 4C 31 EA JMP $EA31

-:11008 A9 17 8D 18 DA A? 93 20
.$1088 D2 FF A9 @8 8D 28 DO A%
.:1013 21 8D 21 D@ A? 9@ 20 D2
.:1018 FF A2 @00 BD 71 10 9D @0



-:1020 @4 EB E@ 17 DO F5 A2 0@
-:1@828 BD 88 108 9D EO® @5 EB E@
-:1038 1C DO F5 78 A9 4@ 8D 14
11838 03 A9 1@ 8D 1S5 O3 S8 &0
-:1840 A9 28 A2 1B 85 57 A9 04
-21048 85 58 AQ @@ B1 57 85 59
-:1050 C8 B1 57 88 91 57 C8 98
11858 C? 27 D@ F4 AS 59 91 %57
-31868 AS 57 18 69 28 85 57 S0
-:1068 B2 E6 58 CA D@ DC 4C 3%
-:11070 EA 00 00 00 20 20 20 QO

Using charget to add commands

Charget or character get is a short program in zero page from $73 hex
115 decimal to $8A hex 138 decimal. Its function is to provide the link
between Basic and the interpreter. When you type ‘run’, each line of
the program is put into the Basic input buffer. The charget routine
then scans through it until it finds a recognisable byte. This is then
put into the accumulator where the interpreter deals with it.

This is the routine that we need to modify in order to add new com-
mands to Basic. The program is set up to add a command called ‘DI’
which will display the directory of the disk, but could easily be changed
to add other commands.

The routine starts at $C000 hex and the first thing that it does is to
transfer the instruction JMP $COOF to $73 hex (start of charget). This
means that the charget routine will scan a specified area for a new
word. If it is found then control jumps to $C043 hex to execute the
statement.

By replacing the directory command from $C043 hex onwards you
can add other statements. You will also need to change the ASCII
characters that the charget routine is searching for. Call this routine
with SYS 49152 and use DI to display the directory.
B#

PC B8R AC XR YR SP
.30008 F@ C7 00 40 F&

cood A2 @2 LDX ##%@2
Caez BD @B CO LDA sC@eB, X

85



caas
cea7
cees
caoAa
coes
CaeE
coor
cei1
ca13
cois
ceis
cei9
caiA
caip
Co1F
ceoz2
Co24
cozé
caz9
cezB
cezb
coze
co33
casé
co3s
CazA
cesC
Ca3E
co4a
ca43
ca4as
ca47
co47
Ca4B
ce4D
Ce4F
casi
cess
cassS
cas7
cese
case
CasE
Cas0
cass
Cas5
coss
Coa&A
casc
CB&E
co70

86

ce

ca

a1

o1

co

a3

F3
FF

FF

FF

STA
DEX
BPL
RTS
JMP
BRK
INC
BNE
INC
8TX
T8X
SEC
LDA
8BC
ADC
sBC
ENE
J8R
CHP
BEQ
LDX
JMP
JSR

BEQ
CMP
BEQ
LDX
JMP
L.DA
STA
LDA
8TA
LDA
8TA
L.DA
8STA
LDA
sTA
L.DA
STA
J8R
LLDA
J8R
LDA
JSR
LDA
8TA
LDY
8sTY
JSR

$73,X
$Co02
$COOF

$7A
$Ca1s
$7B
$COaE

$0101,X
#$8C
$0102, X
#$A4
$C@2D
$0079
#$44
$CO33
$COQE
$0079
$0073
#$49
$CO43
852
$CO43
#$0B
($0300)
#$24
$FB
#$FB
$BB
#$00
$BC
#$01
$B7
#5028
$BA
#8560
$B9
$F3DS
$BA
$FFB4
$B9
SFF96
#$00
90
#$03
$FB
$FFAS



ca73 85
Cca7s A4
Ca77 bpa
Ca7e 2@
ca7C A4
Ca7E D@
casa A4
cas2 88
casx pe
cass As
ces7 20
Ca8A A%
cesC 20
CasF 20
Ca92 Ab
ca%4 Do
Ca%s AA
ca97 Fa
ca99 20
ca9C 4C
Co9F A%
CoAl 2@
CoAd A0
Cans DO
CaAs 20
CoAB &C

. 1 CO00
. 1CO08
.3C010
.3C018
.1 C020
. :C028
.:CA3a
.1CO38
.t CO48
. 100848
. 1COS0
.: 0058
. 1 C2460
-1 CO48
.1CA70
. 2C@78
. 1CE8a

FF

BD

FF

FF

FF

FF

F&
23

8STA
LDY
BNE
JSR
LDY
BNE
LDY
DEY
EBNE
LDX
JSR
LDA
JSR
JER
LDX
BNE
TAX
BEQ
JSR
JMP
LDA
JSR
LDY
BNE
JSR
JMP

$FC
90
$CoAB
$FFAS
90
$CBAB
$FB

$CO6E
$FC
$BDCD
#$20
$FFD2
$FFAS
$90
$CoAB

$Ca9F
$FFD2
$28178
#%QAD
$FFD2
#$22
*CAGE
$F&42
($@32a)

87



.:C288 CD BD A7 20 20 D2 FF 20
.3CB78 AS FF A& 98 DD 12 AA FB
.:1CO98 @6 2@ D2 FF 4C 78 @1 A9
-tCOAB @D 20 D2 FF AR @2 D@ Cé&
-3COA8 28 42 F& &C 00 O 00 00



5. Kernal Routines

There are many Kernal routines that can be very useful. A few exam-
ples are given here.

Kernal 1

This routine demonstrates the CHRIN and the CHROUT routines. The
CHRIN routine lives at $FFCF hex and the CHROUT routine lives at
$FFD2 hex.

The CHRIN routine can be used by any device, as long as it has been
set up to receive the information with the OPEN and CHKIN routines.
In this case we will use the keyboard and no preparatory routines are
needed. When this routine is called it will accept up to 88 characters
from the keyboard terminated by a carriage return.

This is exactly what the demo does: it waits for input from the key-
board and stores the data and then uses CHKIN to place it on the screen
again. This is a fairly simple use of the routine, but quite a demonstra-
tive one. The routine used to demonstrate CHRIN and CHKIN starts
at $C000 hex and is called from Basic with SYS49152. Don't forget
the return.

B#*
PC S8R AC XR YR 8P
.;08@8 F@ C7 08 4@ Fé

Cood A9 17 LDA #%17
ceae AY 17 LDA #%17
Ceez 8D 18 DO 8TA $Dais
caas A9 on LDA #$00
Coa7 8D 2@ DO 8STA $DB20
CodA AT 01 LDA #s@1



Ceac 8D
CooF AZ
Coaii 20
cCe14 9D
Co17 EB
ceis C9
caia D@
Ceic A%
CQR1E 20
ce21 Az
caz3 BD
Co26 20
caz9 E8
cezn C?
cez2C pa
CB2E &40

. 1 CO00
. s CO08
.31Co1Q
.3C018
.t C02a
. 2 C028

Our second routine demonstrates the use of the GETIN routine, which
is at $FFE4 hex. It takes a character from the keyboard buffer and places
it into the accumulator. If there are no characters then a zero is

returned.

Our routine below waits for a key press and then outputs to the screen
using the CHKIN routine. To call it enter SYS49152.

B*

D@

FF
co

FF

ce

STA
LDX
JSR
STA
INX
CMP
BNE
LDA
J8R
LDX
LDA
JSR
INX
CMP
BNE
RTS

$D@21
#$00
$FFCF
$C@2F , X

#$0D
$CO11
#3973
$FFD2
#3500
$C@2F , X
$FFD2

#$@D
*Ca23

Kernal 2

PC SR AC XR YR &SP
.30008 F@ C7 @8 40 F&

Coea 20 E4 FF

90

JSR $FFE4



Coas: Cv oe
Coes F@ F9
coa7 28 D2 FF
Coen &2

CMP #s00
BEQ $C200
J8R $FFD2
RTS

.:CO08 20 E4 FF C9 00 FO F? 20
-:COA8 D2 FF 40 00 20 00 23 20

Kernal 3

The third routine uses the PLOT routine at $FFFQ hex. This routine
can be used to read the current cursor position or to position the cursor.

The ‘X’ and ‘Y’ registers must contain the row and column destina-
tion of the cursor. The routine below clears the screen, uses PLOT
to position the cursor and places a ‘C’ in the position stated. Use
SYS49152 to call this routine.

B#
PC SR AC XR YR SP
30008 FB@ C7 @@ 4@ F&

Coaa A9 93 LDA #%93

ceaz2 20 D2 FF JSR $FFD2
Cads5 A7 oo LDA ##00

Cao7 A2 10 LDX ##10

Coe? AR 10 LDY ##%10

Caes 18 cLC

ceac 20 F@ FF JSR $FFF@
CadF A7 43 LDA #%43

Caii 28 D2 FF JSR $FFD2
Coi4 s RTS

.:C00B8 A9 93 20 D2 FF A9 @8 A2
.:C0@8 18 AL 1@ 18 20 F@ FF A9
.1C010 43 28 D2 FF 60 00 Q2 00

91



Kernal 4

The fourth routine is one of many ways of saving programs. The rou-
tine collects the parameters for the save and then branches to per-
form the save ($E159 hex). Use SYS49152 from Basic to save a Basic
program to tape.

B#*
PC Sk AC XR YR SP
.30808 F@ C7 08 4@ F&6

Caoo 20 D4 E1 JSR $E1D4
Ceas 2@ S? Ei JSR $E159
Cons 60 RTS

:CO@d 20 D4 E1 20 59 E1 40 0O

Kernal 5

This will LOAD a program from tape. It uses three routines. The first
routine sets the length of the file SETLFS at $FFBA. The second rou-
tine, SETNAM at $FFBD, sets the name of the file. The accumulator
should contain the length of the filename. The ‘X* and ‘Y’ registers
should contain the low and high address of the filename. If no file-
name is used then load the accumulator with zero. The third routine
is LOAD at $FFD5. This routine can also be used to verify a program.
To load a program the accumulator must contain a zero. To verify it
must contain a 1. The routine is then called. Use SYS49152 to load
a Basic program.

92



B*
PC BR AC XR YR 8P
-30008 FA C7 @@ 4@ Fé&

Caod A7 21 LDA #$81

caez A2 @1 LDX ##@1

Ceos AG 01 LDY #$01

Coas 20 BA FF JBR $FFBA
Cog? A9 0@ LDA #%0@

CaeB 20 BD FF JSR $FFBD
CAGE A9 2. LDA #$00

Coio 28 D3I FF JB8R $FFDS
Cai3 &2 RTS

-1C00a A% @1 A2 B1 AB Q1 20 BA
-:1CO08 FF A9 @@ 20 BD FF A9 @0
-:CO10 20 DS FF 60 0B 02 20 Q2@

Kernal and ROM routines

Given below is as complete a list as possible of the Kernal (operating
system) and Basic ROM routines and how to use them.

The Kernal routines use what is commonly termed the Jumbo jump
table from $FF81 hex to FFFF hex. The last section, $FFF6 to $FFFF,
are hardware vectors. The function of the jumbo jump table is to give
control to the operating system routines. | have therefore decided to
include the jump address where the table is used.

The following format is used in describing the routines:

Name: name of routine

Purpose: purpose of routine

Jump address: call address of routine in hex

Address: start address of routine in hex

93



Communication registers: the registers accessed in order to pass data
to and from the subroutine

Preparatory routines:routines that need to be called to set up data
before the Kernal routine can be used. This often depends upon the
particular use of the Kernal routine.

Errors: any errors returned from the routines will have their code placed
in the accumulator

Stack use: number of stack bytes used by the routine
Registers affected: a list of all registers affected by the subroutine

Function: a brief description of the routine

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:

Jump address:

ACPTR

Get data from the serial bus
FFAB

EE13

A. Data is returned in accumulator
TALK and TKSA

see READST

13

Xand A

This routine gets one byte of data

at a time from the serial bus, and
places it in the accumulator.

CHKIN
Open a channel for input

FFC6



Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

031E (vector)

X

OPEN

3,5and 6

0

A and X

The open routine must used before
this routine the default is keyboard.
The X register must be loaded with
the logical file number.

CHKOUT

Open a channel for output

FFC9

0320 (vector)

X

OPEN

0,3,5and 7

4

A and X

Use this routine to output data to
device. The OPEN routine must be
used first unless screen output is

desired. The X register should
contain the logical file number.

95



96

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

CHRIN

Get a character from input channel
FFCF

0324 (vector)

A

OPEN and CHKIN

see READST

7

A and X

Assumes keyboard unless the OPEN
and CHKIN routines have been
used. The routine gets one byte of
data from the input channel and
places it in the accumulator.
CHROUT

Output a character

FFD2

0326 (vector)

A

OPEN and CHKOUT

see READST

8

A

Assumes keyboard unless the OPEN
and CHKOUT routines have been



Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

7. Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:

Errors:

used. The routine outputs data,
which has been placed in the
accumulator before the routine is
called.

ClouT

Transmit a byte over the serial bus
FFAS8

EDDD (send serial deferred)

A

LISTEN and SECOND

see READST

5

A

Used to send information to devices
using the serial bus. Will need the
LISTEN routine and SECOND if a
secondary address is needed. Load
accumulator with byte to be sent.
CLALL

Close ali files

FFE7

032C (vector)

None

None

None

97



98

Stack use:
Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

1"
A and X

Closes all files and resets the 1/0.

CLOSE

Close a logical file

FFC3

031C (vector)

A

None

None

2

A and X

Closes a logical file using the
number set by the OPEN routine.
CLRCHIN

Clear I/0 channels

FFCC

0322 (vector)

None

None

None

9



10.

11.

Registers affected:

Function:

Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

A and X

Clears zll open channels and resets
1/0 to default values.

GETIN

Get character from keyboard buffer
queue

FFE4

032A {vector)

A

None

None

7

A and (X, Y)

Takes one character at a time from
the keyboard buffer and returns it in
the accumulator.

IOBASE

Define 1/0 memory page

FFF3

E500 (get I/0 address)

XandY

None

None

2

29



12.

13.

100

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:

Errors:

Xand Y

The X and Y registers return the low
and high address respectively of
memory mapped I/0 devices. Exists
to aid compatibility with past and
future machines.

IOINIT

Initialise 1/0 devices

FF84

FDAS3 (initialise 1/0)

None

None

None

None

A, Xand Y

Initialises all 1/0 devices. Used by
cartridges.

LISTEN

Command a device on the serial bus
to listen

FFB1
EDOC
A
None

see READST



Stack use:
Registers affected:

Function:

14, Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

15. Name:

Purpose:

Jump address:

None
A

Will command device to listen. The
accumulator must be loaded with
the device number.

LOAD

Load RAM from device or verify
FFD5

F49E (load program)

A Xand Y

SETLFS and SETNAM

0,4,5 8and9

None

A Xand Y

Use this routine to load RAM from
device or verify. The accumulator
must be loaded with 0 for load or 1
for verify. LOAD can be set to ignore
the header by giving a secondary
address of 0 (in the OPEN routine).
In this case the start and end
addresses must be given and the
program may be located where
desired.

MEMBOT

Set or read the bottom address of
RAM

FF9C

101



16.

17.

102

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:

Purpose:

FE34 (read or set bottom of
memory)

XandY

None

None

None

XandY

This routine will read or set the bot-
tom of RAM. If the carry flag equals
1 then read, if O then set. Normal
value $0800

MEMTOP

Set or read the top address of RAM
FF99

FE34 (read or set top of memory)
XandY

None

None

2

XandY

This routine will read or set the top
of RAM. If the carry flag equals 1
then read if 0, then set.

OPEN

Open a logical file



18.

Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Prepératory routines:
Errors:

Stack use:

Registers affected:

Function:

FFCO

031A (vector)

None

SETLFS and STENAM

1,2,4,5,6

None

A, XandY

This routine requires SETLFS
{length of name) and SETNAM ({file-
name). It opens a logical file for use
in any 1/0 operation.

PLOT

Set or read current cursor location
FFFO

E50A (put/get row/column)

A XandY

None

None

2

A XandY

This routine reads or sets the cursor
position. If the carry flag is set, the

cursor is set. If it is clear a read cur-
sor is performed.

103



19.

20.

104

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

RAMTAS

Perform RAM test

FF87

FD50 (initialise system constants)
A, XandY

None

None

2

A, XandY

Tests and sets RAM. Also sets the
screen and is used by cartridges.
RDTIM

Read system clock

FFDE

F6DD {(get time)

A, XandY

None

None

2

A, XandY

Reads system clock (3 bytes) and
returns most significant byte in ac-
cumulator, next significant byte in X

register and least significant byte in
Y register.



21.

BIT

a & W N

(o]

Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:

Errors:

Stack use:

Registers affected:

Function:

VALUE

® N

16
32

128

CASSETTE
READ

short block
long block
unrecoverable

checksum
error

end of file

end of tape

READST

Read status word
FFB7

FEQ7 (get status)
A

None

None

2

A

Returns current status of 1/0
devices in accumulator. Information
returned includes device status and
error codes. Bits returned in ac-
cumulator contain the following in-
formation:

SERIAL TAPE VERIFY
R/W +LOAD
time out write
time out read
short block
long block

any mismatch

checksum
error
EO1
device not end of tape
present

105



22,

106

Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

RESTOR

Restore default system and interrupt
vectors

FF8A

FD15 (Kernal reset)
None

None

None

2

A XandY

Restores all interrupt, 1/0 Kernal
and Basic to default values.

SAVE

Save memory to device

FFD8

F5DD (save program)

A XandY

SETLFS and SETNAM

58,9

2

A, XandY

Saves memory to device; needs
SETLFS and SETNAM. Accumula-

tor must contain zero page offset to
start of save and X and Y registers



24.

25.

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:

Errors:

should be loaded with low and high
bytes of end of save.

SCNKEY

Scans keyboard

FFOF

EA87 (read keyboard)

None

IOINIT

None

5

A Xand Y

Any key pressed is placed by this
routine into the keyboard buffer.
This is usually done by the normal
interrupts, but can be called in-
dependently if required, usually
when interrupts are bypassed.

SCREEN

Return number of screen rows and
columns

FFED

E505 (get screen size)
XandY

None

None

107



26.

27,

108

Stack use:
Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:

2
XandyY
Returns screen format. X register

contains number of columns and Y
register contains number of rows.

SECOND
Send secondary address for LISTEN
FF93

EDB9 (send listen secondary
address)

A

LISTEN

see READST

8

A

Used to send to device after LISTEN
has been called. The address is load-
ed into the accumulator before the
routine is called.

SETLFS

Set up a logical file

FFBA

FEQO (save file details)

A, Xand Y

None



28.

29,

Errors:
Stack use:
Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:

Jump address:

None

2

A, Xand Y

Sets logical file number, secondary
address and device address. Load
accumulator with logical file num-
ber, X register with device number
and Y register with secondary ad-
dress (command).

SETMSG

Control system message output
FF90

FE18 (flag staus)

A

None

None

2

A

Sets control or error messages for
the operating system. The user can
set these messages. The accumula-
tor must contain the value before
calling this routine.

SETNAM

Set up file name

FFBD

109



30.

110

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

FDF9 (save filename data)

A, XandY

None

None

None

A, XandY

Used to set filename for OPEN,
SAVE or LOAD routines. The ac-
cumulator should be loaded with the
length of the filename and the X and
Y registers with the low and high
bytes of the address in memory
where the filename is stored.
SETTIM

Set the system clock

FFDB

F6E4 (set time)

A, XandY

None

None

2

A, XandY

Resets the system clock. The ac-
cumulator must be loaded with the
most significant byte, the X register
with the next most significant byte
and the Y register with the least sig-

nificant byte before calling this
routine.



31.

32.

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

SETTMO

Set the IEEE bus card timeout flag
FFA2

FE21 (set timeout)

A

None

None

2

A

Sets a timeout condition until data
is received or an error condition is
set up. The accumulator is loaded
with 0 and timeout is set; a 1 in Bit
7 will disable timeout.

STOP

Check if stop key is pressed

FFE1

0328 (vector)

A

None

None

2

A and X

Any interruption with the stop key

sets the Z flag and all channels are
reset to default

m



33. Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

. Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

TALK

Command a device on the serial bus
to talk

FFB4

EDO9 (send talk)
A

None

see READST
None

A

Device number should be placed
into the accumulator before this rou-
tine is called.

TKSA

Send secondary address to device
commanded to TALK

FF96

EDC7 (send talk SA)

A

None

see READST

8

A

Any secondary address should be

placed into the accumulator before
this routine is called.



35.

36.

Name:
Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

UDTIM

Updates system clock

FFEA

F69B (bump clock)

None

None

None

2

A and X

Updates clock normally called by in-
terrupts. If user interrupts are in-
stalled then this routine must be
called.

UNLSN

Command all devices on serial bus
to stop receiving data

FFAE

EDFE (send unlisten)

None

None

see READST

8

A

When called this routine will stop all

devices on serial bus from listening
to the 64.

113



37. Name:

Purpose:

Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

. Name:

Purpose:
Jump address:

Address:

Communication registers:

Preparatory routines:
Errors:

Stack use:

Registers affected:

Function:

UNTLK

Send an UNTALK command to all
devices on serial bus

FFAB

EDFE (send untalk)
None

None

see READST

8

A

When called this routine will stop all
devices set with TALK from sending
data.

VECTOR

Set or read system RAM vectors
FF8D

FD1A (Kernal move)

XandY

None

None

2

XandY

If the carry flag is set when this rou-

tine is called, the RAM vectors are
read into a list pointed by the X and



Y registers. If the carry flag is clear
the content of the list pointed to
by the X and Y registers is read
into RAM vectors.

Error codes

Value Meaning

0

1

Routine terminated by STOP key
Too many files open

File already open

File not open

File not found

Device not present

File is not an input file

File is not an output file

File name is missing

lllegal device number

This concludes the main list of Kernal routines.

Other ROM and Kernal routines

These routines have been listed separately because they are not so
easy to locate and use. Their documentation is almost non-existent,
with the exception of the Complete Commodore 64 ROM Disassembly,
by Pete Gerrard and myself, available from Duckworth.

1.

New line

A49C — AB30

115



116

Function: Each new line entered in a Basic program is han-
dled by this routine.

Crunch tokens

Ab79 - A612

Function: Commands are reduced to tokens by this routine.

Perform RUN
A871 - A882

Function: Routine to perform RUN on Basic program.

Garbage collection

B526 - B5BC

Function: Checks string storage and clears memory of un-
wanted strings.

Perform Save

E156 - E164

Function: Performs a save. This is a short routine and can
be accessed and used in many ways. It can be
called in two or three places other than E156.

Perform Load

E165 - E1BD

Function: Performs a load. Like the save it can be used in

many ways. Definitely worth close study. The rou-
tine is not very long.



10.

11.

12.

Warm restart

E37B - E393

Function: Clears all channels and resets pointers to default
value. Will not disturb any program in memory.

Power up message

E45F - E4AFF

Function: The wonderful power up message comes from
here.

Clear screen

E544 - E565

Function: This routine can be used to clear the screen, but
there are other ways to achieve the same thing.

Set up screen print
E691 - E6B5S

Function: Arranges the screen for printing.

Advance cursor
E6B6 - EGEC

Function: Advances cursor one position.

Retreat cursor
E6ED - E700

Function: Cursor back one position.

17



13. Back on to previous line
E701 - E715

Function: Cursor up one line.

14. Output to screen
E716 - E879

Function: This routine can be used to set up and place
characters on the screen. Needs careful study.

15. Input
F157 - F198

Function: Use this routine directly to get data from devices.

16. Find any tape header
F72C - F769

Function: Will get tape header and can be very useful. Why
not experiment a little!

17. Write tape header
F76A - F7CF

Function: Using this routine, a header can be written (rather
than using the save routine to write the header).

18. Kill tape motor
FCCA - FCDO

Function: Stops tape motor.

118



19. Power reset entry point
FCE2 - FDO1
Function: Resets all pointers and restores the 64 to default
values. This is not the same as switching the 64
off and back on. Any program in RAM will have
pointers removed by this routine, but the code
will still be there!

Vectors

Below is a list of the main vectors with their labels and addresses. Also
given are the default addresses they point to.

1. IERROR
Print Basic error message link
$02300
2. IMAIN
Basic warm start
$0302
3. ICRNCH
Crunch Basic token link
$0304
4. |IQPLOP
Print token link
$0306
5. IGONE
Start new Basic code link

$a308

119



10.

1.

12.

120

IEVAL
Get arithmetic link

$830A

USR function jump

$2310 default value {B248)
CINV

Hardware IRQ interrupt

$0314 default value (EA31)

CBINV

BRK instruction interrupt
$0316 default value (FE66)
NMINV

Non-maskable interrupt

$2318 default value (FE47)

IOPEN
Kernal OPEN routine

$831A default value (F34A)

ICLOSE
Kernal CLOSE routine

$831C default value (F291)



13.ICHKIN
Kernal CHKIN routine

$@831E default value (F20E)

14. ICKOUT
Kernal CHKOUT routine

$0328 default value (F2500)

15.ICLRCH
Kernal CLRCHN routine

$8322 default value (F333)

16.IBASIN
Kernal CHRIN routine

$0324 default value (F157)

17.1BASOUT
Kernal CHROUT routine

$0326 default value (F1CA)

18.1STOP
Kernal STOP routine

$8328 default value {F6ED)

19.IGETIN

Kernal GETIN routine

121



$032A default value (F13E)

20.ICLALL
Kernal CLALL routine

$032C default value (F32F)

21.USRCMD
User defined vector

$832E default value (FE66)

22.ILOAD
Kernal LOAD routine

$833Q@ default value (F4AB)

23.1SAVE
Kernal SAVE routine

$2332 default value (FSED)

122



6. 64 to FX-80

This chapter deals with the Epson FX-80 in some detail. The justification
for this is the popularity of the Epson range and the program techniques
needed to use them. The only advantage of Commodore’s own printers
is their ability to display control characters.

Perhaps this chapter will encourage Commodore to make a fast and
more flexible printer that competes in quality and price with the FX-80.
It is reproduced here by kind permission of Commodore User, where
it originally appeared, and Chris Durham; my thanks for their co-
operation. The article and the program have simply been reproduced
as they were printed. The program demonstrates clearly the flexibility
and quality of the FX-80.

Downloading the character set

The main advantage of a Commodore printer is its ability to reproduce
the graphics and the control characters in listings and printouts. Most
non-Commodore printers either print nothing or something that looks
like Greek letters. Neither of these are really desirable or acceptable,
and they are of course impossible to read.

By using the FX-80's ability to download a user-defined character set,
we can make the FX-80 produce the complete Commodore character
set.

What is needed is a fancy bit of programming to pass the 64's ROM-
based characters to the FX-80. This is not quite as simple as it may
sound, as the 64 builds up the characters row by row. The FX-80, on
the other hand, builds them up column by column. !f you were to try
passing the data for the character set to the FX-80 as it is held normally,
you would end up with all the characters lying flat on their backsl!

The program given here illustrates how to convert the characters so
that they appear the right way around and how to download them

123



to the FX-80. The program contains some screen messages and
prompts. The messages double as progress reports since the program
takes a couple of minutes to complete. Of course you will only need
to run the program once before using the FX-80, and the Commodore
character set will remain in the FX-80 until it is switched off.

Instructions are included on how to select either the standard Epson
character set or the Commodore character set. This can be done from
program or direct mode.

There are a number of points to note before using this program. First,
the maximum number of adjacent horizontal dots in a printer character
is six. Some Commodore characters, like the heart or the spade, use
seven horizontal dots on the TV screen. These will be truncated when
printed, and the only way to avoid this is to design your own characters
for these symboils.

Secondly, there seems to be no way of replacing the printer control
codes in character positions 18-20 inclusive. This means that the
character codes for HOME, REV ON, and INSERT cannot be printed,
since they occupy these character positions in the Commodore ASCI|
set. Thirdly, because both upper and lower case characters are held
in the printer, there is not enough room for reversed characters as well.
Finally, the ‘zero font’ switch on the printer must be set to the off
position.

Within these constraints this program should at least provide read-
able listings.

10 REM 9365366 5 9696 36 6 6 989096969696 6.6 0 96 3 96 9696 36980 3696 3696 96 36 36969606 30 36 96 36
20 REM PROGRAM TO DOWNLOAD COMMODORE CHARACTER SET
30 REM TO AN EPSON FX-80 PRINTER - BY CHRIS DURHAM
40 REM 6535530 30303 466300096 90 0000203090363 9696 3696309636 36 96 969696 96 36969696 96 36 96 3%
45 POKES2, 152: POKESA, 152: CLR:REM RESERVE SPACE IN
MEMORY FOR CHARACTER BET

47 POKES3280,14:POKES3281,6

S0 PRINT" 2t SWOP CHAR SET INTO MAIN MEMORY"

60 CS=53248:CL=CS+3512: ML=38913

70 PRINTCHR$(142):REM SWITCH TO UPPER CASE

80 POKE S56333,127:REM TURN OFF KEYSCAN INTERRUPT T
IMER

90 POKE 1,51:REM SWITCH IN CHARACTER SET

95 FOR A = O TO S511:POKE ML+A,PEEK (CL+A):NEXT A:R
EM TRANSFER CHARACTERS

100 ML=ML+5i2:FOR CH=1 TO 27

105 READ X:FOR A=0 TO 7

110 IF CH<25 THEN POKE ML+A,253-PEEK (CS+(X*8)+A):

124



REM TURN INTO RESERVED CHARS

115 IF CH>=25 THEN POKE ML+A,PEEK (CS+(X%8)+A): RE
M CHARS NOT IN EPSON CHAR SET

120 NEXT A:ML=ML+8:NEXT CH

125 POKE 1,55:REM SWITCH IN I/0

130 POKE 56333,129:REM TURN ON KEYSCAN INTERRUPT T
IMER

135 PRINT" CONVERT CHARS TO PRINTER FORMAT."

137 DIM B1(8):FOR A=0 TO 7:B1 (A+1)=2°A:NEXT A

140 PL=39700:MP=38713%

145 FOR Y=PL TO PL+344:FPOKEY,0:NEXT Y

150 FOR Y=PL TO PL+540 STEP &

160 FOR A=7 7O 2 STEP -1

170 FOR B=0 TO 7

180 IF (PEEK (MP+B) AND Bl (A)) THEN POKE (Y+7-A),P
EEK (Y+7-A) OR B1(8-B)

190 NEXT B,A: MP=MP+8:NEXT Y

200 OPEN4,4

210 REM TRANSFER EXISTING EPSON CHARACTER SET TO U
SER AREA

215 PRINT#4,CHR$(27); "R";CHR$(0) 3 :REM SELECT USA S
ET

220 PRINT#4,CHR$(27);": " ; CHR$(0) §CHR$ (0) CHR$ (0) ;
225 PRINT" ENOW TRANSFER COMMODORE CHARACTERSS"
227 FOR L=1 TD 2:READFC,LC

230 PRINT#4,CHR$(27); "&" 3 CHR%(0) s CHR$ (FC) ; CHR$ (L)

]

235 FOR CH=0 TO 31:PRINT#4,CHR$(139);

240 FOR A=0 TO 4

250 PRINT#4 ,CHR$ (PEEK (PL+(CH#*&6)+A) ) ; :PRINT#4,CHRS (
g

255 NEXT A:PRINT#4,CHRS$ (PEEK (PL+ (CH#*&)+35));

260 NEXT CH:PL=PL+(32%4) INEXT L

262 REM ALLOW ALL ASCII CODES (0 ~ 255) TO BE PRIN
TABLE

264 PRINT#4,CHR$(27);"I";CHR$ (1) 3CHR$(27);"6";

266 PRINT" NOW TRANSFER CONTROL / COLOUR CODESZ"
268 REM ALSO INCLUDES CHARACTERS NOT IN STANDARD E
PSON SET

270 PL=4008431FOR CH=0 TO 26

280 READ CP

290 PRINT#4,CHR$(27);"&"; CHR$(Q) ; CHR$ (CP) ; CHR$ (CP)

9

300 PRINT#4,CHR$(139);

310 FOR A=0 TO 4

320 PRINT#4,CHR$ (PEEK (PL+ (CH*6) +A) ) 5 :PRINT#4 ,CHR$(
0)3

325 NEXT A:PRINT#4,CHR$ (PEEK (PL+ (CH*6) +5) ) 3

330 NEXT CH

335 REM SWITCH TO USER DEFINED CHARACTER SET

340 PRINT#4,CHR$(27);"%4";CHR$ (1) ;CHR$(0) ;

1256



350 PRINT#4,CHR$ (27);"E";:REM SET EMPHASISED MODE
360 PRINT#4:CLOSE4

I70 PRINT" 8. CHARACTER SET COMPLETE":PRINT

I7S5 PRINT"
377 PRINT"
380 PRINT"

COMMODORE CHARACTER SET SELECTIONX"
PR R R S S 2T SR ARt S LN
TO SELECT EPSON CHAR SET, TYPE:"

390 PRINT"A% PRINT#4,CHR$(27); "CHR$(34) "4"CHR$ (34
) "3 CHR$ (0O) s CHR$ (0) 5 aan

400 PRINT"

TO RE-SELECT COMMODORE CHAR SET TYFE:"

410 PRINT"S® PRINT#4,CHR$ (27); "CHR# (34) "4"CHR$ (34
Y"3sCHR$ (1) ;CHR$ (0) ; anp"

420 PRINT"
QUTPUT.'

ENSURING STREAM 4 IS OPEN FOR PRINT

430 POKESS&,160:POKES2,1460: CLR:END

1000 DATA
1010 DATA
1,94

1015 DATA
1020 DATA
s1

1030 DATA

,29,92,95,

READY.

126

80,5,28,95,92,30,31,94,65,85,86,87
es,89,%0,91,18,70,83,19,81,17,66,29,28,3

192,223,160,191
144,5,28,159,156,30,31,158,129,149,150, 1

152,153,154,155,18,146,147,19,145,17,157
255



7. General Utilities, Hints and
Tips

Reserved words

For those of you unfamiliar with the term ‘reserved words’, it simply
refers to the 64's Basic commands and instructions. This includes all
1/0 commands, such as ‘OPEN’ or ‘LOAD’.

The point about reserved words is that they cannot be used in programs
except in their legal sense. This means that they may not be used as
variables, etc. For example, the statement ‘FOR ST = 1 TO 10 isillegal
since ST is a reserved word for the current |/0 status of the 64.

However, it is possible to reconfigure the 64 completely in terms of
its reserved words. This is done by copying the Basic ROM (from $A000
to BFFF hex) into the underlying RAM. When you have done this the
reserved words can be replaced with user-defined words.

Once you have set up your own reserved words the normal ones will
no longer be recognised and can be used as variables, etc. The
replacement words become reserved words and must be used for the
purpose for which they were defined.

Why change them?

Well, itis fun to a have a customised version of Basic, but it may have
more serious implications in aiding program protection, for example.
Once a customised version of Basic has been set the commands and
their tokens will be accepted.

The problem is remembering what your replacement words are. |

suggest that you write them down on paper or create a file to disk
or tape containing the replacement words you choose.

127



Customising Basic

This is quite simple. As described above, the Basic ROM must first
be copied and switched out. To do this | have written a small machine
code routine and mixed it with the Basic program. This means that
the program must be entered exactly as shown or the machine code
will not work.

The easiest way to enter and save this program is to load and RUN
Supermon, and then intialise and new it. The Basic program can then
be entered but not tested. The next step is to re-enter Supermon with
SYS8<return > and enter the code from $0EQQ to $0E1F hex. Staying
in Supermon, the program should then be saved with
S” <return>",08,0801,0E20

This will give you a copy of the program which can be tested and used.
Remember to save any version that has been corrected or altered.

Although | said earlier that this program was fairly simple, it does
deserve a bit of explanation. The first line of the Basic program sets
the screen and border colours before printing a message, which you
should not get much time to read if your version is working. If it stays
on the screen for more than a few seconds, then there is an error and
your 64 may well have gone to sleep. To awaken it you may need to
switch off and on again. You did remember to save it, didn’t you?

The machine code is accessed at line 120, and the time taken to
evaluate the SYS takes longer than the routine does to complete. The
machine code routine stores the start of the Basic ROM in FB and
FC hex and then, using the Y register as an offset, stores the ROM
in the underlying RAM.

The high byte of the ROM address is incremented after completion
of each page until it reaches $C000 hex, the end of the Basic ROM
and the start of the alternate RAM. The Basic ROM is then switched
out by placing $36 hex 54 decimal into location 1. Finally control is
handed back to the Basic program.

The Basic program continues execution and asks for the reserved word
you wish to change. Once the word has been selected an end of word
marker is added and the program scans through the reserved words
for the one chosen. If it is not found an error message is displayed.

128



Once the word to be changed has been found a replacement is
requested. It must be the same length as the word it is replacing and
must not duplicate any other reserved word currently in use. The
program lastly requests another word or finishes the program.

Once you have left the program you may use your customised version
of Basic as you would the normal Basic. This includes saving and
loading programs. You will need to re-initialise or change your version
of Basic after resetting the 64. You may switch between the normal
and customised versions with ‘POKE 1,n’ where n equals 55 for normal
and 54 for the customised version.

Try thinking of some uses for the program. A rude version of Basic
would save you swearing at the 64, as it could do it for you.

NG ROM INTO RAM PLEASE WAIT...."

110 REM %%+ LDOP TO COPY ROM INTO RAM

120 SYS3584

130 REM #x* TAKE OUT BASIC ROM

160 POKE1,54

170 REM %% PUT RESERVED WORDS INTO R$

180 INPUT".aeapunayy  @RESERVED WORDE  ";RO$
185 PRINT" ; SEARCHING FOR WORD......
n

190 REM *#* SET TERMINATOR MARKER ON LAST BYTE OF
STRING

200 RO$=LEFT$ (RO$,LEN (RO$)—1)+CHR$ (ASC (RIGHT$ (RO$,
1)) +128)

210 REM %% ROUTINE TO SEARCH FOR RESERVED WORD
220 GOSUB390

230 IFFL=0THENPRINT"L LEINOT FOUNDS= ":F

ORDE=1T04000: NEXT: GOTO330

240 INPUT" Lo snys: YOUR WORD (SAME LENGTH)=
" USS

250 REM ##xx CHECK LENGTH OF WORDS ARE THE SAME
260 IFLEN(USS$)<>LEN(RO$) THEN240

270 REM »#% ADD TERMINATOR

280 US$=LEFT$(US%,LEN{US%$)~1)+CHR$ (ASC(RIGHT$ (US$,
1))+128)

290 REM *»# LOOFP TO POKE IN NEW WORD

300 FORJ=1TOLEN(US$)

310 POKEHO+J-1,ASC(MID$(US$,J,1))

320 NEXT

330 PRINT". gy ANOTHER WORD (Y/N)"

340 GETA$: IFA$< >"Y"ANDAS< >"N"THEN340

350 IFA$="N"THENEND

360 REM *%* ANOTHER WORD

370 GOTOL8O

129



380 REM #%% START ADDRESS OF ROM

390 HO=409&0

400 REM =»## BGET FIRST CHARACTER

410 C=A8C (MID$(RO$,1,1))

420 REM ##% IF FIRST CHARACTER MATCHES CHECK OTHER
-]

430 IFPEEK(HO)=CTHENI10

440 REM #+x LOOK AT NEXT ROM POSITION

450 HO=HO-+1

440 REM ### CHECK FOR END OF WORD TABLE IN ROM
470 1FHO=>42000THENFL=0: RETURN

480 REM #+% STARTS NEXT CHECK

490 BGOTO410

500 REM #x% SET POINTER TO POSITION OF SECOND CHAR
ACTER

510 HO=HO+1

520 REM ### THIS LOOP CHECKS THAT THE REST OF THE
CHAR. ‘'S MATCH

S30 FORJ=2TOLEN(RO$%)

540 REM #*xx CHECK EACH CHARACTER

550 IFPEEK (HO+J-2)<>ASC(MID$ (RO%,J,1))THEN410O

360 NEXT

570 REM ### SET POINTER TO START OF WORD AND SET F
OUND FLAG

580 HO=HO-1:FL=-1

8590 RETURN

B#*
PC SR AC XR YR 8P
.30008 F@ C7 @@ 40 F&

2ED2 A7 20 LDA #$00
@EQ2 B85 FB STA $FB
@EQ4 AT AQ LDA #%A0
@E@s 83 FC STA $FC
@EQ8 A 00 LDY #s$20
@E2A B1 FB LDA ($FB),Y
BE@C 91 FB 8TA ($FB),Y
BEQE C8 INY

@EQOF DO F9 BNE #0EGA
QE11 E& FC INC sFC
@E13 AS FC LDA $FC
@ELS C9 Co CMP #sCO
@E17 D@ EF BNE #QE@8
@E19 D@ ED BNE $0EQ8
QE1B A7 J6 LDA #%36
@ELD 85 01 8TA %01
@E1F 43 RTS

130



.1 OEOD A? @2 BS FB A9 AB 83 FC
.10E0B AD @@ Bl FB 91 FB C8 D@
.3BEL@ F9 E& FC AS FC C? C2 DO
.1@E18 EF DO ED A9 36 85 81 60

Both sides!

Users of the 1541 will be familiar with the trip to get more disks.
Wouldn’t it be pleasant to use both sides of your disk?

You will be pleased to know that not only is it possible to use both
sides of a single disk, but each side can be formatted on a different
drive. To do this you will need to cut a duplicate notch in your diskette
carefully or the drive will not write to it.

Having done this you can use both sides of the disk: just format the
reverse side in the usual way. This procedure is definitely not
recommended, but it seems to work (most of the time). | am not quite
sure why it works, so if any of you know or have an idea on the subject
| would be pleased to hear from you.

Joysticks

Two short routines to aid joystick control are given here. Nothing fancy,
but they should give you the general idea. '

First, a routine that will detect and print the direction in which the stick
was moved.

10 POKE 56322, 224

20 J=PEEK (36320

38 IF (JAND1)=0 THEN PRINT®GOING LIP"

43 IF (JAND2)>=0 THEN PRINT"DOWN WE GO"

58 IF (JAND4)=0 THEN PRINT"TOQ THE LEFT"
60 IF (JANDSI=0 THEN PRINT"NOW THE RIGHT"
78 IF (JAND16)=@ THEN PRINT"UNDER FIRE"

131



20 GOTO20
This simply returns the current direction of the joystick.

The second routine might be more suitable for inclusion in user
programs, but also serves as a good demo.

1@ PRINTCHRS$(147)
20 JI=PEEK (56320)

38 PRINT"CSH VI"jCHR$(157) 3

4@ IF (JAND1)=@THENPRINTCHRS$ (2@);" "jCHR$(145);
5@ IF (JAND2)=@THENPRINTCHRS (20) ;" "3CHR$(17)
6@ IF (JAND4)=@THENPRINTCHRS$ (20);" *;CHR$(157);
7@ IF (JANDB) =@THENPRINTCHRS (20); " "3 CHR$ (29) 3
8@ IF (JAND16)=@THENPRINT"Q" ; CHRS$ (157) 4

98 GOTO20

The program places the character shift V on the screen and moves
it in the direction of the stick. If the fire button is pressed the character
shift Q is superimposed over shift V. As it stands it is only good for
a demo, but it could easily be converted for use in your programs.

Input routine

This short routine will clear the screen, place an asterisk on it and wait
for an input. Pressing a key will place the appropriate character on
the screen with the asterisk on the rightmost of the last character input.
When a carriage return is found the program exits.

The program works fine as it stands, but needs to be adapted for your
particular needs if you intend to use it from your programs. It can easily
be adapted for use as a protected input for adventure games. The
routine uses the following Kernal routines:

CHROUT ($FFD2) output character to channel

GETIN ($FFE4) wait for keypress, using the SCNKY routine.

B#
PC SR AC XR YR SP
- 33008 30 20 00 @@ F&

Ceve A9 93 LDA #$93
caaz 28 D2 FF J8R $FFD2

132



CoaS A? 2A LDA #$£2A
coa7 28 D2 FF JSR $FFD2
ColA 20 E4 FF JSR $FFE4

CeeDp C? eo CMF #%028
CoeF F@ F9? BEGQ $C@8A
coai1 C? @D CMP #$@8D
Ce13 Fo i1t BEQ $C@26
CeiS 8D 27 Ca STA sC@az7
ca18 A% 14 LDA #%14

Cei1A 28 D2 FF JSR $FFD2
coib AD 27 C@ LDA $Ca27
Co20 20 D2 FF JSR $FFD2
ca23 4C @5 Co JMP $C2aS
cezs 62 RTS

.:COBB A7 93 28 D2 FF A% 2A 20
.:CO@8 D2 FF 20 E4 FF C9 @0 FO
.:C010 F? C9 @D F@ 11 8D 27 CO
.:1CO18 A? 14 20 D2 FF AD 27 CO
.3C820 20 D2 FF 4C @5 CO 42 @0

Cursor control
By now most people will be familiar with the techniques of positioning
the cursor from Basic, but it is also possible 1o write a very short routine
in machine code to give you excellent control of the cursor from your
Basic programs.

This routine sits at $C000 hex, but could easily be relocated to any
free part of memory. So, instead of the following:

1@ A$="125 CDI[4@ CR]"
20 B$=LEFT# (A$. N
etc.

we can simply enter the screen co-ordinates for the next cursor position
followed by the characters to be placed there.

133



The machine code part of the routine first checks for a comma ($AEFD)
and then gets a byte ($B79E). The byte is placed on the stack and
the next byte is input. This gives the row and column co-ordinates
for the position of the cursor. The cursor is then positioned using the
Kernal routine PLOT ($FFF0), and the routine checks for a second
comma. A jump to the PRINT routine displays your message at the
selected co-ordinates.

C000 JSR $AEFD

C003 JSR $B79E

C006 TXA

C007 PHA

C008 JSR $AEFD

C00B JSR $B79E

COOE PLA

COOF TAY

C010 CLC

CO11 JSR $FFFO

C014 JSR $AEFD

C017 JMP $AAA4

The Basic subroutine to call the above is fairly simple and can easily
be placed within your programs. The first line sets the SYS address,
the next three lines select co-ordinates for the cursor and messages
to be displayed. The fifth line is a delay loop and the last two lines
display a message and wait for a key press to exit the routine.
63002 CF=45152

63010 SYSCP,1@,18, "DEMONSTRATES"

630208 SYSCF, 1@, 208, "CURSOR CONTROL"

63930 SYSCP, 10,9, "THIS PROGRANM"

134



63040 FOR PAUSE = 1 TO 2008 :NEKT PAUSE
63050 SYSCP, 10,5, "TON HITIANY KEVIOFFI"
63068 GETA%$: IF A = "" THEN 63048

String memory
Setting up strings from a program in the following way:
DIM EX$(90R):FOR S = 1 TO 903:EX$(S) = CHR$(B2) : NEKT

will store the strings in the string storage area were they remain until
memory runs out because of ‘dead’ strings or the 64 does a forced
garbage collection (PRINT FRE{0)). it is of course almost impossible
to calculate when your 64 will need to perform a garbage collection
and it can take a considerable time to-do.

It is therefore advisable to avoid strings that use CHR$ or STR$, and
avoid as much as possible the storage of strings that will be discarded
but not recovered. The two Basic commands INPUT and GET will also
use the string storage area and should have their string variables cleared
after use in your programs. So the following:

1 GET A$: IF A$="YES" THEN etc
could be cleared after use by setting A$ to a null string (A$="").

Using strings that are read in from data statements or assigning string
variables such as EX$(S) ="n" (where n is the character required),
uses the strings directly from the program and does not use the string
storage area. This is a much more economical use of memory.

In general, strings should not be used repeatedly without being set
to a null string in between uses. If there is a routine which builds up
a block of strings and then discards them, take the first possible chance
to perform a FRE(0). This should save memory and time.

Hex to Dec

Instead of reproducing the usual hexadecimal to decimal conversion
table | have decided to include a Basic program that will convert hex
to decimal or decimal to hex and display it on the screen in an easily

1356



readable form. The program was originally written for the Pet by Pete
Gabor; | have updated and converted it for the 64. My thanks to Pete.

The program uses data statements to set up two boxes in the middle
of the screen and one at the bottom of the screen. The two smaller
boxes are used to display the number to be converted and its equal
in hex or decimal. The box at the bottom of the screen is the command
area. It is used to display the mode you are in (hex to decimal or decimal
to hex).

To quit the program use the HOME key {unshifted). | am afraid that
you will have to bear with me when you get to entering the data
statements, as they are all with the shift or logo key. That is about
it for this program. The result is a very readable and easy to use
converter.

1@ MD=@:M$ (@) ="DEC -> HEX"tM$(1)="HEX -> DEC"
20 P@s="[HMEIL7 CD1"

30 Pis=FP@s$+"(7 CDIC1S CRI"

40 P2$=P1$+"[35 CD1":1PO$=PR$+"[&5 CR1"
S8 PRINT"CCLRI"j

&8 FORK=1TO23

70 READA$:1 PRINTAS

80 NEXT

9@ P$=""iN=0Q

120 PRINTP1$)

11@ PRINT"LCLILON] LOFF1CL7 CLI"y
120 GETC#: IFC#=""THEN120

130 C=ASC(Cs*)

148 IFC=13THEN240

150 IFC=20THEN90

168 IFC=19THENPRINT"LCLR1":END

17@ IFC=64THENMD=1-MD1PRINTP2$M$ (MD) : B0OTO90
180 IFC<480RC>7@0R (MD=@ANDC>S57) THEN12@
198 IFLEN(P%) >&4THEN120

200 N=156%N+C-48+(C>57)%7

218 PRINTC#g

220 P$=P$+C#

23@ 60TO120

240 P$=RIGHTS$(" "+P%$,7)

2538 IFMDTHEN33Q

2460 D$=P$1D=VAL (P$) s Hé=""AmD

278 FORK=1TO&31A=A/16: IFA<1THENZ29Q

288 NEXT

298 FORJ=KTO18TEP-1

302 HZ%=D/16"(J-1)sD=D-16"(J—1) *HY%

310 H$=HE+CHR$ (HZ+48—- (HL>P) #7) sNEXT
320 H$=RIGHT*(" "+H$,7)160TO3ISG
338 D$=RIGHT*(" "+8TR$(N) ,7)

340 H#=P#$: IFN>F99999999 THENDS® " 335344454 1



350 PRINTFPO$H#$3;"([13 CRI";D%

340 GOTO9@

378 DATA" [21 LO &1"

8@ DATAY CONI# HEX-DEX CONVERTER #L[OFF1]

39@ DATA" *

40@ DATA" *

41@ DATA" *

428 DATA" H E X DECIMAL"
430 DATA" [8H O1CS LO YICSH P1

{SH 0ICS LO YI[8H P1"

448 DATA" [LO HI [LO N3 [Lo
H1 [LO NI*

45@ DATA" [SH LICS LO PICSH @)

(SH LIS LO PILSHAI"

460 DATA"

47@ DATA" "

48@ DATA" "

490 DATA" INPUT®

508 DATA" LSH DI1L7 LO YICSH PI"

51@ DATA" [LO H1 [LO NI"
520 DATA" LSH LICS LO PICSH @1"

533 DATA" *

540 DATA" *

550 DATA" (SH 0JC11 LD YICSH PI"

56@ DATA" INPUT MODE: CLO H3 [LO N2®

57@ DATA" [SH LIC11 LD PICSH @1*
588 DATA" Lo Pl €3 LO PI"

590 DATA“PRESS [ONIQLOFF1 TO CHANGE MODE; [ONIHME
COFF] TO QUIT PGM"

408 DATA"

618 DATA" *

Code to Basic

A short routine is included here to convert machine code routines to
Basic data statements. In essence this is quite simple: each address
of the code is looked at and the value is placed in a data statement.

The difficult part of the process is to create the new lines for the data
statements and the data statements themselves from within a Basic
program. The program makes extensive use of the keyboard buffer
to create the next Basic line number, the data statement and the data.

The information is set up on each pass through the program and
displayed on the screen. The program then places two carriage returns
into the keyboard buffer and exits. The new line is then created and
the program re-entered at line 200.

137



A closer look at the program may enlighten you somewhat. The
program first requires the first new line number. | advise a number
above 380 or you will write over the program. The increment between
lines is requested and then the start and end addresses of the machine
code program. Don’t forget to have the machine code in memory at
this point!

When you have given the program this information, it is converted
into variables, and the low and high byte of the start and end addresses
are stored. The line number and the data statement are then printed.
The section of code is peeked, converted into data and printed. The
statement GOTO 200 is then displayed on the screen. The current line
number is incremented using the step you gave and the variables are
set to point at the next section of code.

At this point you have on the screen a line number, the data statement
and a line of data, but to transform this into a Basic line number a
carriage return must be performed on it. In order to achieve this the
program places 2 into location 198 (the counter for the number of
characters in the buffer) and two carriage returns into the keyboard
buffer, and stops the program.

The first carriage return is executed over the new line and the second
one over the GOTO 200 statement which re-enters the program at line
200! The program then checks for the end of code addresses and stops
if they have been reached, but continues to create new lines, data
statements and data if they have not been reached.

This program is good enough. It is fairly quick and will produce data
from huge machine code programs!

180 PRINT"CCLRILONICREATE DEC. DATA 8STATEMENTS FR
oM mM/C."

118 PRINT"LCD1] FOR THE [ONICBM&4LOFFI"
120 INPUT"CHMEILS CD3 START LINE NO.# 3 CL
1";S%:1 IFS8$=" "THEN120

138 INPUT"CHMEIL?7 CD1 STEP [3 CLI"; T$3IFT$=
" "THEN13@

14@ INPUT"CHMEIL9 CD3J START ADD. DEC. (3 CL
1*3B%: IFB$=" "THEN14@

150 INPUT"CHMEICL11 CD1l END ADD. DEC. L3 CL1

"3E$: IFE$=" "THEN15@

140 S-VAL(SS)lT-VAL(Tt)IB-VAL(BS)IE-VAL(Et)IF-BIL
=F+&1 PRINT"[4 CD1"

170 POKES31,INT(E/2%5&)

180 POKEBI2,E-INT(E/256) #2546

138



190 POKEBS28,T:B80T0270

200 T=PEEK (828)

218 S=PEEK (826) #256+PEEK (827)

220 L=PEEK (829) #254+PEEK (830)

238 E=PEEK (831) #2%56+PEEK (832)

24@ IFL >=ETHENEND

253 F=l+13L=L+7

26@ PRINT"CCU] "
270 PRINTS;

28@ PRINT"DATA";

29@ FORP=FTOL:PRINTMIDS (STR$ (PEEK(P)) ,2)3","§ 1 NEX

IB@ PRINT"CCLI *

310 PRINT"GOTO20@L3 CUl"s

320 POKE198,2:POKES631, 13t POKESG32,13
330 S=8+T

40 POKEB26, INT(5/236)

350 POKEBZ7,S-INT(8/236) #2356

350 POKEBZ29, INT(L./236)

370 POKES3@,L—INT(L/256) %2541 END
380 END

Hi-res

Again my thanks go to our German friends for parts of the following
routine. Essentially it sets up a hi-res screen and allows the user to
PLOT, UNPLOT, COLOUR, DUMP and GOFF on the hi-res screen.
I make no claim that this is a complete hi-res package, but it is well
on the way. Its features include setting up a hi-res screen, clearing
the screen, changing screen colours, inverting the screen, plotting and
unplotting. The routine will also save users’ screens on to tape or disk.

The disassembly of the program looks a bit odd in places as it includes
tables. You will need a monitor to enter this routine: Supermon will
do nicely, or any other monitor that does not occupy the top part of
the alternate RAM ($C000 to $C255), as this is where the program sits
in memory. It could well be relocated, but this would take some time
as there a quite a few jumps that would have to be changed by hand.

Below is a list of the entry points into the routine and the entry points
for the various subroutines:

SYS 49152  {$C000 hex enters package, sets up and clears graph-
ics screen)

139



(SYS 49156 $C003 hex clears graphics screen)

SYS 49158  ($C006 hex sets the colour for the screen, e.g. SYS
49158,7 sets the screen to yellow)

SYS 49161  ($C009 hex inverts the graphics screen)

SYS 49164  ($C00C hex plots a point, e.g. SYS 49164,n1,n2 where
n1isin the range 0to 199 and n2is in the range 0 to 255)

SYS 49167 ($COOF hex unplots a point: same format as SYS 49164)

SYS 49170  ($C012 hex loads a previously saved screen from tape
or disk, e.g. SYS 49170, “filename”,dn where dn is 1
for tape and 8 for disk)

SYS 49173  ($C015 hex saves the graphics screen to tape or disk,
e.g. SYS 49173, “filename”,dn)

SYS 49176  ($C018 hex turns the graphics screen off and returns
to normal screen)

SYS 49179  {$CO1B hex will dump the contents of the hi-res screen
to printer. Make sure you have one hooked up before
calling this routine)

Some subroutines could be added to this routine. First, a routine to
set up hi-res sprites; secondly a fill routine; and lastly a DRAW rou-
tine would of course be very useful.

The code sits in RAM from $C000 to $CO55. The first part of the list-
ing, $C000 to $CO1B, is a jump table for the entry points of the rou-
tines described above.

Before using any of the wonderful features of this routine, the hi-res
screen must first be initialised. This is carried out by the code from
$CO1E to $C03C hex.

Before initialising the hi-res screen, the contents of $D011 hex 53265
decimal and $D018 hex 53272 decimal are stored in order to reset the
64 to its normal screen after use. The contents are then changed to
set up a hi-res screen. In Basic their equivalent would be POKE
53265,59:POKE 53272,24. This sets up the hi-res screen, but it still
needs to be cleared.

140



The usual shift HOME wiill not do for the hi-res screen. So a routine
to clear the hi-res screen is included from $C03D to $C053 hex. It sets
the start of the hi-res screen from $2000 hex 8192 decimal and places
zeros in every location from $2000 hex to $3FFF, the end of the hi-res
screen. In Basic this routine would look something like this:

FOR SCREEN = 8192 TO 16383:POKE SCREEN, @: NEXT

Next the colour has to be placed on the screen. The screen is cleared
initially by the code from $COBA to $C070 hex, but after that is set
by the user with the entry to the routine at $C054 hex. The equivalent
in Basic would be:

FOR COLOUR = 1824 TO 2023:POKE COLOUR, 16:NEXT

We now have the same set up in Basic as the first three routines in
code. They are position the screen, clear the screen and colour the
screen. Indeed we now have an elementary Basic version which looks
like this:

10 POKE 53265,59:POKE 53272, 24

20 FOR SCREEN = 8192 T0 16383

39 POKE SCREEN, @

40 NEXT SCREEN

59 FOR COLOUR = 1024 TO 2823

60 POKE COLOUR, 16

7@ NEXT COLOUR

The next routine from $C071 to $COBA hex inverts the screen. This
is done with the EOR instruction. Every location on the hi-res screen

is EOR’d with $FF hex.

The next routine at $C08B to $C107 hex will plot a point on the hi-res
screen. To unplot a point we use the routine at $CO8E to $C107.

The routine from $C152 to $C161 hex loads a previously saved screen.
This routine uses the LOAD Kernal routine at $FFD5 hex, and the rou-
tine from $C162 to $C171 saves a screen using the perform save rou-
tine $E544., The routine that sets the parameters for the load and save

141



is at $C13A to $C151 hex.

The hi-res dump (for the FX-80 and with small adjustments other Ep-
son printers, although there are plenty of hi-res dumps available for
Commodore printers) is at $C180 to $C055. It scans the hi-res screen
and dumps the contents to the FX-80. Although it is set up to dump
the area from $2000 to $3FFF hex, it can easily be changed to look
at another area. In fact the whole routine could be used to place a
hi-res screen in any available memory.

B*
PC SR AC XR YR SP
-30008 33 00 QO 0@ F&

Ceeoa 4C iE Co JMFP $CO1E
C@B3 4C 3D Co JMFP $C@3D
Caoé 4C 54 Co JMF $COS4
Cae? 4C 71 Ce JMP $C@71
Caac 4C 8B Co JMP $CO8B
COoF 4C BE C@ JMP $COBE

Ca12 4Cc 52 c1 JMP $C152
Ca1S 4C 3A C1 JMP $C13A
Ca18 4C 62 Ci JMP $C1642
Caip 4C 80 C1 JMP $Ci18@
C@lE AD 11 DO LLDA #$DO11
C@21 8D 72 C1t STA $C172
Ce24 AD 18 DO LDA s$D@i8
Ca27 8D 73 C1 8TA $C173
caeza A? 3B LDA #$3B

C@2C 8D 11 D@ 8TA $DO11
C@2F A9 18 LDA #$:8

Ca31 8D 18 DO STA #DO1i8
Co34 20 3D Co JSR $C@3D

Ca37 A2 102 LDX #s$10
Ca3? 20 5A Coa JSR $C@sA
Ca3C 40 RTS8

Ca3D A0 0@ LDY #s@28
Coa3F A9 20 LDA #$20
Ce41 84 FD STY $FD
Co43 85 FE STA $FE
Co4a5 98 TYA

Ca4s 91 FD STA ($FD),Y
Coa48 Cs INY

Ca49 DO FB BNE $CQ46
Co4B E& FE INC #FE
C@4D AS FE LDA $FE
Ca4F C9 40 CMP #$40
CasS1 Do Fz BNE $C0@45
CoasS3 so RTS

142



cas4e
cas7
CcasA
casc
CasSE
Cos
Cas2
Co63
Ca&S
Cassé
cos8
CaséA
casC
Ca6&E
co7e
ce71
cea73
Ca75
ca77
caze
Ca7B
cazp
Ca7F
cese
cea2
cos4
cags
coss
casA
cesb
caesDd
cevo
ca92
Ca9s
casse
Cava
ceec
CR%E
cend
CoA2
CoA4
cenas
coeAas
CBAA
CoAB
C@AC
CoAD
CRAE
CoAF
ceB2
CeBS
cess

21
75
a8

76

AE
B7

JSR
JSR
LDY
LDA
STY
STA
TXA
STA
INY
BNE
INC
LDA
CMP
BNE
RTS
LDY
LDA
STY
8TA
LDA
EOR
STA
INY
BNE
INC
LDA
cMP
BNE
RTS
LDA
BIT
sTA
JSR
JSR
CPX
BCS
LDA
CMP
BCC
BNE
LDA
CHMP
BCS
TXA
LSR
LSR
LSR
TAY
LDA
STA
LDA
STA

$AEFD
$B79E
#5008
#$04
$FD
$FE

($FD) ,Y

$CR63
$FE
$FE
#$08
$CAs62

#$00
#$20
$FD

$FE
($FD) ,Y
HSFF
($FD) ,Y

sCAa7e
$SFE
SFE
#$40
$Co79

#5002
$B8OA%
£97
$AEFD
$B7EB
#$C8
$Co8A
$15
#$01
$COAA
$CesA
$14
#%40
*Casn

$C121,Y
$C175
$C108,Y
$C176

143



CeBB
cesC
C@BE
C@aBF
cecz
cacs
cecz
cece
cecc
cecb
CacF
Cepz
cabs
cans
cane
cebB
capc
C@DE
CRE1
CRE3
CReES
Cee?
CeE?
COEB
CeED
C@EF
CarFe
CoFz
CaF3
COFS
CeFé&
CorFs
CoFA
CerFc
CaFE
cioe
cie2
cias
c1a7
cies
cia9
ciaa
ciac
ciep
CieF
ciia
Citi
€112
C113
Cii14
C117
c119

144

a2

A&

aF
12

C1

Cc1

Ci

Cci

Ci

FD

i@

TXA
AND
cLC
ADC
8TA
LDA
AND
STA
cLC
LDA
ADC
8STA
LDA
ADC
8TA
cLC
LDA
ADC
STA
LDA
ADC
STA
LDA
AND
EOR
TAX
L.DA
DEX
BMI
ASL
BNE
LDY
BIT
BPL
EOR
AND
BIT
STA
RTS
BRK
BRK
ORA
?7?
ORA
iracars
PHP
ASL
???
7P
ORA
ORA
77

#%@7

$C175
$C17S
$14
#$F8
$C174

#5002
$C173
$FD
¥$20
$C176
$FE

$FD
$C174
$FD
$FE
$15
$FE
$14
#$07
#$07

#$@1
$CarFs

$COF2
#$00
$97
$C103
WSFF
($FD) ,Y
$FD11
($FD) , Y

($22,X)

$86

$100F
($12),Y



Ciia
ciic
ci1D
cize
C123
Ci124
Cizé
ci1z27
ci128
ci2A
CizB
ci2C
Ci12E
Ci2F
ciza
Ci132
C133
€134
C136
C137
c138
Ci3A
Ci3D
Cila0
Ciq2
Ci44
C146
Ci48
Ci14A
ci4c
CilaE
Ci151
c152

Ci155

c158
C15A
c1sc
C1SE
ciel
Cl62
C165
C168
C16B
C16E
c171
c172
C173
C174
Cc175
C176
c177
c178

16

1B

1€
40

AE
E1

FF

AE
£1

ORA
77?
ORA
ORA
777
CPY
RTI
277
CPY
RTI
777
CrY
RTI
?7?
CPY
RTI
ifarars
CPY
RTI
arars
CPY
JSR
JSR
LDX
LDY
LDA
STA
LDA
STA
LDA
JSR
RTS
JSR
JSR
LDA
STA
LDA
JSR
RTS
LDA
8TA
LDA
STA
JSR
RTS
BRK
BRK
BRK
BRK
BRK
BRK
BRK

$16,X

$1C1iB,Y
$4000, X

#+$00

#+00

#$00

#+00

#$00

#$00
$AEFD
$E1D4
#+£0a
#$40
#4020
$FD
#+20
$FE
#$FD
$FFD8

$AEFD
$E1D4
#$61
$B9
#5020
$FFDS

$C172
$DO11
$C173
$DA18
$ES44

145



Cci79
Ci7A
Ci7E
ci7c
Ci7D
Ci7E
Ci17F
cise
cisl
cias2
ci83
cigs
ci8s
cigé
cies
CisA
cisc
Ci8E
C18F
cica
Ci93
C195
Ci96
ci98
Ci9B
C19E
ClAQ
C1A3
CiAS
CiA8
ClAaA
C1AD
ClAF
CiB2
CiB4
CiBs
ciB8
Ci1BA
CiBC
CiBE
cilce
Ci1Cc3
ctCsS
cicse
cica
cicb
CiCF
ciDp2
CiDa
c1b7
CiD?
CiDB

146

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

a3

BRK
BRK
BRK
BRK
BRK
BRK
BRK
FPHA
LSR
PHA
TYA
PHA
PHP
LDA
AND
sSTA
LDA
TAX
TAY
JSR
LDA
TAX
LDY
JSR
J8R
LDX
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
STA
LDA
8TA
LDA
STA
LDA
J8R
LDA
J8R
LDA
JSR
LDA
JSR
LDA
8TA
LDA
STA
LDA

$01
#$FE
$01
#$00

$FFBD
#5204

WEFF
$FFBA
$FFC@
#$04
$FFC?
#$1B
$FFD2
#$41
$FFD2
#$08
$FFD2
19
$FB
#3500
$F7
#$20
$F8
#$1B
$FFD2
#$4B
$FFD2
#$40
$FFD2
#5031
$FFD2
#+$28
$0334
$F7
$F9
$F8



C1DD
C1DF
CiEl
CilE3
C1ES
C1E7
CLlE9
CiEC
ClEE
CiFe
CiF1
CiF2
CiF4
CiFé6
CiF8
CiFA
CiFC
CIFF
cz2e1
cz2e3
C2035
c2es8
cz2eB
c2ec
C20E
C211
c214
c2146
cz18
c219
C21B
C21D
C21F
c221
c223
C224
c228
C22B
C22D
c23a
c232
C234
c237
C239
C23C
C23E
C241
C243
C244
C249
C24B
C24D

c2

Ci

c2
c2

c2
FF

23
c1
FF

ct
FF
FF

FF
FF

STA
LDA
STA
LDX
LDY
LDA

8STA $C275,Y

DEC
BEQ
INY
cLC
LDA
ADC
8TA
BCC
INC
JMP
LDA
8TA
LDX
ASL
ROR
DEX
BNE
LDA
J8R
DEC
BNE
cLC
L.DA
ADC
sSTA
BCC
INC
DEC
BEG
JMP
LDA
JSR
DEC
BEQ

LDA
JSR
LDA
JBR
LDA
J8R
JSR
LDA

ORA
STA

$FA
#$08
$FC
#3020
#$01
($F9,X)

$FC
$CIFF

#3501
*F9
$F9
$C1FC
SFA
$C1E7
#$28
$FC
#%28
$C275,X
$C275

$C205
$C275
$FFD2

$C203

#$28
$F7
$F7
$C223
sF8
0334
$C22B
$CiD7
#$@D
$FFD2
$FB
$C237
$C1BE
#$07
$FFD2
#$1B
$FFD2
#$40
$FFD2
$FFCC
$ai1

#5201
$01

147



C24F 28
C258 &8
c251 A8
C252 68
C253 A8
C254 48
C255 60

. 1CO00
. sCoes
.:1Co10
.1C@18
.1CR20
.5C028
. :CO3Q
.:1CO38
. :CR40
.1C048
.1C053
.1 CA58
. 1CB40
. 100868
.31CA70
.:C@a78
. 3C08a
. :1C088
. 1C090
.1C098
.1 CoAB
. 1COAB
.3 COB@
. sCBB8
.sCBCO
. 1C0C8
. 1 CODA
. 1CAD8
. :COEQ
. tCREB
.1 COF@
.:COF8
.1C100
.:C108
.3Ct10@

148

PLP
PLA
TAY
PLA
TAY
PLA
RTS



-:C118 12 14 15 146 17 19 1B IC
-31C120 1D 00 40 80 CO 2@ 42 S©
-1C1268 C@ 0@ 40 80 CO @2 40 S0
-:C130 C2 20 40 B0 CO 00 402 8@
.:C138 C@ 0@ 20 FD AE 20 D4 E1
.3C140 A2 OB AD 40 A9 0@ B85 FD
.:1C148 A9 2@ 85 FE A9 FD 20 D8
.1C150 FF 4@ 20 FD AE 28 D4 E1
.:C138 A7 61 B85 BY? A9 DO 20 DS
-2C16@ FF 68 AD 72 C1 8D 11 D@
-1C168 AD 73 C1 8D 18 D@ 20 44
-31C170 ES 402 02 00 00 20 22 0@
.1C178 0@ 02 22 00 00 00 20 oe
-3C180 48 4A 48 98 48 08 AS 01
.1C188 29 FE 85 01 A% 00 AA AB
-:C198 2@ BD FF A9 04 AA AB FF
-:C198 20 BA FF 20 C@ FF A2 04
«1C1AB 20 C? FF A9 1B 20 D2 FF
«1Cl1AB8 A9 41 2@ D2 FF A9 @8 2@
.:CiBB D2 FF A9 19 B85 FB A? 00
-:C1lB8 85 F7 A9 28 85 F8 A9 1B
.tCiCO 208 D2 FF A? 4B 2@ D2 FF
»3C1C8 A9 40 20 D2 FF A9 01 2@
-31C1DB D2 FF A9 28 8D 34 03 AN
.31C1D8 F7 85 F9? AS FB8 BS FA A9
-:ClEQ @B 85 FC AZ B0 AB @1 Al
-:ClEB F9 99 75 C2 Cé FC FO OF
.tC1FO@ C8 18 A7 @1 &5 F9? B85 F9
-:C1F8 9@ @2 E6 FA 4C E7 C1 A9
-:C200 @8 85 FC A2 @8 1E 75 C2
.1C208 &4E 75 C2 CA D@ F7 AD 75
-31C21@ C2 20 D2 FF C& FC DO EB
.3C218 18 A9 V8 &5 F7 B85 F7 90
-1C220 @2 E6 FB CE 34 @3 Fo @3
.2C228 4C D7 C1 A9 @D 20 D2 FF
.1C230 C6 FB F@ @3 4C BE C1 A9
-1C238 @7 20 D2 FF A9 1B 20 D2
-1C240 FF A9 40 20 D2 FF 20 CC
.31C248 FF AS 01 29 01 B85 o1 28
.1C250 &8 AB 648 AB 48 40 B0 0B

Borders

Drawing a border in Basic is fairly simple but very slow. You could
go and make your lunch while you wait! Just to prove the point, there
is a Basic subroutine included here that will give you a border from
Basic.

149



Basic border

The line numbers start from 63000, but can be changed to suit your
needs. The variable ‘C’ is set to the difference between the normal
screen and the colour memory 54272, The variable ‘SC’ is set to the
start of the screen.

The next line places the first part of the border along the top of the
screen using the reversed space character (160} and makes the bord-
er yellow (7). The next loop places a yellow border along the bottom
of the screen, and the last two loops place the two sides of the border
by looping through the screen locations with a step of 40. This is of
course fairly simple in Basic. The same thing in machine code is a lit-
tle tricky although well worth the effort, if only for the speed.

63000 C=S54272:SC=1024

53018 FORA=SCTOBC+391POKEA, 160t POKEA+C, 71 NEXT

43028 FORI=SC+4BTO1983STEP401POKEI , 1601 POKEI+C,7:NEXT
43030 FORI=SC+3I9TO19838TEP4D:1 POKEI, 16@1 POKEI+C, 7t NEXT
53040 FORA=1984T02023: POKEA, 1601 POKEA+C, 71 NEXT

Code border

The program included here will do exactly the same as the Basic pro-
gram, but so quickly that it is not really possible to see it happening.

The code sits from $C000 to $CO9E hex, but could of course be relo-
cated to a place of your choice. First the border colour is set to blue
and the screen colour to red. The screen is then cleared using the
CHROUT Kernal routine ($FFD2 hex).

The ‘X’ register is then loaded with the screen length and the accumu-
lator with the reversed space ($A0 hex). Using the "X’ register as an
offset a reversed space is stored in the top right of the screen and the
vaulue for yellow is loaded into the accumulator and stored in the top
right of colour memory.

This gives us one yellow reversed space in the top right of the screen.
The contents of the "X’ register are then decremented and the process
continues until the ‘X’ register contains zero and our top line is
complete.

150



The same process is then cairied out for the bottom line and the carry
flag is cleared. In order to draw the border at the sides of the screen
the start addresses of the screen and colour memory are first stored
and then manipulated using the Y register to step through the screen
and colour memory and place the reversed space and the colour in
the correct positions.

The code is a little long-winded and there are better ways of writing
it, but it is presented in this form as it is fairly easy to follow the pro-
gram flow.

Coed A9 B4 LDA ##06
Ceaz s8Dh 20 D@ STA $D@20
Caes A9 @2 LDA #$£02
Cea7 8D 21 D@ STA $D@21
CooA A7 93 LDA #$93
CoaC 20 D2 FF JSR $FFD2
CoaF A2 28 LDX #$28
C2i1i A9 AL LDA #$AD
Ca13 9D FF @3 STA $@3FF,X
Cois A7 @7 LDA #$07
cai8 9D FF D7 STA $D7FF ,X
CaiB CA DEX

CeiC DB F3 BNE $C@11
Ca1E A2 28 LDX ##28
Coze A9 AB LDA #fA0
co22 90 BF @7 STA $@7BF, X
Coz25 A9 @7 LDA #$@7
C@a27 9D BF DB STA $DBBF,X
caza CA DEX

CozB D@ F3 BNE #$CQ20
ce2Dp 18 CL.C

Co2E A9 27 LDA #$27
Co3e 85 FB STA $FB
Ca32 A9 24 LDA #$04
Co34 85 FC STA $FC
Ca3zs A% 27 LDA #%27
ce38 85 FD STA $FD
Ca3A A9 D8 LDA #$D8
Ca3C B85 FE STA $FE
Ca3E AG 20 LDY #+020
Co42 A9 AL LDA #%AQ
Ce42 91 FB STA ($FB),Y
Co44 A9 27 LDA #£27
Cl4s6 &5 FB ADC $FB
Ce48 85 FB STA $FB
Co4A AT OQ LDA #%00
Co4C &5 FC ADC $FC

Ce4E 85 FC STA $FC

151



Cose A9 @7 LDA #$07

ces2 91 FD STA ($FD),Y
cesa A9 27 LDA ##27
C@56 65 FD ADC $FD
cess 85 FD STA $FD
CosSA A7 0@ LDA #$00
CesSC &5 FE ADC $FE
COSE 85 FE STA SFE
Cesd C8 INY

cesl1 Co 18 CPY ##%18
ces3 DA DB BENE $C040
Co6S 18 cLCc

Coas A9 28 LDA ##$28
Ces8 BS FB STA $FB
CosA A7 04 LDA #£24
Ce4&C 85 FC STA $FC
Co6E A 28 LDA #$28
Ca7@ 85 FD STA $FD
ce72 A9 D8 LDA #s5D8
ca74 85 FE STA SFE
Ca76 AB 00 LDY #s$2@
Ca78 A9 AB LDA #%A0
Ca7A 91 FB S8TA ($FB),Y
ce7c A9 27 LDA #$27
C@7E &5 FB ADC *FB
Ces® 85 FB STA $FB
ces2 A9 2@ LDA #$00
ces4 63 FC ADC #$FC
cess 85 FC STA $FC
cese A? 07 LDA #$87
CosA 91 FD STA ($FD),Y
cesc A% 27 LDA #$27
C@eE 65 FD ADC $FD
ce?@ 85 FD STA #FD
Ce?2 AT 00 LDA #$08
Ca94 &S FE ADC $FE
co9é 85 FE 8TA $FE
ce98 c8 INY

cegv Co 18 CPY #s$18
Ce9e D@ DB BNE #$C@78
cesD 18 cLC

CO%E &0 RTS

.3COB2 A9 B4 BD 20 D@ AT B2 8D
.:CO@8 21 D@ A? 93 2@ D2 FF A2
.1CB182 28 A? AB 9D FF @3 AT @7

162



.:C018 9D FF D7 CA D@ F3I AZ 28
-3CB28 A? AD 9D BF @7 A% @7 9D
.:C@28 BF DB CA D@ F3 18 A9 27
-3CO38 85 FB A9 @4 85 FC A9 27
-1C@38 85 FD A9 D8 85 FE AD DO
.:CB40 A9 AD 91 FB A9 27 &5 FB
-:C248 85 FB A @@ &5 FC 85 FC
-1CA5@ A? @7 9?1 FD A9 27 &5 FD
-31C@38 85 FD A9 @@ 65 FE BS FE
.tCR48 C8 C2 18 DO DB 18 A9 28
-:1C@68 85 FB A% @4 85 FC A9 28
.:CA7@ 85 FD A9 D8 85 FE A @0
-1C078 A? A@ 91 FB A9 27 &5 FB
-1C28@ 85 FB A? @@ &5 FC 85 FC
.:C288 A? @7 91 FD A9 27 &5 FD
.:CA98 BS FD AY? @@ &5 FE 85 FE
.:C@98 C8 CA 18 D2 DB 18 40 QO

Colour border

This routine is the same, but tagged on to the end of it are a few lines
of code that change the interrupts to point at a routine from $COAF
to $COD1 hex. This routine loops through the top line of the screen
and changes the colour character. It loops through all the available
colours so quickly that they are a blur. Note that the operating speed
of the 64 is not noticeably affected.

B

PC SR AC XR YR SP
.30008 BB CO 2@ 18 F6

CoBa A9 @6 LDA #$06

Ceez 8D 20 D@ STA $Da2v
Caes A9 02 LDA #s$82
Cae7 8D 21 DO STA $DO21
C3aA A9 93 LDA #$93
CaaC 20 D2 FF JSR $FFD2
Caar A2 28 LDX #$28
Coii A9 AG LDA #$A0
C213 9D FF @3 STA $A3FF,X
Coié A9 @7 LDA #s$@7
Ca18 9D FF D7 STA $D7FF,X
CaiB CA DEX

Co1iC D@ F3 BNE $CO11
Ca1E A2 28 LLDX ##28
Ca2e A9 AG LDA #$A0

163



cez2
Ccoz25
caz7
caz2a
CazZB
cezb
Ca2E
Cazo
caz2
ce34
Ca3s
cess
Ca3A
ca3c
Ca3E
Co40
ca4az2
cos4
Ca4s
ces4s
coan
cesac
CO4aE
Cose
cas2
cas4
cass
cass
Co5A
cesc
COSE
Cos0
casl
Cos63
CO&S
Ca6é6
cass
CasA
CasC

BF

az

DB

sTA
LDA
sTA
DEX
BNE
cLc
LDA
STA
LDA
sTA
LDA
8TA
LDA
8TA
LDY
LDA
STA
LDA
ADC
sSTA
LDA
ADC
STA
LDA
STA
LDA
ADC
STA
LDA
ADC
STA
INY
CPY
BNE
cLC
LDA
STA
LDA
8TA

sTA

$@7BF , X
¥$07
$DBBF , X

$Co2a

#$27
$FB
#$04
$FC
#$27
$FD
#$D8
$FE
#$00
#$A0
($FB) Y
#$27
$FB
$FB
#500
$FC
$FC
#$Q7
($FD) , Y
#$27
$FD
$FD
#$00
$FE
$FE

#%18
$C042

#$28
sFB
#$04
$FC
#5268
$FD
#$D8
$SFE



ces8 A9
ceasc A9
Ca9a 83

ca92 A9
Ca?4 &5

ca9s8 C8

cCa9s D@

casDh 18

.1 COBa
. 1 CR208
.1C213
.:Ca18
.:Co20
.t C@A28

a3

EA

31 EA

8Db
A%
AB

9D
ca

STA
JmP

#£a7

($FD) ,Y

#$27
$FD

#$00
$FE
$FE

#$18
$C@a7a

#$00
$FD

#$AF
$8314
#sCo
$0315

#$00
$FB
#$D06
$FC
#5008
$FD

($FB) ,Y

4528
$COBB

165



Basic graph

To finish the book here is a small Basic program that will plot a sine
wave in Basic using the 64‘s on board graphics. This should also serve
you well for calculations for the hi-res routine.

The program draws the axis for the sine wave and uses the variables
'SC* and ‘C* for screen and colour memory. The rest of the routine
is fairly straightforward as the program calculates and outputs the sine
wave.

The routine at lines 230 to 260 checks for the position of the sine wave
and changes the character used to draw the wave. Line 270 does the
actual display and colouring.

12@ DEFFNP (X)=SIN(X/6.28)

11@ PRINT"L[CLR1":8C=1024:C=54272

120 FORA=SCTO1984STEP4@: POKEA, 1811 POKEA+C,7: NEXT
130 PRINT"CYELI[IHME]IC12 CDILSH LI1L39 LO PI"

14@ FORX=1TO79

15@ Y1i=FNP (X)

160 Y=24+24%Y1

178 X2=INT(X/2) :Y2=INT(Y/2)

156



180
17a
200
210
220
230
240
250
260
27
282

IFX2>390RY2>25THEN28@
X1=X/2-X2:Y1i=Y/2-Y2
A=1984-Y2#40+X2: CO=A+54272
IFX1<.STHENX1=3

IFY1<.3THENY1=0
IFX1=0ANDY1=0THENC=123: GOTQZ27@
IFX1<>@ANDY 1< >@THENC=124:B0T027@
IFX1<>@ANDY 1< >@THENC=1@8: GOTO270
IFX1<>BANDY1< >OTHENC=126
POKEA,C: POKECO,7

NEXTX

Farewell

A close friend of mine thought that it would be rather nice to end the
main part of the book with a-few sentences from me rather than a
program. So here they are.

| hope that you have enjoyed the book and that it has given you many
wonderful ideas. | have particularly enjoyed writing this book, despite
problems with my printer and ‘interpod’ and despite the deadline...
I must now rush off to my publishers and will look forward to writing
for you again.

157



Appendix A

64 memory map revisited

By now many memory maps for the 64 have been published. However,
every programmer likes to feel that he has published a copy with more
information than any other. Anyone reading this map can be sure that
| have included everything | possibly can in it. To my mind this justifies
its inclusion.

All locations are given in hex and decimal, and some locations may
include extensive comments. The hex numbers are in the left-hand
column.

0000 0 Chip directional register

0001 - 0002 1-2 Chip 1/0 & tape control
(Bit 0; 0 = switch out Basic ROM)
(Bit 1; 0 = switch out Kernal)
(Bit 2; 0 = switch in Character

generator)
(Bit 3;: 1 = cassette write line
output)
{Bit 4; 0 = cassette switch sense
input)
(Bit 5; 0 = cassette motoron; 1 =
off)
0003 - 0004 3-4 Floating point & fixed point vector
0005 - 0006 5-6 Fixed point & floating point vector
0007 7 Search character for end of line
0008 8 Scan-quotes flag
0009 9 Column position of cursor on line
000A 10 Flag; 0 = load; 1 = verify



00OF

0010
001

0012

0013

0014 - 0015
0016

0017 - 0018
0019 - 0021

0022 - 0025
0026 - 002A
002B - 002C

002D - 002E

1"

12
13

14

16

16

17

18

19

20-21

23-24

25 - 33

34-37
38 - 42

43 - 44

BASIC input buffer pointer/
subscript no.

Default DIM flag

Variable flag; FF = string;
00 = numeric

Numeric flag: 80 = integer; 00 =
floating point

Flag; DATA scan; LIST quote;
memory

Flag; Subscript - FNx

Flag; 0 = INPUT; 152 = READ; 64
= GET

Flag; ATN sign - comparision
evaluation

Current 1/0 prompt flag (1 =
prompt off)

BASIC stores integer values here
Pointer; temporary string stack
Last temporary string vector

Stack for temporary string
descriptors

Utility pointer area

Product area for multiplication
Pointer; start of BASIC program
(normally 1 & 8, but start of BASIC

can be changed by altering values)

Pointer; start of BASIC variables -
end of current BASIC program

1569



002F - 0030

0031 - 0032
0033 - 0034

0035 - 0036
0037 - 0038

0039 - 003A
003B - 003C
003D - 003E
003F - 0040
0041 - 0042
0043 - 0044
0045 - 0046
0047 - 0048

0048 - 004A

004B - 004C

004D

004E - 004F

0050 - 0051

160

47 - 48

49 - 50

51 -52

53 -54
55 - 66

57 - 58
59 - 60
61 - 62
63 - 64
65 - 66
67 - 68
69 - 70
71 -72

73-74

75 -76

Pointer; start of arrays - end of
variables

Pointer; end of arrays

Pointer; start of string storage
{moves down from from top of
available memory to arrays and OUT
OF MEMORY)

Pointer; end of string storage
Pointer; to top of current RAM
available to BASIC (alter these
values to reset top of RAM)
Current BASIC line number
Previous BASIC line number
Pointer; BASIC statement for CONT
Current DATA line number
Pointer; current DATA item
Vector; jump for INPUT statement
Current variable name

Current variable address

Variable pointer for FOR - NEXT
statement

Y-save; operator-save; BASIC
pointer-save

Comparison symbol

Work area; function definition
pointer

Work area; string descriptor pointer



0052
0053
0054 - 0056
0057 - 0060
0061

0062 - 0065

0067

0069 - 006E
006F

0070

0071 - 0072

0073 - 008A

007A - 007B

008B - 008F

0090
0091

0092

82

84 - 86
87 - 96
97

98 - 101
102

103

104

1056 - 110
1

112

113 - 114

115 - 138

Length of string

Garbage collect use

Jump vector for functions
Numeric work area

Accumulator #1; exponent
Accumulator #1; mantissa
Accumulator #1; sign

Series evaluation constant pointer

Accumulator #1: hi-order

{overflow)
Accumulator #2; floating point

Sign comparision; Accumulator 1 -
Accumulator 2

Accumulator #2; lo-order

(rounding)

Cassette buffer length - series
pointer

CHRGET BASIC subroutine; get
next character (change routine to
add new commands)

BASIC pointer within routine
RND storage and work area

Status byte - ST

Flag; STOP and RVS; Keyswitch
PIA

Timing constant for tape

161



009B

009D

009E

009F
00AOQ
00A3
00A4
00Ab5
00A6
00A7

00A8

00A9

162

- 00A2

147
148
149
150
161
1562
153
164
165
156

157

158

1569
160
163
164
165
166
167

168

169

- 162

Flag; 0 = load; 1 = verify

Serial outpuf; deferred character flag
Serial deferred character

Tape EOT received

Register save

Number of open files

Current input device; normally 0
Current output device; normally 3
Tape character parity

Flag; Byte received

Output control flag; $80 (128) =
direct 0 = RUN

Tape pass 1 error log; character
buffer

Tape pass 2 error log corrected
Jiffy clock - used by Tl and TI$
Serial bit count; EOI flag

Cycle count

Countdown, tape write - bit count
Pointer; tape buffer

Tape write count; input bit storage

Tape write new byte; read error;
input bit count

Write start bit; read bit error



00AA
00AB

00AC - 00AD
00AE - 00AF
00BO - 00B1
00B2 - 00B3
0084

00B5

00B6

0oB7

00B8

00BS
00BA

00BB - 00BC
00BD
00BE

00BF
00COo

00C1 - 00C2

170

171

172 - 173
174 - 175
176 - 177
178 - 179
180
181
182

183

184

185
186

187 - 188
189
190

191
192

193 - 194

Tape scan; count

Write read length; read checksum;
parity

Pointer; tape buffer - scrolling
Tape end addresses; end of program
Tape timing constants

Pointer; start of tape buffer

Tape timer; bit count

Tape EOT - RS232 next bit to send

Read character error; output to
buffer

Number of characters in current file
name (needs to be set even if Kernal
routines not used)

Current logical file number

Current secondary address

Current device number (tape, disk,
etc)

Pointer; to current file name
Write shift - read input character

Number of blocks remaining to
write; read

Serial word buffer

Tape motor interlock; (along with
loc. 1 controls the tape motor).

Tape 1/0 start address

163



00C3 - 00C4
00C5
00C6

0oc7

oocs
00C9 - 00CA
00CB
00CcC
00CD
00CE
00CF
00D0

00D1 - 00D2

00D3
00D4
00D5
00D6

00D7
00D8
00D9 - 00F0

164

195 - 196
197

198

199

200
201 - 202
203
204
205
206
207
208

209 - 210

21
212
213

214

215
216

217 - 240

Pointer; Kernal set up

Current key pressed (see key values)
No. of characters in keyboard buffer
(can be used from direct or progam
mode)

Flag; screen reverse; 1 = on; 0 =
off

Pointer; end of line for input
Cursor log; row, column
Current key pressed

Flag; cursor blink; 0 = on
Cursor timing countdown
Character under cursor

Flag; cursor on or off

Input from screen or keyboard

Pointer; to screen line on which
cursor appears

Position of cursor on line

0 = direct, else programmed
Current screen line length

Row were cursor lives {to change
position 201, 210, 211, and 214 must
be changed)

Ascii value of last character printed

Number of inserts outstanding

Screen line link table



OOF1
00F2
00F3 - 00F4

00F5 - 00F6
00F7 - OOF8
00F9 - OOFA
00FB - OOFE
O0OFF

0100 - O10A
0100 - 013E

0100 - O1FF
0200 - 0258
0259 - 0262
0263 - 026C
026D - 0276
0277 - 0280
0281 - 0282

0283 - 0284

0285
0286
0287

24
242
243 - 244

245 - 246
247 - 248
249 - 250
251 - 254
255

256 - 257
256 - 318

256 - 511
512 - 600
601 - 610
611 - 620
621 - 630
631 - 640
641 - 642

643 - 644

645
646
647

Dummy screen line link
Screen row marker

Pointer; current loc. in colour
memory

Keyboard pointer

Pointer; RS-232 receiver
Pointer; RS-232 transmitter
Free zero page locations
BASIC storage

Floating to Ascii work area

Tape error log (can use part of this
area ‘carefully’)

Processor stack area

BASIC input buffer

Logical file table for OPEN files
Device number for OPEN files
Secondary addresses table
Keyboard buffer {(see $C6)

Pointer; start of memory for op.
system

Pointer; end of memory for op.
system

Serial bus timeout flag
Current colour code for character

Colour under cursor

165



0288 648 Pointer; screen memory page
{normally 4) {(change value when
switching screen)

0289 649 Maximum size of keyboard buffer
{can be lengthened, but tricky)

028A 650 Key repeat; 0 normal; 255 repeat all

028B 651 Repeat speed counter

028C 652 Repeat delay counter

028D 653 Flag; keyboard SHIFT key CTRL key

and C=keys; SHIFT = set bit 0;
CTRL = setbit 1; C = set bit 2

028E 654 Last SHIFT pattern

028F - 0290 655 - 656 Pointer; keyboard table set up

0291 657 Keyboard shift mode; 0 = enabled;
128 = disabled

0292 658 Auto scroll 0 = enabled

0293 659 RS-232 control register

0294 660 RS-232 command register

0295 - 0296 661 - 662 Bit timing

0297 663 RS-232 status register

0298 664 Number of bits to send

0299 - 029A 665 - 666 RS-232 speed code

0298 667 RS-232 receive pointer

029C 668 RS-232 input pointer

029D 669 RS-232 transmit pointer

029k 670 RS-232 output pointer

166



029F - 02A0
02A1
02A2
02A3
02A4
02A5

02A6

02A7 - 02BF

02C0 - 02FE
0300 - 0301

0302 - 0303

0304 - 0305

0306 - 0307

0308 - 0309

030A - 030B
030C

030D

030E

030F

0310 - 0312

0314 - 1315

671 - 672
673
674
675
676
677

678

679 - 703

704 - 766
768 - 769
770 - 771
772 - 773
774 - 775
776 - 777
778 - 779
780
781
782
783
784 - 786

788 - 789

IRQ save during tape |/0
CIA 2 (NMI) interrupt control
CIA 1 timer A control log
CIA 1 interrupt log

CIA 1 timer A enable flag
Screen row marker

PAL-NISC flag; 0 = NTSC, 1 =
PAL

Unused (useful for m/c programs in
header)

{Sprite 11)

Error message link

Basic warm start link
Crunch Basic tokens link
Print tokens link

Start new Basic code link
Get arithmetic element link
Temp A save during SYS
Temp X save during SYS
Temp Y save during SYS
Temp P save during SYS
USR function jump

Hardware interrupt vector (norm =
EA31)

167



0316 - 0317

0318 - 0319

031A - 031B
031C - 031D
031E - 031F

0320 - 0321

0322 - 0323
0324 - 0325
0326 - 0327
0328 - 0329

032A - 032B
032C - 032D
032E - 032F
0330 - 0331

0332 - 0333

0334 - 033B

033C - 03FB

0340 - 037E

0380 - 03BE

168

790 - 791

792 - 793
794 - 795
796 - 797
798 - 799

800 - 801

802 - 803
804 - 805
806 - 807
808 - 809

810 - 811
812 - 813
814 - 815
816 - 817

818 - 819

820 - 827

828 - 1019

832 - 895
896 - 958

Break interrupt vector (BRK) (norm
= FEG66)

NMI interrupt vector (norm = FE47)
OPEN vector (norm = F34A)
CLOSE vector {(norm = F291)

Set input device vector (norm =
F20E)

Set output device vector {(norm =
F250)

Restore 1/0 vector {(norm = F333)
Input vector (norm = F157)
Output vector (norm = F1CA)

Test-STOP key vector (norm =
F6ED)

GET vector (norm = F13E)
Abort 1/0 vector (norm = F32F)
Warm start vector (norm = FE66)

Load from device vector (norm =
F4AB)

Save to device vector (norm =
F5ED)

Unused

Cassette buffer (useful for m/c
programs when no tape 1/0O’s are
performed

Sprite 13

Sprite 14



03CO - O3FE
0400 - O7FF
078F - O7FF
0800 - 9FFF

8000 - SFFF

AQ00 - BFFF

C000 - CFFF

D000 - DO2E

D000 - DFFF

D400 - D41C
D800 - DBFF
DC00 - DCOF
DC10 - DDOF

E000 - FFFF

960 - 1022
1024 - 2039
2040 - 2047
2048 - 40959
32768 - 40959

40960 - 49151

49152 - 53247

53248 - 53294

53248 - 57343

54272 - 54300
55296 - 56319
56320 - 56335
56576 - 56591

57334 - 65535

Sprite 15

Screen memory

Sprite pointers

BASIC RAM memory and variables

Alternate; ROM plug in area (if
cartridge in at power up memory is
re-structured and this area is not)
available for user programs

ROM; BASIC (underlying RAM can
be switched in)

Alternate; RAM (available for user
programs and is also used as a buffer
during 1/0 operations)

6566 video chip

Character set

(D000 - D1FF = Upper case)

(D200 - D3FF = Graphics)

(D400 - D5FF = Reversed upper
case)

(D600 - D7FF = Reversed graphics)

(D800 - D9FF = Lower case)

{DAOO - DBFF = Upper case &

graphics)

{DCO0 - DDFF = Reversed lower
case)

(DEOO - DFFF = Reversed upper
case & graphics)

Sound chip (SID) 6581

Colour memory

Interface chip 1, IRQ (6526 CIA)
Interface chip 2, NMI (6626 CIA)

ROM; operating system (underlying

169



FF81 - FFF5
FF84
FF87
FF8A
FF8D
FF90
FFO3
FF96
FF99
FFOC
FFOF
FFA2
FFAS
FFA8
FFAB
FFB7
FFBA
FFBD
FFCO
FFC3

FFC6

170

65409 - 65625
65412
65415
65418
65421
65424
65427
65430
65433
65436
65439
65442
65445
65448
65451
65463
65466
65469
65472
65475

65478

RAM can be switched in)

Jump table. Includes the following:
Initialise 1/0

Initialise system constants

Kernal reset

Kernal move

Flag status

Send listen (secondary address)
Send talk (secondary address)
Read-Set top of memory
Read-Set bottom of memory
Read keyboard

Set timeout

Receive from serial bus

Send serial deferred

Send untalk

Get status

Save file details

Save filename data

Do open file (via OPEN vector 031A)
Close file (via CLOSE vector 031C)

Setinput device (via Set input vector
031E)



FFC9
FFCC

FFCF
FFD2
FFDb
FFD8
FFDB
FFDE

FFET

FFE4
FFE7
FFEA
FFED
FFFO
FFF3

65481

65484

65487
65490
65493
65496
65499
65502
65505

65508
65511
65514
65517

65520

Set output device (via Set output
vector 0320)

Restore default 1/0 (via Restore |/0O
vector 0322)

INPUT (via Input vector 0324)
Output (via Output vector 0326)
Load program

Save program

Set time

Get time

Check STOP key (via test STOP
vector 0328)

Get (via Get vector 032A)

Abort all files (via Abort |/0 vector)
Bump clock

Get screen size

Put/get row/column

Get 1/0 address

171



Commodore 64 - ROM Memory Map

A000;
A00C;
A052;
A080;
AQ9E;
A19E;
A328;
A365,
A38A;
A3BS;
A3FB;
A408;
A435;
A437,
A469;
A474;
A480;
A49C;
A533;
A560,
A579;
A613;
Ab642;
A65E;
AG68E;
A69C;
AT742;
ATED;
A81D;
A82C;
A82F,
A831;
ABST;
AB71;
A883;
ABAQ;
A8D2;
ASF8;
A906;
A928;
A93B;
A94B;
A96B;
AJAS;
AASB0;
AAS8S;

>
£

ABIE;
AB3B;
ABA4D;
AB7B;
ABAS5;
ABBF;
ABF9;
ACOS6;
ACFC;

172

ROM control vectors
Keyword action vectors
Function vectors
Operator vectors
Keywords

Error messages

Error message vectors
Misc messages

Scan stack for FOR/GOSUB

Move memory
Check stack depth
Check memory space
‘out of memory’
Error routine
BREAK entry
‘ready.’

Ready for Basic
Handle new line
Re—chain lines
Receive input line
Crunch tokens

Find Basic line
Perform {[NEW]
Perform [CLR]

Back up text pointer
Perform {LIST)
Perform [FOR]
Execute statement
Perform [RESTORE]
Break

Perform {STOP]
Perform [END]
Perform [CONT]
Perform [RUN]
Perform {GOSUB)

“Perform {GOTO}

Perform [RETURN]
Perform [DATA]

Scan for next statement
Perform {IF}

Perform [REM]
Perform [ON}

Get fixed point number
Perform {LET]
Perform [PRINT#]
Perform [CMD}
Perform {PRINT]

Print string from (y.a)
Print format character
Bad input routine
Perform [GET)
Perform [INPUT#]
Perform {INPUT]
Prompt & input
Perform {READ]

Input error messages

ADIE;
AD78,;
ADSE;
AEAS;
AEF];
AEFT;
AEFF;
AF08;
AF14;
AF28;
AFAT;
AFES6;
AFES;
BO16;
B081;
BO8B;

B11D;

B465;
B475;

B4F4;
B526,
BSBD;
B606;
B63D;
B67A,;
B6A3;
B6DBE;
B6EC;
B700;
B72C;
B737;
B761;
B77C;
B782;
B78B;
B79B;
B7AD;
B7EB;
B7F7;
B80OD;
B824;
B82D;

Perform [NEXT]
Type match check
Evaluate expression
Constant - pi
Evaluate within brackets
Y
comma..
Syntax error
Check range
Search for variable
Setup FN reference
Perform [OR]
Perform [AND]
Compare
Perform [DIM)]
Locate variable
Check alphabetic
Create variable
Array pointer subrtine
Value 32768
Float-fixed
Set up array
‘bad subscript’
‘illegal quantity’
Compute array size
Perform [FRE]
Fix-float
Perform [POS}
Check direct
Perform [DEF]
Check fn syntax
Perform [FN]}
Perform [STR$]
Calculate string vector
Set up string
Make room for string
Garbage collection
Check salvageability
Collect string
Concatenate
Build string to memory
Discard unwanted string
Clean descriptor stack
Perform [CHRS$)
Perform [LEFT$]
Perform [RIGHTS$)
Perform [MID$)
Pull string parameters
Perform [LEN]
Exit string-mode
Perform [ASC]
Input byte paramter
Perform {VAL]

Parameters for POKE/WAIT

Float-fixed

Perform [PEEK]
Perform [POKE]
Perform {WAIT)



E37B:

Add 0.5
Subtract-from
Perform {subtract)
Perform [add)
Complement FAC#*1
‘overflow’

Multiply by zero byte
Perform {LOG])
Perform {multiply]
Multiply-a-bit
Memory to FAC*2
Adjust FAC*1/#2
Underflow/overflow
Multiply by 10

+ 10 in floating pt
Divide by 10
Perform [divide]
Memory to FAC*1
FAC*1 to memory
FAC#2 to FAC*1
FAC*1 to FAC*2
Round FAC*]

Get sign

Perform [SGN}
Perform [ABS]
Compare FAC*1 to mem
Float-fixed
Perform [int]

String to FAC

Get ascit digit

Print ‘IN.

Print line number

; Float to ascii

Decimal constants

Tl constants

Perform [SQR]

Perform [power]

Perform [negative]
Perform [EXP]

Series eval 1

Series eval 2

Perform [RND}

7? breakpoints 7?

Perform [SYS]

Perform (SAVE]

Perform [VERIFY)
Perform [LOAD]

Perform [OPEN])

Perform {CLOSE]
Parameters for LOAD/SAVE
Check default parameters
Check for comma
Parameters for open/close
Perform [COS}

Perform {SIN]

Perform [TAN]

Perform [ATN]

Warm restart

E394;
E3A2;
E3BF;
E447:
E453;
E45F;
ES00;
E505;
ESOA;
E518;
E544;
ES66;
ES6C;
ESAQ;
E5B4;
E632;

E684;

E691:

E6B6;
E6ED;
E701;

E716;

E8TC;
E891;

EBAL;
E8B3;
E8CB;
E8DA;
EBEA;
E965;

E9CS;

ESEQ;

EAI3:

EB79;
EBS8I;
EBC2;
ECO03;
EC44;
EC4F;
ECT78;
ECB9;
ECET7;
ECFO;
ED09;
EDOC;
EDA40;
EDB2;
EDBY;
EDBE;
EDC7;
EDCC;
EDDD;
EDEF;

Initialize

CHRGET for zero page
Initialize Basic

Vectors for $300
Initialize vectors
Power-up message
Get 170 address

Get screen size
Put/get row/column
Initializel/O

Clear screen

Home cursor

Set screen pointers

Set 170 defaults

Input from keyboard
Input from screen
Quote test

Setup screen print
Advance cursor
Retreat cursor

Back into previous line
Output to screen

Go to next line
Perform <return>
Check line decrement
Check line increment
Set color code

Color code table

Scroll screen

Open space on screen
Move a screen line
Synchronize color transfer
Set start-of-line

Clear screen line

Print to screen
Synchronize color pointer
Interrupt ~ clock etc
Read keyboard
Keyboard select vectors
Keyboard 1 - unshifted
Keyboard 2 - shifted
Keyboard 3 - ‘comm’
Graphics/text contrl
Set graphics/text mode
Keyboard 4

Video chip setup
Shift/run equivalent
Screen In address low
Send ‘talk’
Send ‘listen’

Send to serial bus
Serial timeout
Send listen SA
Clear ATN
Send talk SA

Wait for clock
Send serial deferred
Send ‘untalk’

173



Send ‘unlisten’
Receive {rom serial bus
Serial clock on
Serial clock off
Serial output ‘1’
Serial output 'O’
Get serial in & clock
Delay 1 ms
RS-232 send
Send new RS-232 byte
No-DSR error
No-CTS error
Disable timer
Compute bit count
RS232 receive
Setup to receive
Receive parity error
Receive overflow
Receive break
Framing error
Submit to RS232
No-DSR error
Send to RS232 buffer
Input from RS232
Get from RS232
Check serial bus idle
Messages
Print if direct
Get..

.from RS232
Input
Get.. tape/serial/rs232
QOutput..

.to tape
Set input device
Set output device
Close file
Find file
Set file values
Abort all files
Restore default 170
Do file open
Send SA
Open RS232
Load program
‘searching’
Print filename
"loading/verifying’
Save program
Print ‘saving’
Bump clock
Log PIA key reading
Get time
Set time
Check stop key
Output error messages
Find any tape headr
Write tape header

FD10;
FD15;

FD9B;
FDA3;

FDDD;

FDFS;

Get buffer address
Set buffer start/end pointers
Find specific header
Bump tape pointer
‘press play..

Check tape status
‘press record..’
Initiate tape read
Initiate tape write
Common tape code
Check tape stop

Set read timing
Read tape bits

Store tape chars
Reset pointer

New character setup
Send transition to tape
Write data to tape
IRQ entry point
Write tape leader
Restore normal IRQ
Set IRQ vector

Kill tape motor
Check r/w pointer
Bump r/w pointer
Power reset entry
Check 8-rom
8-rom mask

Kernal reset

Kernal move
Vectors

Initialize system constnts
IRQ vectors
Initialize I/0

Enable timer

Save filename data
Save file details

Get status

Flag status

Set status

Set timeout
Read/set top of memory
Read top of memory
Set top of memory
Read/set bottom of memory
NMI entry

Warm start

Reset IRQ & exit
Interrupt exit
RS-232 timing table
NMIRS-232 in

NMI RS-232 out
Fake IRQ

IRQ entry

Jumbo jump table
Hardware veclors



Voice }
$D400

$D401

$D402

$D403

$D404

$D405

$D406

P

rocessor 1/0 Port (65190)

$0N00 !7 IN L IN ouTt IN OQUT | OUT | OUT | ouT
S0001 Tape | Tape | Tape |D-ROM |EF RAM|ABRAM
N X Motor [ Sense | Write | Switch | Switch | Switch
SID (6581)
Voice 2 Voice 3 Voice 1
$D407  $DAOE L 54272
— Frequency 1
D408 $DAOF H 54273
$D409  $D410 Pulse Width L 54274
$D40A  $Dal} 0 0 0 0 H 54275
Voice Type: i .
$D40B  $D412 NSE__PUL  SAW _ TRI ) ) ) Key 54276
Attack Time Decay Time -
$D40C  $D413 2ms- 8ms ) 6ms - 24 sec 54277
Sustain Level Release Time c
$D40D  $D414 ) ) ) , _6ms 24 sec | 54278
Voices (write only)
$D415 0 0 0 0 0 L 54293
$D416 Filter Frequency H 54294
Resonance Filler Voices
$D417 . ) ) LExt V3L V2o v 54295
Passhand: Master
$D418 V3off, H _ BP . LO Volyme 34296
Filter & Volume (write only)
$D419 Paddle X (A/D”1) 54297
$D41A PaddleY (A/D *2) 54298
$D41B Noise 3 (random} 54299
$D41C Envelope 3 54300

Sense (read only)

Note: Special Voice Features
(TEST, RING MOD, SYNC)
are omitted from the above diagram.

DDR 0

PR )

Voice 2
54279

54280
54281
54282
54283
54284

54285

Voice 3
54286

54287

175



$DCOC

$DCO1

$DCO2
$DCO3
$DC04
$DCOS
$DCO6

$DCO7

$DCOD
$DCOE

$DCOF

$DD00
$DD0)
$DD02
$DDO3
$DD04
$DD0S
$DD06

$DDO7

$DDOD
$DDOE

$DDOF

176

CIA1 (IRQ) (6526)

[ PaddieSel | T Thowstick T
LA B Fire  Right _ lett  Down  Up |
Keyboard Row Select (inverted)

Joystick 1
Fire Right Left — Down Up
Keyboard Columin Read
$FF - All Output
$00 - All Input
F— Timer A —
— Timer B —
v ~
Tape Timer Interrupt
. X input B A
One Out Time | Timer
N N N Shot | Mode [PB6 Out] A Stant
One Out Time | Timer
. . ) Shot_[ Mode |PB7 Out| B Stant
CIA2 (NMI) (6526)
Serial | Clock } Serial | Clock | ATN [RS-232] VICII T VICHi
IN IN OUT [ OUT | OUT | OUT |addr 15 |addr 14
DSR CTS DCD* RI® DTR RTS §RS-232
IN IN IN IN OUT | OUT IN
$3F - Serial
$00 ~ P.U.P. All Input or $06 ~ RS-232
— Timer A —
— Timer B -
N (Y]
RS-232 Timer Interrupt
. N IN . B A
Timer
R . . . . . A Stant
Timer
N . R . . . B Start

* Connected but not used by O.S.

PRA

PRB

DDRA

DDRB

TAL

TAH

TBL

TBH

ICR

CRA

CRB

PRA

PRB

DDRA

DDRB

TAL

TAH

TBL

TBH

ICR
CRA

CRB

56320

56321

56322
56323
56324
56325
56326

56327

56333
56334

56335

56576
56577
56578
56579
56580
56581
56582

56583

56589
56590

56591



Appendix B

Key values

Location 197 decimal $C6 hex contains the value for the current key
depression. This is a table of the codes stored and their Ascii
equivalents.

Key Value Key Value
left arrow 57 INST DEL 0
1 56 up arrow 54
2 59 * 49
3 8 @ 46
4 1 P 41
5 16 0 38
6 19 | 33
7 24 U 30
8 27 Y 25
9 32 T 22
| 0 35 R 17
+ 40 E 14
- 43 w 9
pound sign 48 Q 62
CLR HOME 51 RUN/STOP 63

177



Key Value Key Value

A 10 Cursor up/down 7
S 13 / 55
D 18 44
F 21 , 47
G 26 M 36
H 29 N 39
J 34 B 28
K 37 Vv 31
L 42 C 20
45 X 23
; 50 z 12
= 53 Space 60
Return 1 F 14
Cursor right/left 2 F 35
F 56
F 73

178



Appendix C

Basic tokens

There are tokens for most of the commands and statements. They
allow easier entry and longer lines. Overleaf is a complete list of the
tokens. They will take a while to memorise, but the effort is generally
worth the result.

179



Abbreviations for Keywords

Looks like Looks like
Command Abbreviation this on screen Command Abbreviation this on screen
aBS Y sHiFT B ~ 1] OPEN 0 poo[ ]
AND A A Z PEEK P E P E
ASC AS AE POKE PO F’D
ATN A T A ﬂj PRINT ? ?
CHRS [} H c m PRINT# P R P g
CLOSE CL o CL D READ A E R E
CLR c L c D RESTORE RE § RE E‘
cMD c M c N RETURN RE T RE [D
CONT c ) c D RIGHTS R 'R E}
DATA DA D RND RN HZ
e ol o o A [
DM D' DE] SAVE SA s@
END E N E Z SGN s G s ﬂj
- El 0 e G [
FRE FR Fg saR s° s @
GET G E G 5 STEP sT E ST E
GOsU8 GO s Go @ sTop R T s ﬂ]
GOTO o G D STRS ST R ST g
INPUT# I N i Z sYs s Y s [:ﬂ
LET L E L i TAB T A T
LEFTS LE FLE Q THEN T T Eﬂ
usT L‘ LE} UsA Us UE
LOAD L° LD VAL vA V
MID$ M ! M E] VERIFY v 3 v D
NEXT NE N E WAIT wA WE]
NOT N o N D

180



Appendix D

Machine code instruction set

The following notation applies to this summary:

Accumulator

Index registers
Memory

Processor status register
Stack Pointer

Change

No change

Add

Logical anp

Subtract

Logical Exclusive-or
Transfer to

Logical (inclusive) or
Program counter
Program counter high
PCL Program counter low

~

K

Xl Q| >+ ! NP TVZ K

=3 g
oo
u

#dd 8-bit immediate data value (2 hexadecimal digits)
aa 8-bit zero page address (2 hexadecimal digits)
aaaa 16-bit absolute address (4 hexadecimal digits)

1 Transfer from stack (Pull)

1 Transfer onto stack (Push)

181



ADC

Operation: A+M4+C—-> A, C

Add to Accumulator with Carry

NZCIDvV
SIS ==
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate ADC #dd 69 2 2
Zero Page ADC aa 65 2 3
Zero Page, X ADC aa, X 75 2 4
Absolute ADC aaaa 6D 3 4
Absolute, X ADC aaaa, X 7D 3 4*
Absolute, Y ADC 2aaa,Y 79 3 4*
(indirect, X) ADC (aa,X) 61 2 6
(Iindirect), Y ADC (aa),Y 71 2 5*
*Add 1 if page boundary is crossed.
AND Memory with Accumulator
Logical anND to the accumulator
Operation: AAM - A
NZCIDV
VAV
Addressing Assembly Langvage oP No. No.
Mode Form CODE Bytes Cycles
Immediate AND #dd 29 2 2
Zero Page AND aa 25 2 3
Zero Page, X AND aa, X 35 2 4
Absolute AND aaaa 20 3 4
Absolute, X AND aaaa,X 3D 3 4*
Absolute, Y AND aaaa,Y 39 3 4%
(Indirect, X) AND (as,X) 21 2 6
(Indirect), Y AND (aa),Y 31 2 5*

*Add 1 if page boundary is crossed.

182



ASL

Accumulator Shift Left

Operation: C « En «0

Addressing
Mode

NZCipv
/e

No.
Cycles

Assembly Language
Form

Accumulator
Zero Page
Zero Page, X
Absolute
Absolute, X

BCC

Branch on Carry Clear
Operation: Branch on C — 0

Addressing
Mode

Assembly Language
Form

BCC

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to different page.

Note: AIM 65 wil accept an absolute address as the operand {
convert it to a relative address.

Relative

instruction format BCC aaaa), and

BCS

Branch on Carry Set
Operation: Branch on C — 1

NZCIDvV
Addressing Assembly Language or No. No.
Mode Form CODE Bytes Cycles
Relative BCS aa BO 2 2*

*Add 1 if branch occurs to same page.
Add 2 if branch Occurs to next page.

Note: AIM 65 wil| accept an absolute address as the operand (instruction format BCS aaaa), and
convert it to a relative address.

183



BEQ

Branch on Result Equal to Zero
Operation: BranchonZ =1

NZCIDV
Addressing Assembly Language orP No. No.
Mode Form CODE Bytes Cycles
Relative BEQ aa FO 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to next page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BEQ aaaa), and
convert it to a relative address.

BIT

Test Bits in Memory with Accumulator

Operation: A M, M; > N,Mg—> V
Bit 6 and 7 are transferred to the Status Register. If the
result of A M is zero then Z — 1, otherwise Z — 0

NZCIDV
M/ — — - M
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page BIT aa 24 2 3
Absolute BIT aaaa 2C 3 4
BMI
Branch on Result Minus
Operation: Branchon N =1
NZCIDvV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BMI aa 30 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to different page.
Note: AIM 65 will accept an absolute address as the operand (instruction format BMI aaaa), and
convert it to a relative address.

184



BNE

Operation: BranchonZ =0

Branch on Result Not Equal to Zero

NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BNE aa DO 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to different page.

Note: AiM 65 will accept an absolute address as the operand (instruction format BNE aaaa), and
convert it to a relative address.

BPL

Branch on Result Plus

Operation: Branchon N =0

NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Relative BPL aa 10 2 2%

*Add | if branch occurs to same page.

Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BPL aaaa), and
convert it to a relative address.

BRK

Force Break

Operation: Forced Interrupt PC 4 21 P{

BNZCIDV
l———1-—-—
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied BRK 00 1 7

185



BVC

Operation: BranchonV =10

Branch on Overflow Clear

NZCIDV
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BVC aa 50 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BVC assa), and
convert it to a relative address.

BVS

Operation: Branchon V=1

Branch on Overflow Set

NZCIDvV
Addressing Assembly Language OP Neo. No.
Mode Form CODE Bytes Cycles
Relative BVS aa 70 2 2*

*Add 1 if branch occurs to same page.

Add 2 if branch occurs to different page.

Note: AIM 65 will accept an absolute address as the operand (instruction format BVS aaaa), and
convert it to a relative address,

CLC

Operation: 0 —> C

Clear Carry Flag

NZCIDV
L0 — — —
Addressing Assembly Language oP No No.
Mode Form CODE Bytes Cycles
Implied CLC 18 1 2

186



CLD

Clear Decimal Mode
QOperation: 0 > D
NZCIDV
—_————0 —
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied CLD D8 1 2
CLl
Clear Interrupt Disable Bit
Operation: 0~ 1
NZCIDV
e 0 —
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied CLi 58 1 2
CLvV
Clear Overflow Flag
Operation: 0 > V
NZCIDvV
————— 0
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied CLv B8 1 2

187



CMP

Compare Memory and Accumulator

Operation: A — M

NZCIDV
SIS ===
Addressing Assembly Language orP No. No.
Mode Form CODE Bytes Cycles
Immediate Cmp #dd c9 2 2
Zero Page Cme aa C5 2 3
Zero Page, X CmpP aa X D5 2 4
Absolute CMmpP aaaa cD 3 4
Absolute, X CMP aaaa, X DD 3 4*
Absolute, Y cme aaaa,Y D9 3 4*
(indirect, X) CMP (aa, X) Ci 2 6
(Indirect), Y CMP (aa),Y D1 2 5*
*Add 1 if page boundary is crossed.
Compare Memory and Index X
Operation: X — M
NZCIDV
SIS ==
Addressing Asseﬁbly Language opP No. No.
Mode Form CODE Bytes Cycles
immediate CPX #dd EO 2 2
Zero Page CPX aa E4 2 3
Absolute cPX aaaa EC 3 4
Compare Memory and Index Y
Operation: Y — M
NZCIDV
SIS ===
Addressing As;embly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate CPY #dd co 2 2
Zero Page crYy aa C4 2 3
Absolute CPY aaaa cC 3 4

188



DEC

Decrement Memory by One
Operation: M — 1> M

NZCI1IDV
S —
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page DEC aa Cé 2 5
Zero Page, X DEC aa, X D6 2 [
Absolute DEC aaaa CE 3 6
Absolute, X DEC aaaa,X DE 3 7
DEX
Decrement Index X by One
Operation: X — 1> X
NZCIDV
VR
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied DEX CA 1 2
DEY
Decrement Index Y by One
Operation: Y —1-Y
NZCIDV
VAV
Addressing Assembly Language or No. No.
Mode Form CODE Bytes Cycles
implied DEY 88 1 2

189



EOR

Exclusive-OR Memory with Accumulator

Operation: AVM—> A

NZCIDV
AV —
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate EOR #dd 49 2 2
Zero Page EOR aa 45 2 3
Zero Page, X EOR aa,X 55 2 4
Absolute EOR aaaa 4D 3 4
Absolute, X EOR 3aaa, X 5D 3 4*
Absolute, Y EOR aaaa,Y 59 3 4*
(Indirect, X) EOR (aa,X) 4 2 6
(Indirect), Y EOR (aa),Y 51 2 5%
*Add 1 if page boundary is crossed.
Increment Memory by One
Operation: M+ 1-> M
NZCIDV
/-
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page INC aa E6 2 5
Zero Page, X INC aa X F6 2 6
Absolute INC aaaa EE 3 6
Absolute, X INC aaaa,X FE 3 7
Increment Index X by One
Operation: X4+ 1- X
NZCIDYV
AV R—
Addressing Assembly Langvage op No. No.
Mode Form CODE Bytes Cycles
Implied INX E8 1 2

190



INY

Increment Index Y by One

Operation: Y+ 1->Y

NZC1IDV
S ——
Addressing Assembly Language oP No. No.
Mode Form Code Bytes Cycles
Implied INY cs 1 2
JMP
Jump
Operation: (PC + 1) - PCL
(PC 4 2) > PCH
NZCIDV
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Absolute JMP aaaa 4C 3 3
Indirect JMP (aaaa) 6C 3 5
JSR
Jump to Subroutine
Operation: PC + 2, (PC+ 1) > PCL
(PC + 2) > PCH
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Absolute JSR aaaa 20 3 L)

191



LDA

Load Accumulator with Memory
Operation: M- A

NZCIDV
S -
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
tmmediate LDA #dd A9 2 2
Zero Page LDA aa A5 2 3
Zero Page, X LDA aa, X BS 2 4
Absolute LDA aaaa AD 3 4
Absolute, X LDA aaaa, X BD 3 4*
Absolute, Y LDA aaaa,Y B9 3 4*
(Indirect, X) LDA (3a,X) Al 2 6
(Indirect), Y LDA (aa),Y 81 2 5*
*Add 1 if page boundary is crossed.
Load Index X with Memory
Operation: M- X
NZCIDV
VAR
Addressing Assembly Language or No. No.
Mode Form CODE Bytes Cycles
Immediate LDX #dd A2 2 2
Zero Page LDX aa A6 2 3
Zero Page, Y LDX aa,Y B6 2 4
Absolute LDX aaaa AE 3 4
Absolute, Y LDX aaaa,Y BE 3 4*

Add 1 when page boundary is crossed.

192



LDY

Load Index Y with Memory
Operation: M > Y
NZCIDV
VAV
Addressing Assembly Language or No. No.
Mode Form CODE Bytes Cycles
Immediate LDY #dd A0 2 2
Zero Page LDY aa A4 2 3
Zero Page, X LDY aea, X B4 2 4
Absolute LDY aaaa AC 3 4
Absolute, X LDY aaaa X BC 3 4*
*Add 1 when page boundary is crossed.
LSR
Local Shift Right
Operation: 0— | 7[ 6| 5] 4I 3| 2[ lI 0]—> C
NZCIDV
0//——-
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Accumulator LSR A 4A. 1 2
Zero Page LSR aa 46 2 5
Zero Page, X LSR aa,X 56 2 6
Absolute LSR aaaa 4E 3 6
Absolute, X LSR aaaa,X 5E 3 7
No Operation
Operation: No Operation (2 cycles)
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied NOP EA 1 2

193



ORA

Operation: AVM— A

OR Memory with Accumulator

NZCIDV
VAV SN
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate ORA #dd 09 2 2
Zero Page ORA aa 05 2 3
Zero Page, X ORA aa, X 15 2 4
Absolute ORA aaaa oD 3 4
Absolute, X ORA aaaa, X 1D 3 4*
Absolute, Y ORA aaaa,Y 19 3 4*
(Indirect, X) ORA (aa,X) 01 2 6
(Indirect), Y ORA (aa),Y 11 2 5%
*Add 1 on page crossing.
PHA
Push Accumulator on Stack
Operation: A |
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied PHA 48 1 3
PHP
Push Processor Status on Stack
Operation: Pl
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied PHP 08 1 3

194



PLA

Pull Accumulator from Stack
Operation: A ¢

NZCIDV
VR
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied PLA 68 1 4
PLP
Pull Processor Status from Stack
Operation: P4
NZCIDV
From Stack
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied PLP 28 1 4
ROL
8 ]
Rotate Left
Mor A I
Operation: H 7[6]5]4[3[2[1]0] « [C]
NZCIDV
SIS ===
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROL A 2A 1 2
Zero Page ROL aa 26 2 5
Zero Page, X ROL aa, X 36 2 [}
Absolute ROL aaaa 2E 3 6
Absolute, X ROL aaaa, X 3E 3 7

195



ROR

Rotate Right
Mor A ]_l
Operation: [—» - [7[6] 5[4 3] 2] 1[0
NZCIDV
Y
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR aa 66 2 5
Zero Page, X ROR aa, X 76 2 6
Absolute ROR aaaa 6E 3 6
Absolute, X ROR aaaa,X 7E 3 7
RTI
Return from Interrupt
Operation: P{PCY
NZCIDV
From Stack
Addressing Assembly Language orP No. No.
Mode Form CODE Bytes Cycles
Implied RTI 40 1 6
RTS
Return from Subroutine
Operation: PCt, PC 4+ 1> PC
NZCIDYV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied RTS 80 1 6

196



SBC

Subtract from Accumulator with Carry

Operation_: A—-M—C->A
Note: C = Borrow

NZCIDV
SIS ==
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Immediate SBC #dd E9 2 2
Zero Page SBC aa E5 2 3
Zero Page, X SBC aa, X F5 2 4
Absolute SBC aaaa ED 3 4
Absolute, X SBC aaaa, X FD 3 4*
Absolute, Y SBC saaa,Y F9 3 4*
(Indirect, X) SBC (aa,X} El 2 6
(Indirect), Y SBC (aa),Y F1 2 5*
*Add 1 when page boundary is crossed.
Set Carry Flag
Operation: 1 - C
NZCIDYV
—— ] ——
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied SEC 38 1 2
SED
Set Decimal Mode
Operation: 1> D
NZCIDV
—_——_——— —
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
implied SED F8 1 2

197



SEI

Set Interrupt Disable Status
Operation: 1> 1

NZCIDV
——_ 1 —
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied SEl 78 1 2
STA
Store Accumulator in Memory
Operation: A-> M
NZCIDV
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Zero Page STA aa 85 2 3
Zero Page, X STA aa, X 95 2 4
Absolute STA aaaa 8D 3 4
Absolute, X STA aaaa, X oD 3 5
Absolute, Y STA aaaa,Y 99 3 5
(Indirect, X) STA (aa,X) 81 2 [
(Indirect), Y STA (aa),Y 91 2 [}
STX
Store Index X in Memory
Operation: X-> M
NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page STX aa 86 2 3
Zero Page, Y STX aa,Y 96 2 4
Absolute STX aaaa 8E 3 4

198



STY

Operation: Y > M

Store Index Y in Memory

NZCIDV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Zero Page STY aa 84 2 3
Zero Page, X STY aa X 94 2 4
Absolute STY aaaa 8C 3 4
TAX
Transfer Accumulator to Index X
Operation: A » X
NZCIDV
VR
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TAX AA 1 2
TAY
Transfer Accumulator to Index Y
Operation: A-> Y
NZCIDV
VAV
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied TAY A8 1 2

199



T$X

Transfer Stack Pointer to Index X
Operation: S—»> X

NZCIDV
VAR
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Implied TSX BA 1 2
TXA
Transfer Index X to Accumulator
Operation: X-> A
NZCIDV
S =
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TXA 8A 1 2
TXS
Transfer Index X to Stack Pointer
Operation: X—> S
NZCIDV
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied XS 9A 1 2
TYA
Transfer Index Y to Accumulator
Operation: Y—> A
NZCIDYV
AV
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied YA 98 1 2




Appendix E

Screen Display Codes

w
X[ < 0 © N ©® O O N O ¥ 10 © N © O O N O < 1D © N © O
m 5555556&666666667H77777777%
~N
In] <« MmO OWuwOTI - >Y¥ J432Z 0a
»
-
gl e~ - -vaa~Qex300DOEBEANONDODO
»
¥ [\ T s o T OV © N ©® O O N ™
® O O © I~ ™ —

mN223m.|u333333%%@“444444445555
o~
(o
w
»

w

x]
- <
E[E]quﬂ! % M L B - —~ ~ « o+ - ~ O = &N O 9 v
7]
w

© o O N o < 10 ©

§l o - o<t wo~o 2 7 N2 T 0ON R3O0 WO 00
i
o~
5 @ 0 O T © « O £~ — ¥ — £ € 0 O T ~ ® = 3 > T x > N
)
-
bl @ « o O Q0 wuw r— " X¥ 43200 0 K 3>2 X >N
»

=



SET 1 SET 2 POKE SET 1 SET 2 POKE | SET 1 SET 2 POKE
@ Q 81 I 97 K 113
= R 82 - 98 H 114
v s 83 | [ 9 | H] 115
| G sa | [J 100 | [] 116
4 v s |[J 101 | [ 117
X v s | B 102 | [} 118
o w e | U 103 | 119
® x s | b= 104 | ™ 120
(O vy e (P @& 105 | e 121
@ z o ([ 106 | ] 122
H 9t | [(H 107 | @/ 123
& 92 | [ 108 | (W 124
1l 93 | 4 100 | F] 125
B 9« | A 10 | M) 126
N N s | QO 11 | Mg 127
o |3 e

Codes from 128-255 are reversed images of codes 0-127.

202



Appendix F

Ascii values

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS

0 17 " 34 3 51

Ly . 18 35 4 52

2 19 ] 8 36 5 53

3 20| % 37 6 54

4 21 & 38 7 55

2 5 22 39 8 56
6 23 ( 40 9 57

7 24 ) 41 58

oisasies (IR (RS 25 . 42 ; 59
enanies (EEEER (9 26 + 43 < 60
10 27 , 44 = 61

Y - W —~ 45 > 62

12 chs 29 46 ? 63

13 B 30 / 47 @ 64
14 | M 3 0 48 A 65
15 32 1 49 B 66

16 ! 33 2 50 c 67

203




PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS
D 68 | [ 97 126 155
E 69 | []] o8 | N 127 | gEA 156
F 70 | H 99 128 Rl 157
G 71 | 100 120 | R 158
H 72 | [T 101 130 | BB 159

| 73 | < 102 131 160

J 74 | [] 103 132 | ] e
K 75 | [ 104 | f1 133 162
L 76 | K] 105 | 3 134 | [ ] 163
M 77 | [N 106 | f5 135 L] 164
N 78 | V] 107 | 17 136 [ 165
0 79 | 108 | f2 137 B 166
P g0 | N 109 | 14 138 L] 167
Q 81 | /) 10 | f6 139 k= 168
R 82 | [ 111 8 140 P 160
S 83 | [] 112 a1 44 (1 170
T 84 113 142 | [B 17
uooes | [ 114 193 | [ 172
v 86 | [v] 15 | FEA 144 Y 173
W s7 | ] 116 145 Rl 174
X 88 | [ 17 | BB 146 - 175
Y gs | X 118 147 0 178
z 90 | O 119 148 B o177
[ 91 120 149 | M 178
£ 92 | [l 121 150 Hl 170
] 93 m 122 151 D 180
1 94 EB 123 152 l] 181
< o5 | B] 124 153 | [B 182
= 96 i 125 154 ™ 183




PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHR$
™ 184 | (] 18 |[M 188 | ™M 490
s 185 | @] 187 | H] 189 | Mg 199

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

205




Appendix G

Basic error messages

BAD DATA String data was received from an open file, but the pro-
gram was expecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element of
an array whose number is outside of the range specified in the DIM
statement.

CAN'T CONTINUE The CONT command will not work, either because
the program was never RUN, there has been an error, or a line has
been edited.

DEVICE NOT PRESENT The required I/O device was not available for
an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not
allowed.

EXTRA IGNORED Too many items of data were typed in response to
an INPUT statement. Only the first few items were accepted.

FILE NOT FOUND If you were looking for a file on tape, and END-OF-
TAPE marker was found. If you were looking on disk, no file with that
name exists.

FILE NOT OPEN The file specified in a CLOSE, CMD, PRINT#, INPUT#,
or GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the number of
an already open file.

FORMULA TOO COMPLEX The string expression being evaluated
should be split into at least two parts for the system to work with.
ILLEGAL DIRECT The INPUT statement can only be used within a pro-
gram, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or
statement is out of the allowable range.

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR  This is caused by either incorrectly nesting loops
or having a variable name in a NEXT statement that doesn’t correspond
with one in a FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data from a
file which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to o file which
was specified as input only.

OUT OF DATA A READ statement was executed but there is no data
left UnREAD in a DATA statement.

206



OUT OF MEMORY There is no more RAM available for program or
variables. This may also occur when too many FOR loops have been
nested, or when there are too many GOSUBs in effect.

OVERFLOW The result of o computation is larger than the largest
number aliowed, which is 1.70141884E+ 38.

REDIM’'D ARRAY An array may only be DIMensioned once. If an array
variable is used before that array is DIM’d, an automatic DIM operation
is performed on thot array setting the number of elements to ten, and
any subsequent DIMs will cause this error.

REDO FROM START Character data was typed in during an INPUT
statement when numeric dota was expected. Just re-type the entry so
that it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered,
and no GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.
?SYNTAX ERROR A statement is unrecognizable by the Commodore
64. A missing or extra parenthesis, misspelled keywords, etc.

TYPE MISMATCH This error occurs when a number is used in place of a
string, or vice-versa.

UNDEFD FUNCTION A user defined function was referenced, but it
has never been defined using the DEF FN statement.

UNDEFD STATEMENT An attempt was made to GOTO or GOSUB or
RUN a line number that doesn’t exist.

VERIFY The program on tape or disk does not match the program cur-
rently in memory.

207



Further Reading

Apart from advising you read anything written by me, | include here
a list of books and magazines that will certainly be enjoyable and
informative.

Books

Using the 64 by Peter Gerrard, published by Duckworth (£9.95). Good
for novice or expert; contains all the necessary information for the 64.

lllustrating Basic by Donald Alcock, published by C.U.P. (£1.99).
Good for beginners to Basic.

Advanced 6502 Programming by Rodnay Zaks, published by Sybex
(£10.25). Invaluable, as are all of Zaks’ books.

6502 Machine Code for Humans by Alan Toothill and David Barrow,
published by Granada (£7.95). If you are just starting on machine code,
this is as good a place as any to start.

6502 Assembly Language Programming by L.A. Leventhal,
published by McGraw Hill, Berkeley, California. A must for everyone
using machine code.

Commodore 64 Programmer’s Reference Guide, published by
Commodore (£14.95).

The Complete Commodore 64 ROM Disassembly by Peter Gerrard
and Kevin Bergin, published by Duckworth (£5.95).

Programming the Pet/CBM by Raeto West, published by Level
(£14.90).

Commodore 64 Exposed by Bruce Bayley, published by Melbourne
House (£6.95).

Advanced 6502 Programming by Rodnay Zaks (£10.25).

208



Magazines

Commodore Horizons. Very informative about hardware and
software, also contains many fair user programs.

Commodore User. The best specialist magazine for Commodore
owners. The contributors include some of the best Commodore
programmers.

Personal Computer News. The best weekly by far, this contains
a great deal of information about hardware and software, and is
particulary good for games.

Compute. The best magazine for Commodore owners, although it
is not solely a Commodore magazine. This is an American publication,
but some shops do stock it.

Personal Computer World. A journal for those wishing to keep up
with the whole range of hardware and software, this also has good
columns for beginners and on machine code.

Micro Adventurer. This magazine is dedicated to adventure and

strategy games. It includes reviews, readers’ programs and an excellent
help column.

209



Index

Accumulator, 33,92, 94
ACPTR (Kernal routine), 94
Advance cursor, 117
Alternate RAM, 169
Alternate ROM, 169

Ascii, 27, 28,47, 124

Ascii codes, 203-5
Assembler, 28

Auto-run, 44, 45, 49
BACKUP (disk command), 56
Banks, 41

Basic, 13, 34, 35, 37, 41

Basic error messages, 206, 207
Basic graph, 156, 157

Basic tokens, 179-80

Block count, 67

Borders, 149-56

CBINV (Break vector), 120
Channel, 51

Characters, 45

Character set, 41, 169
Charget, 85

CHKIN (Kernal routine), 89, 90, 94
CHKOUT (Kernal routine), 95
CHR$, 135

CHRIN (Kernal routine), 89, 96
CHROUT (Kernal routine), 89, 96
CINV {IRQ vector), 120
CIOUT (Kernal routine), 97
CLALL (Kernal routine), 97
Clear screen, 117

CLOSE command, 57

Close (Kernal routine), 98
Close vector, 36

CLRCHIN (Kernal routine), 98
Code to Basic, 137-9

Colour memory, 169

Crash, 31,36

Crunch tokens, 116

Cursor control, 133-5
Customising, 128

Device, 51

Direct mode, 31, 32, 51
DIRECTORY command, 56
Disable, 32, 33
Disassembler, 28

210

Disk, 27, 45,54

Disk commands, 56

Disk directory, 62

Disk directory and auto-load, 64-9

Disk error messages, 57

Disk errors, 54

Download character set, 123-6

Error codes, 115

Exit to Basic, 29, 32

Filename, 49

Fill memory, 28

Find any tape header, 118

FRE(0), 135

FX-80, 123

Garbage collection, 116

GETIN (Kernal routine), 91, 99

Gorun, 28

Graph, 156

Hard copy, 51-3

Hardware vectors, 93

Header, 45

HEADER command, 57

Hex to Dec, 135-7

Hi-res, 139-49

HOME, 124, 136

Hunt memory, 28

IBASIN (CHRIN vector), 121

IBSOUT {(CHROUT vector), 121

ICHKIN (CHKIN vector), 121

ICKOUT (CHKOUT vector), 121

ICLALL {(CLALL vector), 121

ICLOSE (CLOSE vector), 120

ICLRCH (CLRCHN vector), 121

ICRNCH (Token vector), 119

IERROR (Error message vector),
119

IEVAL (Evaluate token vector),
120

IGETIN (GETIN vector), 121

IGONE (Char. dispatch vector),
119

ILOAD (LOAD vector), 122

IMAIN (Warm start vector), 119

INITIALISE command, 57

Input, 66, 118

Input routine, 132, 133



INSERT, 124

Instructions, 28

Interface chip 1 & 2, 169

Internal protection, 30

Interrupts, 33, 81-5

1/0, 31,36, 127

IOBASE (Kernal routine), 99

IOINIT (Kernal routine), 100

IOPEN (OPEN vector), 120

IQPLOP (LIST vector), 119

ISAVE (SAVE vector), 120

ISTOP (STOP vector), 120

Joysticks, 131

Jumbo Jump table, 93

Jump table, 170

Kernal, 32,61, 55, 62,93, 115

Key values, 177, 178

Keyboard buffer, 45

Kill tape motor, 118

List, 36, 38

LISTEN (Kernai routine), 100

Listings, 32

Load, 27, 28, 36, 44, 45, 92, 101,
127

Load (perform), 116

Loader, 30

Locations, 31

Machine code, 27, 37

Machine code instruction set,
181-200

MEMBOT {Kernal routine), 102

Memory dump, 42

Memory map, 36, 158-74

MEMTOP (Kernal routine), 102

Merge, 77-80

Monitor, 27, 34

Moving Basic, 37

New, 53

New Commands, 85-8

New line, 115

NMINV (Interrupt vector), 120

Old, 63, 54

Open, 66, 89, 102, 127

OPEN command, 56

Operating system, 93

Other vectors, 36

Output, 51

Output to screen, 118

Page one, 165

Page three, 167, 168, 169

Page two, 165, 166, 167

PLOT (Kernal routine), 91, 103

Pop, 81

Power reset entry point, 118

Power up, 37,41, 117

Printer, 51

Program, 30, 35, 41

Programs, 37

Prompt, 74

Protected software, 44, 45 *

Protection, 30, 37

RAM, 31,40, 62, 76

RAMTAS (Kernal routine), 104

RDTIM (Kernal routine), 104

READST (Kernal routine), 105

Register, 29, 40

REM, 42, 66

RENAME command, 57

Reserved words, 127-31

Reset, 31, 34, 36

Restore, 31, 106

Retreat cursor, 117

REV ON, 124

ROM, 31, 36, 38, 40, 42, 93, 115,
128, 169

ROM memory map, 172, 173, 174

Run {perform), 116

Run/stop, 31, 32, 33, 34

Save, 27, 29, 36, 45, 106

Save (perform), 116

SCNKEY, 107

Scrambled, 31

SCRATCH command, 57

Screen, 41,74, 107

Screen and character set, 41

Screen display codes, 201, 202

Screen dump, 75, 76

Screen memory, 169

Screen print, 117

Scrolling, 83

SECOND (Kernal routine), 108

SETLFS (Kernal routine), 92, 108

211



SETMSG (Kernal routine), 109

SETNAM (Kernal routine), 92, 109

SETTIM (Kernal routine), 110

SETTMO (Kernal routine), 111

Shift run/stop, 46

SID chip, 169

Software, 44

Stop, 32, 111

String memory, 135

STRS, 135

Supermon, 13-29

Supermon instructions, 28, 29

Symbol chart {control
characters), 12

TALK (Kernal routine), 112

Tape, 44

Tape control, 69

Tape search, 70-3

212

TKSA {Kernal routine), 112

Tokens, 46, 179, 180

Transfer memory, 29

UDTIM (Kernal routine), 113

UNLSN (Kernal routine), 113

UNTLK (Kernal routine), 114

USR (function jump), 120

USRCMD (user-defined vector)
121

VALIDATE command, 56

Variables, 49

Vectors, 33,37, 114, 119-22

VIC chip, 41

Video chip, 169

Warm restart, 117

Word processor, 74

Zero Page, 158, 159, 160, 161,
162, 163, 164, 165

’



