

Commodo"re 64
Machine Code

Ian Stewart
Mathematics IDstitute, University of Warwick

Robin Jones
Computer Unit, South Kent College of Tecbnology

~
i

SHIV A PUBLISHING LIMITED
64 Welsh Row, Nantwich, Cheshire CW5 5ES;England

© Ian Stewart and Robin Jones, 1984

ISBN 1850140251

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recOrding and/or
otherwise, without the prior written permission of the Publishers.

This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be resold in the UK below the net price given by
the Publishers in their current price list.

Typeset and printed by Devon Print Group, Exeter

Contents

Introduction 1
1 To Whet Your Appetite 5
2 Numbers in Machine Code 8
3 Positive and Negative 13
4 Memory Organization 16
5 The 6510 Microprocessor 20
6 A Machine Code Program 23
7 Loading and Running Machine Code 27
8 Assembly Language 39
9 Addressing Modes 48

10 Flags 52
11 Branching and Jumps 57
12 Looping 65
13 Indexing 70
14 Indirection 76
15 Stacks and Subroutines 83
16 Screen and Colour Control 89
17 Keyboard Control 99
18 Logic 104
19 Sprites 108
20 High-Resolution Graphics 124
21 MINIASS - An Aid to Hand Assembly 135
22 Some Loose Ends 144

Appendices 149
1 Hex/Decimal Conversion 151
2 Mnemonics 152
3 Summary of Addressing Modes and Mnemonic Formats 154
4 6510 Opcodes 156
5 Effect of Operations on Flags 158
6 Opcodes in Numerical Order for Disassembly 160
7 Sprite Registers Made Easy 161
8 Keyboard Scan Codes 162

Introduction

The Commodore 64 has become one of the most popular home com
puters in Europe and the USA. It is a versatile and interesting machine.
The aim of this book is to show you how to enhance its abilities still
further, by learning the rudiments of Machine Code programming.
Want to fill the TV screen with a grid of symbols, in the twinkling of an
eye? Move sprites around fast enough to playa reasonable game? Count
how many times the REM character occurs in a program? Then it's
Machine Code you'll need. It places many more demands on the pro
grammer than BASIC does; but as a reward, it expands the range of
tasks that your computer can do.

Most of the general principles in this book apply to any computer that
uses a 6502 or 6510 microprocessor; but throughout we have borne the
specific features of the Sixty-four in miqd, and written the text on the
assumption that you are sitting at a wanln Commodore 64 keyboard as
you read. The result is a gentle but thorpugh introduction to Machine
Code and Assembly Language programming, assuming no prior exper
ience other than a modest familiarity with BASIC.

We begin by discussing how numbers are represented in Machine
Code (hexadecimal, signed and unsigned binary, positive and negative
numbers) and how-and where-the code is stored in the memory.
Next we take a look at the internal structure of the 6510 (and 6502)
microprocessor, the Brain of your Sixty-four, from the programmer's
poiIit of view. It has a number of special memory areas, called registers,
and we say what these do. A simple Machine Code program is then
analysed in detail to show how it differs from BASIC.

Some of the difficulties in Machine Code programming can be avoi
ded by making the computer do the work. We develop a BASIC
program (LOADER) to help you write, edit, load, and run Machine
Code, and to allow you to save programs to tape or disc, and load them
back into memory. This program should itself be saved on tape or disc,
ready for use in later chapters.

With our BASIC toolkit ready, we are able to introduce the main
Machine Code instructions and some of the important techniques:
arithmetic, branching, looping, flags, the stack, subroutines, logical
operations. This is the 'theory' section and it covers essentially every
6510 instruction.

1

2

In the final chapters we develop Machine Code programs that exploit
specific features of the Sixty-four: sprites, colour, keyboard control of
moving graphics, low and high resolution graphic displays. The main
emphasis is on simple Machine Code programs that can be understood
and used as building blocks in more complicated programs. We want
you to learn to write Machine Code, not just copy it!

A noteworthy feature is the program MINIASS, which 'borrows' the
Commodore's BASIC editor and cunningly enlists its aid to edit
Machine Code instead (saving us all a lot of trouble writing a decent
editor). The Machine Code is then loaded automatically into memory
from the BASIC program area, ready for execution.

To round off the discussion, we have provided a large number of
appendices which will prove invaluable in writing Machine Code: tables
of hex/decimal conversions, mnemonics, opcodes, addressing modes,
sprite registers, flag behaviour, keybqard scan codes.

This book provides a comprehensible but thorough introduction to
6510 and 6502 Machine Code in general, and to the Commodore 64 in
particular. Machine Code is challenging but rewarding. Try it!

The Rubciiyat of
Programmer Khayyclm

Awake! For Morning's fickle hand doth load
Updated software in the daylight mode.

Return from sluggish subroutine of night:
DIM the array, but brilliant the code!

Myself when young did frequently frequent
The data-punching rooms, and heard great argument;

But evermore it seemed I must emerge
By that same interface wherein I'd went.

Ah, but my computations, people say,
Process the text to clearer meaning? Nay,

Though Man may seek the symbols to construe
The Greater Editor will have his way.

The User programs while the disk-drives whisk;
Taps the mad keyboard of a mind at risk.

The work of years comes suddenly to naught
As random noise corrupts the floppy disk.

Some for the glories of this world, and some
Sigh for a pointer to the world to come.

Ah, seize the output, let the record go,
Nor heed the rumble of magnetic drum!

A User-Manual 'neath a labelled tree,
A pint of beer, a ploughman's lunch-and Thee!

What care I then for megabytes?
Thy tiniest bits yield megabytes for me.

The moving cursor writes, and having writ
Moves on: nor all your piety nor wit

Shall lure it back to cancel half a line
Nor all your Tears wash out a word of it.

3

4

But wait! say ye: The console's cursor keys
Can Backspace, Rubout, Edit as we please?

Not so! These merely tidy the display:
Still the grim input's in the memories.

Some peek the ROM of Time's predestined flight;
Some seek within Life's RAM new lines to write.

In vain each strives t'assemble faultless code,
For still Death's Digits poke the final byte.

Machine Code can be used to do things
that just aren't possible in BASIC.
The aim of this chapter is:

1 To Whet Your Appetite

You wouldn't have bought this book, or be thumbing through it in the
bookshop, unless you'd heard that the Commodore 64 can do remark
able things, quickly, in something called Machine Code. Now that's
true; but the trouble with Machine Code is that, unlike BASIC, it
doesn't do your thinking for you. You have to pay much more attention
to finicky details, and keep an eye on exactly whereabouts in the
machine your code sits. Machine Code is emphatically not 'user
friendly', and to begin with looks rather like Egyptian hieroglyphs, and
has the charm and immediate comprehensibility of an Urdu telephone
directory.

It's not really quite as bad as that, and with practice you'll soon get a
feel for it; but you'll certainly need to put in quite an effort before you
come to the real payoff. So, to convince you it will all be worthwhile, I'm
going to show you a Machine Code routine that can change the colours
or characters appearing on the screen in the twinkling of an eye. It's
embedded in a BASIC program, and could be speeded up even more by
converting the rest of the program to Machine Code too. It would be
well-nigh impossible to persuade BASIC to do this job at a quarter of the
speed (though I won't say it's totally impossible, because people are very
ingenious) .

Don't try to understand how all this works: that comes later. Just copy it
out and RUN. You'll notice a few commands that you probably don't
use very often, namely:

SYS

which tells the computer to carry out the Machine Code, and (perhaps
more familiar!)

PEEK

POKE

which fiddle about with the memory.

5

6

Here we go:

10 DATA 0, 162,0, 173,0, 192, 157,0,4

20 DATA 232,224,0,240,3,76,6,192,96

30 FORT=0T017

40 READ X

50 POKE 49152 + T, X

60 NEXT

100 K=4

110 POKE 49152, INT(256 * RND(0))

120 POKE 49160, K

130 SYS(49153)

140 K=K+1

150 IFK = 8THENK = 216

160 IFK = 220THENK == 4

170 GOT0110

Now, check carefully that you've copied that out exactly as listed
Machine Code plays nasty tricks if there's an error. Happy? OK, RUN
it. Break the program when it becomes too stressful to the eyes!

As a variation, change line 110 to:

110 GET A$: IF A$ = " " THEN 110

115 POKE 49152, ASC(A$)

Now, when you RUN the program, try pressing different keys on the
keyboard and watch the computer responding. It's very quick, isn't it?

WHAT'S HAPPENING?

The way this works is that the computer is being told to fiddle about with
two areas of memory: the screen memory (which holds character data)
and the colour memory (which holds colour data). See Easy Program
ming*, Chapter 19. (Incidentally, in the first printing of that book,
someone got Figures 19.1 and 19.2 interchanged by mistake. Sorry
about that.) The actual Machine Code is contained in the DATA
statements in lines 10 and 20; it is loaded into a suitable area of memory
in lines 30-60. Line 130 tells the computer to run the Machine Code
routine that starts in that memory area.

* Easy Programming for the Commodore 64. Stewart and Jones. Shiva Publishing.

Anyway, I hope that's given you some idea of what a very simple piece
of Machine Code (only 18 bytes of memory and, as we'll see later, only 8
Machine Code commands) can do. Short Machine Code routines can
greatly enhance the capabilities of a BASIC program.

7

8

What structure should numbers take
in a machine code program?

2 Numbers in Machine Code

We normally think about numbers in terms of tens. If I write the number
3814 we all understand that to mean:

3 x 1000 + 8 x 100 + 1 x 10 + 4 x 1

and we can see that to get a 'place value' from the one on its right we
simply multiply by ten. We say the number is in base ten.

Because we've been doing this for as long as we can remember, it's
difficult to realize that there are other, perfectly sensible, ways of doing
the same job. Early computer designers certainly didn't; they used base
ten representations in their machines and hit some nasty snags. Mostly
they were caused by the fact that electronic amplifiers don't behave the
same way for all the signals you want to input to them. For instance, an
amplifier that is supposed to output double its input signal may well do
so for inputs of 1,2,3 and 4 units; but then it starts to 'flatten off' so that
an inputof5 produces an output ofonly9.6; 6 produces 10.8; and maybe
you can hardly tell the difference between the outputs for inputs of8 and
9.

Put a music tape in your cheapo cassette recorder and wind up the
volume. Hear the distortion in the loud bits? It's the same effect.

Pioneer computer designers didn't hear any distortion; they just
found that the machines couldn't distinguish between different digits at
times, and that was hopeless for a computer. So they had to rethink their
number representation to suit what the electronic gubbins would do
best.

The simplest thing you can do with an electrical signal is to tum it on or
off; so you can represent the digits 0 (off) and 1 (on) satisfactorily.
Distortion no longer matters. It's clear whether a signal is present or not
regardless of how mangled it is. But can we devise a number system
which only uses 0s and Is?

Yes. In a base ten number, the largest possible digit is 9. Add 1 to 9
and you get l(,J-a carry has taken place. We can write any number using
any other base we choose, and the largest possible digit will always be
one less than the base. If the base is 2, the largest digit is I, so a base 2 (or
binary) number only contains 0s and Is.

What about the place values? In the base ten case we got those by
starting at 1 (on the right) and multiplying by 10 every time we moved
left one place. For a binary number we still start at 1, but we multiply by
2 every time we move left.

So for instance the binary number 1101 can be converted to base 10
like this:

1 1 0 1

I

I
I :: 1 ~ 1

2 ·0
4 ~4

x 8 ~ 8

13

Converting the other way is easy as well; take 25 for example. If we write
down the binary place values:

32 16 8 4 2 1

and work from the left, it's clear that we need a 16, which leaves 9, and
that's made up of an 8 and a 1, so 25 is:

o 1 100 1

HEXADECIMAL CODE
This is fine for relatively small values, but a bit messy for large ones.
There are a number of quick conversion techniques; but I want to
examine a procedure which makes use of hexadecimal code, because it
will stand us in good stead later.

A number in hex (nobody ever says 'hexadecimal', except me, just
now) is a number in base 16. So the place values are obtained by
successive multiplications by 16. The first five are:

65536 4096 256 16 1

'Hang about!' everybody's saying. 'Those are nasty numbers, and any
way, in base 16 the largest digit has the value 15. Things are getting
complicated. '

Bear with me. We handle the problem of digits greater than 9 by
assigning the letters A-F to the values 1~ 15. So the number 2AD in hex

9

10

converts to decimal like this:

2 A D

I ~~.xl
'---.x 16

-----'~~ 13

-----i.~ 160
'------~~x 256 ~ 512

= 685

(D = 13)

(A = 10)

Now for the nice feature of hex. Because 16 is one of the binary place
values (the fifth one) it turns out that each hex digit in a number can be
replaced by the four binary digits which represent it. (By the way,
'binary digit' takes almost as long to say as 'hexadecimal' so it's normally
abbreviated to bit.) Table 2.1 shows the conversions:

Table 2.1

Decimal Hex Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

A more extensive table is given in Appendix 1.
Now suppose we want to convert 9041 to hex. First we extract two

4096s, then some 256s and so on like this:

9041
2 x 4096 = 8192 -

849

3x 256= 768 -

81

5x 16 = 80-

1

Ix 1= 1-
--

0

So the hex representation is 235l.
Now we just copy the digit codes from the table:

2

0010

3

0011

5

0101

1

~1

and that's the binary equivalent of 9041 ; just run the four blocks together
to get 001~110101~l.

The hex-to-binary conversion is so easy that, more often than not, we
leave numbers in hex even when, ultimately, we need them in binary.
After all, it's easy to make an error in copying long strings of0s and Is.

CONVERSION BY COMPUTER

Here's a program to convert from decimal to hex. It successively divides
the number by 16, looking at the remainder each time. So it works out
the digits in the opposite order to the way I did it above.

20 LETH$ =""

30 INPUT "DECIMAL NUMBER"; DN

40 N = INT(DN/16)

50 M = DN - 16 * N

60 IFM>9THENM=M +7

70 H$ = CHR$ (M + 48) + H$

80 DN=N

90 IFDN>0THEN 40
100 PRINT "HEX VALUE IS:"; H$

Experiment, converting various decimal numbers to hex. (They have to
be positive whole numbers 0,1,2, ... etc.)

Here's the code to convert in the opposite direction (hex to decimal).

110 LETDN=0

120 INPUT"HEXNUMBER";H$
11

12

130 FOR T = 1 TO LEN(H$)

140 D$ = MID$(H$, T, 1)

150 A = ASC(D$)

160 A =A-48

170 IF A> 9 THEN A = A - 7

180 DN = 16 * DN + A

190 NEXT

200 PRINT "DECIMAL VALUE IS:"; DN

We could tie these routines together with a little menu:

2 PRINT "DEC/HEX CONVERTOR"

3 PRINT "1) DEC - > HEX"

4 PRINT "2) HEX - > DEC"

5 PRINT "3) END"

6 PRINT "ENTER 1, 2, OR3"

7 INPUTSEL

8 IF SEL = 1 THEN GOSUB 20

9 IF SEL = 2 THEN GOSUB 110

10 IF SEL = 3 THEN STOP

15 GOT06

and, of course, we'll need RETURNs at lines 105 and 210.

C-/60

So much for
base 1 arithmetic

.-

To deal with negative numbers, the
machine uses a clever trick.

3 Positive and Negative

Now that we've seen something about manipulating binary numbers
let's return to looking at the way they are handled inside the machine.
Usually, a number is held in a fixed number of bits, often 16 or 24 or 32,
depending on the machine design. This number of bits is called the word
size for the machine.

Let's examine what numbers could be held in a 4-bit word:

4-bit pattern Decimal value

V1II/1IJ 0

~1 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1~ 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

13

14

It's obvious why bigger word sizes are chosen in practice; a machine
which can only represent the numbers 0 to 15 is unlikely to be adequate.
But there are two other problems; the notation can't represent frac
tional values (7.14, for instance) and it can't represent negative
numbers.

We'll ignore the fractions problem because most machine code
routines only use integers, but the way in which negative numbers are
dealt with is more pressing.

The technique is simple: if you've got the binary representation of a
positive number and you want to create its negative equivalent you do
two things:

1. Change all the 0s to Is and all the 1s to 0s (this is rather picturesquely
called 'flipping the bits').

2. Add 1 to the result.

For instance, suppose you want -3.

3 = 0011 in a 4-bit word

Flipping the bits gives:

Now add 1:

1100

+1

1101

So 1101 represents - 3. It's called the 2's complement of 001l.
I'm not going to explain exactly why this works, but you can prove to

yourself that it does in any particular case like this:
If we add 3 to -3 (or 5 to - 5 or anything to minus itself) we should get

zero. So:

+
=

0011 (= 3)

1101

1~

(= -3)

111 (Don'tforgetthat 1 + 1 = o carry 1 in binary!)

So we don't get ~ at all; but the junior 4 bits are zero, and if we're
working in a 4-bit word the senior bit will just drop off the end. (For a
convenient analogy, think about a car trip-meter with 3 digits; if it reads
999 and you drive an extra mile, it reads V1/1IJ and a '1' has 'dropped off'
the left hand end).

In other words we should have seen it like this:

This always works provided that the number of bits is fixed throughout.
Don't forget to include leading zeros to make up the number of bits to
this standard length, before taking the 2's complement.

Let's rewrite the 4-bit table of values, now including negatives:

Decimal Binary 2's complement Decimal

r--- - -- -- - - - - - ------------,
o 0000 0000 0 1

I
1 0001 1111 -1 I

2 0010 1110 -2 :

3 0011 1101 -3 :

4 0100 1100 -4

5 0101 1011 -5

6 0110 1010 -6

7 0111 1001 -7 L _ -- __________ I

8 1000 1 1000 -8 L- ___________ -.l

9 1001 0111 -9

10 1010 0110 -10

11 1011 0101 -11

12 1100 0100 -12

13 1101 0011 -13

14 1110 0010 -14

15 1111 0001 -15

Straight away we see that there's a problem; every bit-pattern occurs
twice so that, for instance, 1001 could mean 9 or -7. So we'll have to
restrict the range of values still further. I've drawn a dotted line around
the region we actually choose to represent. If you look at the senior
(leftmost) bit in each of the patterns you'll notice that it's '0' if the
number is positive and '1' if the number is negative. This is obviously a
very convenient distinction.

So the range of numbers we can get into a 4-bit word is -8 to +7. For 5
bits it would be -16 to + 15. For 6 bits it will be - 32 to +31 and so on.

A 16 bit word (which is important so far as the Sixty-four is concerned)
holds the range - 32768 to +32767. A table of 2's complement notations
for 8-bit words is given in Appendix 1.

15

16

To program in Machine Code, you must know
exactly where information is stored in the computer,
and in what form.

4 Memory Organization

As you no doubt know, the computer's memory comes in two types:

1. ROM (Read Only Memory) which contains permanent information
that can be used but not changed by the programmer.

2. RAM (Random Access Memory) which can be modified at will.

Both ROM and RAM are organized in a way which appears to the
programmer to be a single long list of memory locations. Each location is
able to store a single byte of information. A byte is a word made up of
eight bits, such as 10011100: there are 256 possible bytes, whose decimal
values range from 0 to 255. A byte can also be represented by a two-digit
hexadecimal number, ranging from 00 to FF.

Associated with each memory location is its address, which acts as a
reference number. On the Sixty-four, the possible addresses run from 0
to 65535 decimal. Each address can be written as a four-digit hexa
decimal number, from _ to FFFF. That means you can represent an
address with two bytes (16 bits) of information. Note that 65536 = 256 *
256. A kilobyte of memory is 1024 bytes; and 65536 is 64 kilobytes (64K)
of memory-which is why the Sixty-four is called what it is.

(Actually, that's not quite true, because the Sixty-four has some
additional memory areas used for special purposes. However, you can
only get at 64K of it at any given time. Other banks of memory can be
switched in or out as appropriate. See Easy Programming, Chapter 13,
or the Reference Guide* , page 260. I'll ignore this possibility to keep the
story simple.)

• Commodore 64 Programmer's Reference Guide-available from your Commodore dealer.

So, without going into fine details, we can picture the memory like
this:

decimal hex
address address

0 f/1/IIIIJ
1 ~1

2 f/1IIIJ2
3 f/IIIIf3

FFFD
~----------------~

65533
65534

65535

FFFE
r-----------------~

FFFF

On this scale, a complete diagram is about 1J4 mile (400 metres) long!

PEEK AND POKE

From BASIC, you can gain direct access to a memory location by using
the command: '"

PEEK

to see what's in it (which will work on ROM and RAM), and

POKE

to change its contents (RAM only). For the full low-down on these see
Easy Programming, Chapter 13. A brief reminder will suffice here.

To find the contents of address AD you use

PEEK(AD)

with AD in decimal. For instance, try this program:

100 FOR AD = 900 TO 920

110 PRINT AD, PEEK(AD)

120 NEXT

If you RUN this, you'll end up with a list of the contents (in decimal) of
the memory locations whose addresses run from 900 to 920 (decimal).

17

The command POKE is used in the form:

POKEAD,NUM

where AD is the address, NUM the number to be put into it (0-255, in
decimal). For example, add this routine to the three program lines
above:

10 FOR AD = 900 TO 910

20 POJ(EAD,77

30 NEXT

Run the lot. You'll find that the contents of addresses 900-910 have now
. become 77. (This is 4D in hex.)

18

There are some areas of RAM in which POKE appears not to have the
expected effect. This is due to the BASIC operating system, which uses
some parts of the memory and clobbers your POKEs. The addresses
900-920 above are actually in an area known as the Cassette Buffer,
which remains unclobbered provided you don't LOAD or SA VB pro
grams. Try LOADing a program and then PEEKing addresses 900-910.
Are they still set to 77?

This is a problem that we must address (no pun intended or taken)
later on, when we want to store Machine Code. It's not hard to find a
safe place to put it; but it's important to do so.

Machine Code programs are very rigid as regards the way addresses
are specified. Addresses are always four-digit hex numbers, such as

A1C7 FFFC 55D0

and leading zeros, as in the final example, are included.

c- 166

PAGES

Each 256-byte section of memory is known as a page. This means there
are 256 pages. The first two hex digits of an address give its page number.
For instance, the addresses above are on pages:

Al FF 55 00

respectively. Page zero (00) is special for Machine Code, and is treated in
a rather different way from all other pages.

MEMORY MAP

You've got to be able to find your way around in the Sixty-four's
memory, to be able to influence the way the beast behaves. With the
computer in its standard configuration, the most important memory
areas are as follows:

Decimal

0-827
828-1019

1024-2023
2040-2047
2048-40959

40960-49151
49152-53247
53248-54271
54272-55295
55296-56319
56320-57343
57344-65535

Hex

~-033B
033C-03FB
~-07FF
07F8-07FF
0800-9FFF

AVJ/1IJ - BFFF
CVJ/1IJ - CFFF
DVJ/1IJ - D3FF
D400-D7FF
D800-DBFF
DCOO-DEFF

EVJ/1IJ - FFFF

BIT NUMBERING

Uses

Operating system
Cassette buffer
Screen memory
Sprite data pointers
BASIC area
BASIC ROM or 8K RAM
4KRAM
VIC chip (sprites, video display)
SID chip (sound)
Colour memory
Input/output etc.
KERNAL ROM or 8K RAM

There is a conventional way to number the bits i~ a byte:

7 6 5 4 3 2 1 0

I I I I I
So bit 0 contributes 1 to the value, bit 1 contributes 2, bit 2 contributes 4;
and in general bit N contributes 2tN. The more senior bits (those more
to the left) have higher numbers and count more towards the value of the
byte (just as do the digits in decimal).

Similarly, in a two-byte address, the two left-hand hex digits form the
senior (or high) byte and the two right-hand digits form the junior (or
low) byte. For instance:

C3FA

T T ___ junior or low byte

.... ----- senior or high byte

19

20

And now, let me introduce you to the
Brains behind this organization:

5 The 6510 Microprocessor

At the heart (or brain) of your Sixty-four is a remarkable (though by
today's standards a trifle outdated) piece of technology: the 6510 micro
processor chip. It's your computer's Central Processing Unit or CPU,
and it contains all the circuitry needed to perform logic and arithmetic,
and to control the way everything else works. It's a modified version of
the famous MOS Technology 6502 chip; and as far as Machine Code
programming goes, the two are identical. (I mention this because most
of the available books are about the 6502: you can buy these, safe in the
knowledge that anything in them will apply equally well to the 6510.)

As microprocessors go, the 6510 is reasonably simple; but there are a
number of minor complications and side issues which, frankly, I'd prefer
not to discuss. A book full of ifs and buts and maybes makes for rocky
reading. So I'll warn you right now that I'm not always going to tell you
the whole truth. Rather than hedge about with confusing qualifying
remarks where it really doesn't matter except to an expert, I'll slide over
the odd fine point.

In particular, the exact physical layout of the 6510 doesn't matter to
us: what we need to know is how to think about it when writing a
program. So let's take a quick look at its major features.

THE REGISTERS

I think I'd prefer
something a little

less persona Ii

C-16'1

Within the 6510 are a number of special purpose memory areas, or
registers, which it uses to carry out instructions. You can think of them as
being arranged like this:

Accumulator

Indexes

Program counter

Stack pointer

Processor status
register

A

x

y

PC

SP

p

Each register holds one byte, except for the PC-register which holds two
bytes. You'll see why in a minute. To get us oriented, here's a quick
run-down of what they all do. I'll say more later, when we come to make
useofthem. .

THE ACCUMULATOR

This is the basis of all arithmetical and logical operations. For example,
to store a particular byte in memory (as in the BASIC POKE) you must:

1. Load it into the accumulator.
2. Store the contents of the accumulator in memory.

You'll find you spend a lot of your time shovelling stuff into the accumu
lator and hauling it out again. If you want to add (or subtract) two
numbers, you must put one in the accumulator, then add (or subtract)
the other, and then look in the accumulator to see what the result was.

Since the accumulator is only 8 bits wide, you can only do arithmetic
on numbers up to 255. We'll see how to get round this later on, too.

After programming in BASIC, with its limitless range of variables, it
takes a while to get used to the dreadful fact that there is only one
accumulator. A good way to think about what you have to do is to
imagine a pocket calculator with a single 8-digit display. Whenever you
do a calculation, the result ends up in the display. Whatever was there
before is lost-unless you take the precaution of memorizing it first. The
accumulator is just like this.

21

22

THE INDEX REGISTERS

The 6510 has two index registers, X and Y. These store numbers that can
be used to run through areas of memory one step at a time. They're
useful for lists, tables, or anything that requires something to be done to
a whole block of memory . You can also use them to cobble together the
Machine Code version of a BASIC FOR/NEXT loop.

THEPROG~CO~R

You only make use of this in an indirect way, and you don't nonnally
need to worry about what it's doing. It tells the CPU which program
instruction it should carry out next. This is important, because you can
make the program jump to a different command by changing the value
stored in the PC-register. This gives the analogue of BASIC's GOTO
command. In actual fact the PC-register holds the address of the
memory location containing the code for the next command. Since
addresses are two-byte hex numbers, the PC-register also has to be two
bytes long. That's why! For more infonnation, see Chapter 11.

THE STACK POINTER

There's a special memory area in the Sixty-four used for temporary
storage during calculations, known as the stack (see Chapter 15). The
SP-register tells the CPU whereabouts the business end of the stack is.
The stack is also crucial to the use of subroutines in Machine Code.

THE PROCESSOR STATUS REGISTER

This contains infonnation that can be used to take decisions. Is a number
positive? Negative? Zero? Did an arithmetical operation result in a
carry digit? Every time a command is obeyed, the P-register is auto
matically updated. (See Chapter 10 onflags.)

That's the bare bones, but of course there's more to tell. (In computing
there's always more to tell.) To get us used to Machine Code painlessly,
we'll take a look at some simple but instructive examples first. Then
we'll be ready to discuss how to make effective use ofthe 651O's registers
and commands.

The best way to understand how to write
a program in Machine Code is to see what
happens when the computer works its way
through a simple example of one.

6 A Machine Code Program

The aim .of this chapter is to show you what form a Machine Code
program takes when it's stored in memory; and what kinds of nifty
footwork go on inside the CPU when it runs the program. I'm going to
start with one of the simplest programs possible: an 8-bit addition
routine. This will take two numbers between 0 and 255 (decimal) and
add them up. In BASIC this would be pretty easy:

10 INPUTM,N

20 L=M+N

In Machine Code ... well, we'll see!
In BASIC we rapidly get used to the idea that a particular byte of

memory can have more than one meaning. For example it could be a
number, or the ASCII code for a character, or instructions for con
trolling a Sprite. Its meaning depends not so much on where it is, as what
the computer intends to do with it. And the possibilities for that were set
up by whoever de&igned the circuits.

It's the same in Machine Code. The contents of a particular memory
location may be treated as a positive number, or a signed number
between -128 and 127, or an instruction code. If you write .the program
correctly, the computer will always know which meaning you intend.
However, if you make a mistake, there is a definite chance that the
computer will get confused. As a result, when a Machine Code program
goes wrong, the effect can sometimes be rather bizarre.

THE PROGRAM

First, I'll show you what the program looks like when it's sitting in
memory. I'll store it from location 49152 onwards, that is, C000 (hex)
onwards. This once only, I'll give you the contents of memory in hex,
binary and decimal. (Hex is what you'll have to learn to think in for
Machine Code; binary is what's actually in the hardware; and decimal is
what you'll see if you PEEK.)

23

24

Table 6.1

Address Contents of address

Hex Binary Decimal

data { OIIlIIJ f/fl ~111 7
COOl 05 ~101 5
~V1/f2 00 VI/II1l1III1III 0

r- COO3 18 00011000 24
COO4 AD 10101101 173
COOS 00 VI/II1l1III1III 0
COO6 C0 11000000 192
Ulilfl 6D 01101101 109

program - COOS 01 f/1I1I1l1/1I1IJl 1
Cf/1/J) C0 11000000 192
COOA 8D 10001101 141
COOB f/f2 00000010 2
COOC C0 11000000 192

'- COOD 60 011~ 96

I've done several things here to help us see what's going on. First, I've
labelled two areas of memory as 'data' and 'program'. The program is
going to use the 'data' area as storage for variables. I've also drawn
horizontal lines to break the program into its individual commands: note
that some are three bytes long, some only one byte. (Two-byte com
mands can also occur, but not in this program.)

When the computer first gets hold of the program, it does not 'know'
any of this: all it has is a list of bytes. ~ut, as it runs through the program,
it can teU from the context whether a given byte is program, data, or
whatever.

WHAT HAPPENS WHEN IT RUNS

Leaving aside, till the next chapter, the by no means trivial task of
feeding these bytes into the correct addresses, let's see what the CPU
does when it's told to run this program. The program itself starts at
address COO3; and the programmer kicks off by telling the computer to
load this address into the Program Counter register. .

The computer now 'knows' that there's an instruction coming, which
it must decode. It uses the address held in the PC-register to look up the
code, which is 18. Circuitry already wired into the chip tells it that this
means 'Clear Carry flag'. This refers to the P-register, and is a small
piece of spring-cleaning needed to make sure everything starts off neat
and tidy, uncorrupted by traces of previous programs.

The computer also 'knows' that code 18 is a i-byte code: this means
that in order to find the next command it must bump the PC up by 1. The
PC now holds COO4. This address contains the code AD, which means
'Load the accumulator with the number stored in an address given by the
next two bytes of program'. The next two bytes are 00 and C0. The
computer puts these together in the order C0, 00, to get address COO0.
This is in the data area, and contains f/f7. The computer therefore puts
the number f/f7 in the accumulator.

Now all this has used up three bytes of program: AD, 00, C0. In other
words, AD is a 3-byte code. To get the next instruction, the PC must be
bumped up by 3. So now the PC contains C0f/f7 (the address of the first
byte of program after the AD, 00, C0 sequence just carried out).

By now you'll be getting the idea. The computer now decodes what
ever is in Cf/IIfl. This is 6D, which means 'Add to the contents of the
accumulator whatever the number is that's stored in the address speci
fied by the next two bytes of program'. The next two bytes are 01, C0; as
before these refer to address COOl, containing the byte 05. So the CPU
adds 05 to the f/f7 already in the accumulator, getting 0C. (Hex, remem
ber? 5 + 7 = 12 in decimal, which is 0C in hex.) That was also a 3-byte
code, so the PC goes up to CooA.

That's the code 8D, which means 'store the contents of the accumu
lator in the address specified by the next two bytes of program'. The next
two bytes, (/f2 and C0, refer to address Cf/IIJ2. So the computer stores the
number 0C in address Cf/IIJ2, another 3-byte code; so the PC goes up to
CooD.

Decoding CooD, which contains 60, the computer finds it now has to
'return to BASIC'. So it does, ending the execution of the Machine
Code. That was a I-byte code only, so the PC bumps up by one to read
CooE; but now we're back in BASIC and that promptly takes over
control of all the registers.

WHAT IS IT?

What did it achieve? It took the contents of address C0(/1/), added to that
the contents of COOl, and stored the answer in Cf/IIJ2. It's an 8-bit adder.
If we changed the contents of COO0 to lA (26 decimal) and COOl to 0E
(14 decimal) then Cf/11J2 would end up containing the sum, which is 28 (40
decimal). And so on.

In fact, it's a bit like the BASIC command L = M + N, where now
we've chosen to use address COO0 for the variable M, COOl for N, and
0/1112 for L. Notice that you have to decide where to put these variables.
Ordinarily, BASIC does this for you automatically. In Machine Code,
you're on your own.

OPCODES

The code bytes that define a given operation within the CPU are called

25

26

Operation Codes or opcodes. The program above breaks up into op
codes like this:

fJ7
05
00
18
AD 00 C0
6D 01 C0
8D 02 C0
60

} Data

Opcode for 'Clear Carry flag'
Opcode for 'Load accumulator from address Cf/I/1/J'
Opcode for' Add the contents of address COOl'
Opcode for 'Store result in address C002'
Opcode for 'Return to BASIC'

The 6510 has 56 different instructions, but most of these can be used in
several distinct ways (called addressing modes; see Chapter 9). There
are 151 different opcodes. We'll cover all of the important ones by the
end ofthe book. Some require 1 byte, some 2 and some 3. However, we
won '(have to learn the codes by heart! They are all listed in Appendix 4.

The computer can be made to handle most
of the routine work in Machine Code
programming . ..

7 Loading and R11DDing
Machine Code

Running Machine Code isn't hard. Most of the problems come in
loading if (and debugging it, which is a topic worthy of a separate
book!). By writing suitable BASIC routines, a great deal of.effort can be
saved. The main aim of this chapter is to develop such routines. They
could be made quite elaborate, but I'd like to keep the listings reason
ably short so that we can concentrate on the main objective: the
Machine Code itself.

WHERE TO STORE MACHINE CODE

In principle you could put your code anywhere in RAM-but in prac
tice, as I said earlier, BASIC will clobber it if you put it in an area that
BASIC happens to be using.

One attractive answer-and the one that I will standardize on in this
book-is to use the 4K section of RAM between addresses 0l1II/J and
CFFF (49152-53247 decimal). This area is not used by BASIC, and it's a
safe place to put your code. (You may have noticed that your Sixty
four's much-heralded 64K of RAM miraculously becomes '38911
BASIC bytes free' when you switch the beast on: this 4K block of spare
RAM is one of the reasons.)

Another place that people often use for very short Machine Code
routines is the Cassette Buffer, 033C to 03FB (828-1019 decimal). That's
fine if you don't need to use the cassette; but it's not very good pro
gramming practice.

Another method-which you'll have to use if (heaven forfend!) you
have more than 4K of Machine Code-is to change the pointers that
determine the boundaries between memory areas. For instance, you can
move the top end of the BASIC area down, leaving free space which
BASIC can no longer get its grubby little hands on. See the Reference
Guide for details. In this book I'll stick to the area ~CFFF. I'll refer
to this as the standard space.

27

28

LOADING FROM A DATA STATEMENT

There's a very simple way to load Machine Code, which I used in
Chapter 1. It has several disadvantages, which I'll discuss in a moment;
but for short routines that you've already debugged and just want to
have hanging around ready to use, it's sometimes the simplest and
quickest solution. The idea is to incorporate the list of bytes to be loaded
into a DATA statement, and then POKE them into place using a loop.
For instance, we can load the 8-bit adder above like this:

10 DATA 7,5,0,24,173,0,192,109,1,192,141,2,192,96

20 FORT=0T013

30 READX

40 POKE 49152 + T, X

50 NEXT

The advantages are relatively obvious. The disadvantages include:

1. The need to convert codes from hex to decimal.
2. The occurrence of the Machine Code twice-once in its final

'loaded' locations, and again in the DATA statement. You're
wasting memory.

3. If the DATA list is at all long, it's easy to make a mistake when
keying it in.

4. It's hard to read a DATA list and see what it really means.

Now, some of these problems could be overcome if you used a DATA
list of hex codes, thought of as strings of length 2, and added some
program lines to convert these to decimal. You might like to think about
that idea.

However, with a little extra effort, we can develop a BASIC program
that will not only let us load Machine Code, but also list it out, change it,
and indeed run it. To this we tum.

Warning: make sure your cassette recorder is connected up (switch
the computer OFF first) before you go any further. There's a fairly
long typing job coming up, and you don't want to have to do it
again! In fact, you may prefer to type out all of the program lines
below before trying the program out; and SA VEing them to tape.

A HEX LOADER

I'm going to take the view that in Machine Code programming, any extra
information that you can get cheaply is worth having. So the program

will print out addresses and codes both in decimal and in hex. It will offer
you the option of where to put the code. And it will let you precede the
program area with a data area.

I'll give it to you piece by piece, to make it more comprehensible.
First, there's a menu:

90 PRINTCHR$(147)

100 PRINT "HEX LOADER: OPTIONS"

110 PRINT "L:LOAD P:PRINT

R:RUN S:STOP"

120 GOSUB 1300

130 IF Q$ = "L" THEN GO SUB 200

140 IF Q$ = "P" THEN GOSUB 800

150 IF Q$ = "E" THEN GOSUB 1000

160 IF Q$ = "R" THEN GOSUB 1200

170 IF Q$ = "Q" THEN STOP

180 GOTO 110

To go with this we need a little input routine:

1300 GET Q$: IF Q$ = " " THEN 1300

1310 RETURN

E:EDIT

The program has a lot of single-character inputs, and this method avoids
you having to type RETURN all over the place.

Now comes the load option:

200 PRINT "LOAD DATA AND PROGRAM"

210 PRINT "BASE ADDRESS IN DECIMAL

(DEFAULT 49152)"

220 INPUTBA

230 IF BA = 0 THEN BA = 49152

240 PRINT BA: PRINT

250 INPUT "NUMBER OF DATA BYTES"; D

260 AD=BA

270 PRINT: PRINT "TYPE CODE IN HEX"

280 PRINT "TYPE S TO STOP": PRINT

29

30

290 PRINT "HEXAD", "DECAD", "HEXCODE",

"DECCODE"

300 IF AD = BA AND D > o THEN PRINT "*DATA*"

310 IF AD = BA + D THEN PRINT "*PROGRAM*"

320 GOSUB 500

330 PRINT HA$, AD,

340 GOSUB 1300: H$ = Q$

350 PRINT H$;

360 IF H$ = "s" THEN RETURN

370 GOSUB 1300: L$ = Q$

380 PRINTL$,

390 GOSUB fJ/1IJ

400 PRINTDC

410 POKEAD,DC

420 AD=AD+ 1

430- GOTO 300

This involves a couple of hex/decimal code conversion routines, based
on the ones given in Chapter 2. The first is:

500 HA$= "":AM=AD

510 FORT=1T04

520 N = INT(AM/16)

530 M=AM-16*N

540 IFM>9THENM=M +7

550 HA$ = CHR$(48 + M) + HA$

560 AM=N

570 NEXT

580 RETURN

And here's the second:

600 H = ASC(H$): H = H - 48: IFH > 9 THEN H = H-7

610 L = ASC(L$): L = L - 48: IF L > 9 THEN L = L - 7

620 DC = 16 * H + L

630 RETURN

There's more to come, but now we'll take a look at:

HOW TO USE THE LOADER

As an example, I'll take the Machine Code program from Chapter 6
again: the 8-bit adder. Recall that this had three data bytes, and was
placed from address 0/1I1IJ onwards-the standard space. The complete
hex code for it is

f/f7 05 00 18 AD 00 C0 6D 01 C0 8D 02 C0 60
and we want LOADER to feed this into place.

RUN the LOADER program. The menu comes up: hit key L for the
load option. The program asks you for the base address in decimal, and
tells you the 'default' is our old favourite 49152 (the standard space in
decimal). If you type 0 or RETURN the program will automatically
assign this as the address at which the Machine Code will start. (If you
want any other start address, you input that instead-in decimal.)

You are now asked for the number of data bytes: this is 3, so input
that. The computer tells you to input the code in hex, and reminds you
that an input of S will stop the loading sequence.

It then types four column headings, which are abbreviations for Hex
Address, Decimal Address, Hex Code and Decimal Code. As a re
minder it tells you that you are about to input

* DATA *
The start address comes up in both hex and decimal:

Cf/1/1/J 49152

Press in tum the keys 0 and 7 for the first two hex digits of the Machine
Code. The screen now reads

Cf/1/1/J 49152 7

COOl 49153

and you can type in the next two hex digits 05. Keep typing the Machine
Code until you reach the 60 at the end. (You'll get a reminder when the
* PROGRAM * area is reached.) The bottom of the screen now reads

COOD

COOE
49165

49166

60 96

We've finished now, so type S. The program returns to the menu:
another S will stop the program.

LOADER works the same way on all other routines. First you tell it
the base address (or go for the default); then the number of data bytes (0
if there are none); and then you type in the hex codes in order, two digits
at a time, ending with an S when you've finished. The computer does the
rest, and you get a printout on the screen as you go.

31

32

THE PRINT OPTION

Since the screen scrolls as you type codes in, you only see the last twenty
or so at any given time. If you want to check the listing, you'll need to
print it out in single screenfuls* until you reach the bit you want. So
LOADER has a PRINT option to do just that:

800 PRINT CHR$(147); "PRINT A LISTING"

810 AD=BA

820 PRINT "HEXAD", "DECAD", "HEXCODE" ,

"DECCODE"

830 FORK=0T019

840 DC = PEEK(AD)

850 GOSUB700

860 GO SUB 500

870 PRINTHA$, AD, HC$, DC

880 AD=AD+1

890 NEXT

900 GOSUB 1300

910 IF Q$ = "S" THEN RETURN

920 GOT0820

Again there's a code conversion:

700 H = INT(DC/16): L = DC -16 * H

710 H = H + 48: IF H > 57 THEN H = H + 7

720 L = L + 48: IFL> 57 THEN L = L + 7

730 HC$ = CHR$(H) + CHR$(L)

740 RETURN

To use this, just press key P when the menu appears, and you'll get one
screenful of listing. Hit key S to stop, and any other key to get the next
screenful. (Note: if you use the P option after RUNning LOADER but
before setting the base address BA, the computer will assume it is 0. One
way round this snag is to add the line

805 IF BA = 0 THEN BA = 49152

getting the default option again.)

* Or is that 'screensful'?

RUNNING MACHINE CODE

That's easy. The BASIC command

SYS

does the job for you. To run the Machine Code routine starting at
address AD, you use

SYS(AD)

So our 8-bit adder, whose program part started at address 49155 (COO3 in
hex), can be run by the command

SYS(49155)

In general, we add a RUN routine to LOADER:

1200 PRINT: PRINT "RUNNING"

1210 PRINT "PRESS A KEY: S TO ABORT"

1220 GOSUB 1300

1230 IF Q$ = "S" THEN RETURN

1240 SYS(BA + D)

1250 PRINT: PRINT "PROGRAM EXECUTED": PRINT

1260 RETURN

Add these lines to LOADER: you're all set! Now:

1. Use the L option to load in the 8-bit adder code (if you haven't
already done so).

2. Use the P option to check that it's right.
3. Use the R option to RUN it.

The computer will wait for you to press a key (and you have the option
to press S and avoid a run if you've suddenly remembered some awful
mistake). Press something other than S.

Quick as a flash comes the message

PROGRAM EXECUTED

and the menu.
Fine, but where's the answer?

Well, recall that we stored the result of the addition in address COO2, that
is, 49154. You can check this very easily by using the P option to list out
the program again. You should see this entry for COO2:

0I1/f2 49154 0C 12

At the start, it was

49154 o

33

34

We told it to add 7 and 5, and it's done just that. And the answer, 12, has
been placed in address Cf/1/f2.

To see that this isn't just coincidence, you can modify the contents of
O/YI1/) and COOl and then see if Cf/1/f2 still ends up with the sum. One way is
to use the direct mode commands:

POKE 49152, 23 (say)

POKE 49253, 11 (say)

SYS(49155)

PRINT PEEK(49254)

You should now get the result 34, which is 23 + 11. Try repeating this
with different numbers (say less than 100) in place of23 and 11.

IMPORTANT WARNING

When you use SYS to run a Machine Code program, you must end it
with an

RTS

instruction (opcode 60, ReTurn from Subroutine) which in this case gets
you back into BASIC. If you don't, the computer keeps churning
merrily through memory, interpreting the garbage scattered therein as
bona fide Machine Code-well, the silly beast knows no better-and
carrying it out. The result is usually weird to say the least: it's not unusual
for the computer to gobble up its own program and commit the elec
tronic equivalent of hara-kiri.

In fact, it's not a bad idea to modify LOADER to tack on a final 60 to
anything you give it, just in case you forgot. (A spare one does no harm.)
Change line 36= to:

360 IFH$ = "S"THENPOKEAD, 96: RETURN

THE EDIT OPTION

To make testing easier-and to allow you to correct mistakes-we'll
add an editing routine to LOADER. It's extremely rudimentary: it just
lets you change the contents of an address, and repeat if you wish. For a
fancy editor (the Sixty-four's own BASIC editor, in fact) see Chapter 21.

1~ PRINT: PRINT "EDIT": PRINT

1010 INPUT "DECIMAL ADDRESS"; AD

1020 PRINT "NEW CONTENTS HEX"

1030 GOSUB 1300: H$ = Q$: PRINTH$;

1040 GOSUB 1300: L$ = Q$: PRINT L$

1050 GOSUB 6f/1IJ

1060 POKEAD,DC

1070 PRINT "MORE?"

1080 GOSUB 1300

1090 IF Q$ = "S" THEN RETURN

1100 GOTO 1010

Suppose you've done this. RUN, press option E, and input

49152 17

When asked

MORE?

hit RETURN and then input

49153 0B

Again you're asked

MORE?

but this time you stop by hitting

S

and get the menu back. Type R to run, then P to list out the result. Look
at address Cf/IIf2. It should contain 22(hex) and 34(decimal). Now 17 hex
is 23 decimal, 0B hex is 11 decimal, and 23 + 11 = 34. So it worked! You
can now edit in various other numbers, run, and print out the results.

SA VING MACHINE CODE

You can't save Machine Code to tape or disc as easily as you can with
BASIC. You'll need to write your own routines for doing this. One good
way is to use files-see the Reference Guide or Easy Programming,
Chapter 34. I'll give you some routines that you can add to the
LOADER program.

First you must extend the options:

115 PRINT "F:FILE I: INPUT"

172 IF Q$ = "F" THEN GOSUB 1500

174 IFQ$ = "I" THEN GOSUB 1700

35

36

Then add a routine to save data to a file:

1500 PRINT "MAKE SURE YOU HAVE THE RIGHT

TAPE"

1510 INPUT "NAME OF FILE"; F$

1520 OPEN 1, 1, 1, F$

1530 INPUT "BASE ADDRESS"; BA

1540 INPUT "LENGTH OF CODE"; LC

1550 FOR T = BA TO BA + LC - 1

1560 Y = PEEK(T)

1570 PRINT # 1, Y

1580 NEXT

1590 CLOSEI

1600 RETURN

If you have a disc drive instead of a cassette recorder, change line 1520 to
read

1520 OPEN 1, 8, 2, F$ + ", SEQ, W"

Now comes the input routine:

1700 INPUT "NAME OF FILE TO BE INPUT"; F$

1710 OPEN 1,1,0, F$

1720 INPUT "BASE ADDRESS"; BA

1730 INPUT "LENGTH OF CODE"; LC

1740 FORT= BATOBA + LC-l

1750 INPUT# 1, X

1760 POKET,X

1770 NEXT

1780 RETURN

Again, for a disc drive use

1710 OPEN 1, 8, 2, F$ + ", SEQ, R"

To use these, suppose you've loaded in 100 bytes of code starting at base
address 49152. By pressing option 'F' you can save the code to tape.
You'll need to have the cassette connected up, of course.

First you'll be asked for the name you want to give the file. Input the
name, say

FRED

The tape whirrs as the header block for the file is added to it. It stops.
You'll then be asked for the base address; input

49152

You can fancy up the program to use the same base address as the
loading routine did, but for flexibility it's worth being able to change
this. Next you're asked for the length of code (same remarks apply) and
you input

100
now the tape whirrs again: for a longish program you'll notice it stopping
and starting several times. (This is the result of the way the cassette
buffer works.)

To load it back, use option 'I' and repeat the same steps.

BEFORE GOING FURTHER

Save the finished version of LOADER on to cassette, using

SAVE "LOADER"

because we're going to use it from now on to load all of our
Machine Code programs.

MORE TESTS

You don't have to use LOADER to run the Machine Code. Plain
SYS(49155) will do that. So you can test the whole thing much more
quickly if you use a BASIC program:

2f/1/1/J PRINT "8-BIT ADDER: TEST ROUTINE"

2010 INPUT "CONTENTS OF CJIIII/J"; M

2020 INPUT "CONTENTS OF 0*)1"; N

2030 POKE 49152, M: POKE 49153, N

2040 SYS(49155)

2050 PRINT "CONTENTS OF Cf/1IJ2", PEEK(49154)

2fXj0 GOTO 2010

Now start with GOTO 2f/111/J and play around to your heart's content.

37

38

OVERFLOW

I said to use numbers less than 100. It pays to be suspicious of this sort of
cop-out. What happens if we ask LOADER's 8-bit adder to add 200 to
200? What answer do you expect?

What you get is 144. Has the machine gone crazy?
Not a bit of it. The problem, as I've emphasized all along, is that we

have built an 8-bit adder. Any carry digits that go into the ninth bit (256
onwards) are simply lost. Note that 144 + 256 = 400, the correct answer.
Remember the car trip-meter in Chapter 3? The same is happening here.

This phenomenon is called overflow. It's something that the pro
grammer has to take care of, if it matters. In fact, when I said above that
the carry digit is 'simply lost', that wasn't quite true. There's a slot in the
Processor Status Register that lets the computer check whether an
overflow occurred. The programmer can use this to take adequate steps
to keep the calculation on the right track. I mention it here only as a
warning, yet again, that Machine Code leaves most of the thinking up to
you.

-

C-In

Try putting a
mnemonic down

your back

When designing a Machine Code program,
something a little more tractable than
two-digit hex codes makes life a lot easier!

8 Assembly Language

If you're trying to write a Machine Code program, you've got enough to
think about without having to remember all those hexadecimal opcodes.
For instance, it's a lot easier to think 'Store the contents of the accumu
lator in memory' than it is to remember the opcode 8D. There is a
systematic set of mnemonics, used by programmers to do this. The
mnemonic for 'STore the contents of the Accumulator' is just:

STA

and that's a lot easier on the eye.
So the programmer generally works out his program in mnemonics,

and only after he's happy does he (or a special program called an
assembler) convert to hex opcodes. Programs written using mnemonics
are said to be in assembly language.

Here's the 8-bit adder in assembly language. First let's set up the
memory areas:

Cf/1I1IJ Data: first number

COOl Data: second number

Cf/1If2 Data: sum to be placed here

COO3 Start of program

Now the program:

CLC

LDA Cf/IIIIJ

ADC COOl

STA COO3

RTS

(CLear Carry flag)

(LoaD Accumulator from Cf/IIIIJ)

(ADd (with Carry) from COOl)

(STore Accumulator in COO3)

(ReTurn from Machine Code Subroutine)

Now that's a lot easier to follow-especially with a little practice!
What I'm going to do in this chapter is show you a series of simple

examples-programs for doing arithmetical operations that we can

39

40

check easily. I'll write them in mnemonics, explain what they're doing,
and convert them to hex. Your job is then to use LOADER to get them
into memory, run them, and check that they did the right thing. (Be
careful about the data bytes.) I'll save any systematic run-through of the
available mnemonics and their opcodes for later chapters.

SUBTRACTION

The mnemonic for 'SuBtract' is

SBC

The C on the end serves to remind us that any Carry digits left over from
previous arithmetical operations wiIi be treated as 'borrows' for the
purposes of subtraction. That's why the 'add' mnemonic is ADC, not
ADD: it too has a carry digit included. To avoid having to worry about
these borrows and carries, we adjust the carry before using ADC or
SBC. The only potential pitfall is that, while we should use CLC (CLear
Carry) before an ADC, the correct thing to use before an SBC is the new
instruction SEC (SEt Carry) with opcode 38. This is because the 6510's
Carry flag is a bit strange (see Chapter 10).

The program will work in exactly the same way as before: we'll store
the two numbers in Cf/1I1/J and COOl, and their difference in COO2. The
CPU will have to:

Set the Carry flag
Load the accumulator with the contents of Cf/1I1/J
Subtract from that the contents of COOl
Store the result in COO2
Return to BASIC

So, in assembly language mnemonics, we have:

SEC

LD A Cf/IIIIJ

SBC COOl

STA Cf/1IJ2

RTS

Now we convert to hex, using Appendix 4:

Assembly Hex

SEC 38 .
LDA 0lIII/J ADOO C0
SBC COOl ED 01 C0
STA 011/12 8D 02 C0
RTS 60

That's my bit done. Now comes yours: I want you to use this, together
with LOADER, to work out 114 - 75 (decimal). See if you can do this
on your own before reading on.

Here's the way I intended you to do it.
First, work out what 114 and 75 are in hex, using Appendix 1. They're

72 and 4B. Then use. the L option on LOADER to load data and
program into memory, with the standard base address (default value)
and 3 data bytes. The code to load in is data + program, in the order:

72 4B 00
I I

I
38 AD 00 C0 ED 01 C0 8D 02 C0 60
I I

I
data program

terminating with S to get back to the menu. Use P to check this went in
OK, and S to exit again; finally use R to run the Machine Code .and P to
find out what's in 011/12. If all's right with the world, it should be 39
decimal (27 hex).

TOTALLING A LIST

Using the same repertoire of commands, let's consider a similar prob
lem: totalling up a list of five numbers, stored in OlIII/J--C004, and putting
the result in COOS. The program itself will start at COO6. No sweat
here's the code in mnemonics, plus its translation into hex:

Assembly .Hex

CLC 18
LDA COO0 AD 00 C0
ADC COOl 6D 01 C0
ADC 011/12 6D 02 C0
ADC COO3 6D 03 C0
ADC C004 6D 04 C0
STA COOS 8D 05 C0
RTS 60

41

42

This time there will be 6 bytes of data: 5 for the numbers and 1 for the
total. Use LOADER to load the whole lot in, with your own choice of
numbers to add up, but recall that any total over 255 will have some
missed carry digits. I suggest you keep all your numbers below 50
decimal (32 hex) to avoid running into trouble.

A 16-BIT QUIRK

You may have spotted a pattern to the way the addresses are inserted
into the opcodes for LDA, ADC, SBC and STA. For instance, when I
wanted to store the accumulator in Coo5, the opcode was like this:

STA Coo5 8D 0.5 C0
TTL-------'l+ t

The second and third bytes of the opcode are the two address bytes
but in the reverse order.

This is an inviolable rule for the 6510. Whenever an opcode includes a
two-byte address, those two bytes are in the opposite order to the way
they occur in the address. That is:

Junior byte first, senior byte second.
It's no problem once you get used to it, but you do have to be careful.

ADDING WITH A CARRY

Now let's see how to deal with Carries, and write a l6-bit (2-byte) adder.
The data area will look like this:

C000 First number, junior byte
1--------;

COOl First number, senior byte

0I1/J2 Second number, junior byte

C003 Second number, senior byte

C004 Sum, junior byte

COOS Sum, senior byte

CIl06 c=J Program starts here

The main steps will be:

Clear Carry flag
Load accumulator with junior byte of first number

Add junior byte of second number
Store result in junior byte of sum
DO NOT CLEAR CARRY FLAG THIS TIME
Repeat process for senior bytes

By failing to Clear the Carry, we ensure that any Carry digit resulting
from the first addition is included in the second.

Here it is in assembly language and hex:

CLC 18

LDA Cf1II/J ADOOC0

ADCOI1/J2, 6Df/f2C0

STAC004 8D 04 C0

LDAC001 AD01C0

ADCC003 6D03C0

STAC005 8D05C0

RTS 60

Load this with six data bytes, and test it. For instance, to add 30669
(decimal) to 17391 (decimal) we convert these to hex, getting 77CD and
43EF. So we need to put these bytes into data (and zeros in the re
maining two data slots) like this:

Address

Cf1II/J
COOl
0/1lJ2
C003
COO4
COOS

Rotate left
one bit ...

Contents

CD
77
EF
43
00
00

Rotate right
one bit...

Is this a
program, or a

new dance craze?

43

When we run the program, we get the result:

C004
C005

BC

BB

And BBBC (hex) is 48060 (decimal), which is correct.
Try adding another CLC command in the program, after the first

STA. Now you'll find we get BABC as the answer, which is 47804. This
is 256 too small-and the missing Carry digit is the culprit! .

Even though we've taken care of this Carry, there's yet another Carry
that will occur if the total goes over 65535 (FFFF hex), and the current
program loses this. (You could think about enlarging the data area by
one more byte at COO6, to store the final Carry-if any. HINT: if you
ADC # 00 to 00 the result is the Carry digit.) We'll see just how the Carry
works when we consider flags in Chapter 10.

HALVING

Things that use tens are usually easy in decimal; and things tp.at use twos
are correspondingly easy in binary or hex.

Think decimal for a moment-if you still can! How do you divide 3710
(say) by 10? Of course, you knock off the last digit, to get 371. This
method also works pretty well on a number like 3716: exact division
gives 371.6, and if you're prepared to omit everything after the decimal
point (round down) you get 371, which again has just had the right -hand
digit lopped off.

In other words, the number is rotated one place to the right, with the
rightmost digit falling off the end, like this:

6 Oops!

That 0 I've put on the front is harmless; it just keeps the slots tidy. "
What decimal does with tens, binary does with twos. So in binary we

can divide by two-that is, halve a number-by rotating its digits one
place to the right. (If the original number is odd, the extra '12 on the end,

44

which is binary .1, gets lost in the wash.) Let's just check that on the
number 242 (decimal), which is l11l0010in binary. Here we go:

242 decimal

121 decimal

The result is 01111001, or 121 decimal: spot on!
There is" a 6510 instruction 'Rotate accumulator right' whose

mnemonic is

ROR (ROtate Right)

with opcode 6A. If there is a Carry digit left over from a previous
operation, this gets moved to the leftmost bit (and the one that I've said
'falls off actually ends up in the Carry slot):

Accumulator

Sometimes you want this to happen; but if not, a nifty bit of CLC will
soon sort it out.

As an example, let's store a number in C000 and put half of it (omitting
a spare Ih"ifit's odd) into C00l:

CLC 18

LDAC000 AD00C0

ROR 6A

STAC001 8D01 C0

RTS 60

Load this with two data bytes, and test it.
45

DOUBLING

To double a number, we rotate it to the left. With overwhelming gener
osity, the designers of the 6510 have provided us with two different ways
to do this. Only the effect on Carries varies. The ~t is:

ROL (ROtate Left, opcode 2A)

, Accuniulator

The other one is:

ASL (Arithmetic Shift Left, opcode 0A)

Accumulator

Put 0 on end

Lost

46

To double a I-byte number (less than 128 to avoid Carry problems) held
in Cf/1IIIJ, and put the result in COOl, we do:

LDA Cf/II1IJ
ASL

STAa1bl

RTS

ADOOC0

0A

8D01C0

60

(No need for a CLC this time-why?) Load this using two data bytes,
and see that it does the job.

However, to double a 16-bit (2-byte) number we use ASL on the
junior byte and ROL on the senior, because we want the first Carry to
shift up:

In the usual fashion, I'll put the number in C~O~l and store its
double in COOZ-C003 (junior byte first, then senior). The code is:

LDAO/I/11J ADOOC0

ASL 0A

STACOOZ SD02C0

LDACOOl AD01C0

ROL 2A

STAC003 SD03C0

RTS 60

Load this using 4 data bytes, and test it in the usual way.

ANOTHER SHIFf COMMAND

There's one more command in this general order of ideas, which goes
with ROR in the same way that ASL goes with ROL. It is:

LSR (Logical Shift Right)

and, like ROR, it does a right shift; but it puts a zero into bit 7. It thus
halves an individual byte without having to Clear the Carry first.

Accumulator
Put zero on end

Lost

47

48

Now look, I did say I wasn't always going
to tell the whole truth . ..

9 Addressing Modes

The 6510 is a more versatile beast than I have hitherto led you to believe.
Many of its instructions can be used in several different ways-called
addressing modes-each with its own opcode. It depends on what
distinctions you choose to make, just how you count them: I make it 12
different addressing modes altogether, though some people manage to
get 13 by being more prepared to split hairs.

The easiest way to see what's going on is by examples. Let me take our
old friends LDA and STA to begin with.

IMMEDIATE ADDRESSING

You use this to put a specific number into the accumulator (or to operate
using a number). Thus, to load 70 (hex) into the accumulator,.you use:

LDA#7D A97D·

This is a 2-byte opcode. The first byte, A9, tells the computer 'Load
accumulator in immediate mode'. It now knows that the next byte, 70,
is the number to be loaded.

The # sign (often pronounced 'hash') in the mnemonic reminds the
programmer that it is the number 7~, not an address of the form 70,
that's involved. The symbol # is used for 'number' in the USA in the
same way that Europeans use 'No.' or 'nO'.

STA can't be used in immediate mode; and if you think about it, this
should be pretty obvious. The only place you can store something is in an
address.

ABSOLUTE (NON-ZERO PAGE) ADDRESSING

This is the LDA we've been using happily all along. It loads the accumu
lator with the contents of the address specified by the next two bytes of
code (in the order junior: senior). Thus to load the accumulator from
(that is, with the contents o/the address) C051, we use

LDA C051 AD 51 C0

Similarly to store the contents of the accumulator in the address C051 we
use

STA C051 80 51 C0

So AO tells the computer 'LOA in absolute mode'; and 80 tells it 'STA
in absolute mode'.

The third byte in the opcode is the senior byte of the address; and
you'll recall from Chapter 4 that this is the page number. It should be
non-zero in this mode, because there's a special way to address page
zero-known, curiously enough, as ...

ZERO-PAGE ADDRESSING

If you want to use absolute addressing on page 00 (addresses ~OOFF
hex, 0-255 decimal) you may omit the 00 senior byte. But, the opcode
changes. For example, to LOA from address OOB6 in page zero, you use:

LOA B6 A5 B6

I I : 2nd byte of address on page 00
L... ------I~ opcode for zero-page absolute

addressing

And to STA from address OOB6 you would use:

STA B6 85 B6

Page zero is particularly useful when (as is not the case!) you start with a
'naked' 6510, because the omission of the superfluous 00 byte saves
RAM space. The people who wrote the Commodore 64's operating
system know this-and the rotten pigs have hogged almost all of page
zero! However, they have left us mere mortals a miserable four token
bytes on page zero, at the addresses:

OOFB
OOFC
OOFD
OOFE

If you want to use page zero, and still have BASIC intact, you should
shove everything into these.

IMPLIED AND ACCUMULATOR ADDRESSING

Some operations don't involve anything except the accumulator-and
some don't even involve that! Examples of the first type are (one

49

50

possible mode of) ROR and ROL. To rotate the accumulator to the
right you use plain:

ROR 6A

with no extra bytes in the opcode for addresses or numbers.
An example of the second is:

RTS 60
which we've used to return to BASIC. (More generally, it lets us return
from any subroutine to the main program. See Chapter 15.)

As far as this book is concerned, both of these modes with no extra
bytes will be considered 'implied addressing'. That is, the 'addressing'
mode without an address!

OTHER MODES

The remaining eight modes are somewhat more complicated. They are:
indirect and relative addressing (which I'll describe in Chapter 11 on
branching and jumps) and six indexed modes (Chapters 13 and 14 on
indexing and indirection). Appendix 4 gives all the possible modes for
each instruction, together with the corresponding opcodes. Note that
many instructions use only one or two modes, and no instruction uses
them all.

AN EXAMPLE

Here's a simple example using all four of the modes explained so far. It's
a bit contrived, but it should clarify any remaining problems.

1. Think of a number, say 43 decimal, 2B hex; store it in 00FB on page
zero.

2. Double it. (Note that it's still in the accumulator too: STA places a
copy in the desired place, but leaves the original intact.)

3. Add 17 decimal, 11 hex.
4. Place the result in CJ/JI1IJ, not on page zeto.

Addressing mode Mnemonic Opcode Number of
bytes

Implied CLC 18 1
Immediate LDA#2B A9 2B 2
Zero page STA FB 85 FB 2
Implied ROL 2A 1
Immediate ADC#l1 69 11 2
Absolute (non-zero) STA Cf/IIIIJ 8D 00 C0 3
Implied RTS 60 1

(If you decide to test it out, remember to use one data byte Cf/1/IIJ before
the program area.)

Notice how the format of the mnemonics makes it clear which mode is
involved:

Implied: CLC (no extras)

Zero page: LDA FB (one extra byte)

Immediate: LDA #2B (# plus one extra byte)

Absolute: STA Cf/1/IIJ (two extra bytes C0 and 00)

The other eight modes still to come have their own formats too. Note
that the format of the mnemonic is of interest only to the programmer:
the computer only worries about the opcode. You can invent your own
system of mnemonics if you wish. However, the mnemonics recom
mended by the manufacturers of the 6510 are an industry standard, so
(a) you'll find it easier to read other people's code if you stick to the
standard ones; (b) other peopie will find it easier to read yours; and (c) if
you buy an assembler program it will almost certainly use the standard
formats.

The mnemonics used in this book are non-standard in one respect. It
is usual to add the symbol $ to the front of any hex number: that is, to
write:

$F7

instead of plain:

F7

I've taken the point of view here that it is easier just to standardize on
hex throughout (avoiding potential nasties confusing hex with decimal);
anyway, I have enough trouble hanging on to my dollars without scatter
ing them blithely about in program listings! However, you should note
that on occasion the dollar signs are mandatory (for instance, in most
commercial assembler programs). You have been warned!

C-I:rl

She's a-dressed
in the latest

mode

51

52

A flexible program must be able to behave
in different ways under different conditions.
The 6510 keeps a permanent record of the
important conditions, and how they are
affected by the most recent operation, by
setting digits of the Processor Status Register.

10 Flags

An absolutely fundamental technique in computing, which goes back at
least to ideas of Charles Babbage in about 1830, is to make the flow of
calculation branch according to certain conditions. The IF/THEN
command in BASIC performs this function.

For example, consider 'clock addition', with a 12-hour clock. Here 1
o'clock + 7 hours = 8 o'clock, as normal; but 9 o'clock + 7 hours = 4
o'clock, not 16 o'clock! You don't just add up the numbers. The flow of
calculation goes like this:

M = Time now

N = Number of hours to be added

no

yes
. Fonn M + N - 12

Store result

Note that we use 12 o'clock, not 0 o'clock! In BASIC you'd do it this
way:

10 LET M = whatever

20 LET N = whatever else

30 S=M+N

40 IFS< = 12 THEN 60

50 S = S -12

60 PRINTS

I've deliberately used a 'GOTO' approach here-albeit with a tacit use
of GOTO-rather than a more 'structured' one, because it gives the
clues for Machine Code, which is very far from being 'structured'!

THE PROCESSOR STATUS REGISTER

The crucial problem in branching is to decide whether a given number
(here M + N - 12) is positive, zero or negative. That's where the
P-register, whose pretentious name decorates this section, comes in. So
I'm going to stop dodging the issue, and tell you what it does.

Each individual bit out of the eight bits in the.P-register is used as a
flag. That is, the digit is either:

or
set
reset

(to 1)
(to 0)

depending on whether some desirable condition does or does not hold at
the time. Most operations change this pattern of flags: for a summary see
Appendix 5.

Actually, there are only seven flags in the P-registet:. because one bit is
'reserved for future expansion', which is a delicate way of saying 'we
couldn't decide what to do with it'. And some of these seven aren't of
much interest to any but hardware buffs. So it's not too bad.

The flags are arranged like this:

not used
NV!BDIZC

I I I I I I I I I
Taking them in a convenient (jumbled) order, I'll say what they do:

Z: ZeroOag

This is set to 1 if the result of an arithmetical or logical operation is 0; and
reset to 0 if the result is non-zero. (A minor curiosity: if the result is zero

53

54

then the flag isn't zero, and vice versa. Computing can drive you mad
mad, I tell you! The point is that a digit 1 in a flag means 'wave the flag'
and says 'the desired event has occurred'; and here the desired event is
zero.)

N: Sign flag

If the result of an arithmetical operation is negative, this is set to 1; if
positive or zero, it is reset to 0.

Well, that's what it should do. Unfortunately, that's not entirely true!
It is true if you are thinking of an 8-bit number as a 7-bit number

together with a sign bit, as I explained in Chapter 3. That is, if your
numbering system goes:

0, 1,2, ... , 126, 127

but then switches to:

-128, -127, -126, ... , -3, -2,-1

instead of continuing from 128 up to 255.
So what it really does is teII you what the leftmost bit of the result is.

(Bytes from 0 to 127 start 0something; the rest start 1something.) I'II
postpone further discussion until we have a need for it.

C: Carry flag

If addition or subtraction results in a Carry (or Borrow) digit, then the
Carry flag signals this event in its own peculiar fashion:

1. On an ADC instruction, if the result goes over 255, so there is a
Carry digit, then the Carry flag is set to 1. If not, it is reset to 0.

2. On an SBC instruction, if the result goes below 0, giving a Borrow
digit, then the Carry flag is reset to 0. If there is no Borrow then the
Carry flag is set to 1.

You'r6 beginning to understand why I didn't reaIIy want to say too much
about the flags, right?

c-,.~o

The main thing is to keep a clear head. The Carry flag tells you what
happened, either way; but you have to remember how to interpret what
it tells you, depending on whether you've added or subtracted. Here's a
little table to help (it assumes you have M in the accumulator and add or
subtract a byte N):

Operation Result in Status of Carry flag
accumulator

ADC M+N o ifM + N < = 255
(omit Carry) 1 if M + N > = 256

SBC M-N 1 if M- N> = 0 (N < = M)
(omit Borrow) 0ifM-N<0(N)M)

This is on the understanding that M and N are thought of as unsigned
8-bit numbers between 0 and 255, as usual.

So between them, the C and Z flags will tell you whether M and N are
equal, or M < N, or M > N, when M and N are between 0 and 255.

In fact, the C and Z flags (occasionally augmented by the N flag) are
the only ones you're likely to want to use unless you get really serious.
But, for completeness, here's a quick run-down of the other four.

V: Overflow flag

If you're doing arithmetic thinking of an 8-bit number as a signed 7-bit
number (-128 to 127 again, right?) this is kind of like the Carry flag in
ordinary 8-bit arithmetic. If the answer goes outside the range -128 to
127, the V flag is set to 1.

It can also be set from outside by suitable circuitry, and used for
totally different purposes.

D: Decimal mode flag

There is another type of arithmetic called binary coded decimal (BCD).
What this does is represent a decimal number digit by digit in hex. For
instance:

34125476

is represented by the bytes:

34 12 54 76

But, of course, if you did arithmetic treating this as a valid hex number,
you'd get into a terrible mess: for instance, the Carrying rules in BCD
are quite different.

55

56

Nonetheless, BCD is sometimes used because of its direct relationship
to decimal. Many pocket calculators use it, for example. If the D flag is
set to 1, the 6510 will treat all arithmetic as if it were BCD arithmetic.

When you switch your computer on, the D flag is automatically reset
to 0. I suggest you leave it that way!

I: Interrupt mask flag

Interrupts are how external devices communicate with the CPU. If the I
flag is set to 1, interrupts are disabled (can't happen); if reset to 0, they
are enabled (can happen).

B: Break status flag

This is set to 1 by the BRK (software break) instruction. At that point
the CPU stops working and waits for outside help. It's very useful in the
organization of the whole computer, but of little interest to us.

COMMANDS THAT AFFECT FLAGS DIRECTLY

There are some commands that let you Clear a flag to 0 or set it to 1,
without doing anything else. They are:

CLC
CLD
CLI
CLV

18
D8
58
B8

CLearCflag
CLear D flag
CLear I flag
CLear V flag

SEC
SED
SEI

All are I-byte opc?des, implied addressing only.

38
F8
78

SEt C flag
SEt Dflag
SEt I flag

Now that we know what the flags do, we
can take a look at how to use them to
control how a program branches: This
introduces a new addressing mode, called
relative addressing.

II Branching and Jumps

I mentioned earlier that there's a delightfully simple way to make the
program jump from one instruction to another. The PC-register (Pro
gram Counter; not to be confused with the P-register, which holds the
flags) holds the address of the next instruction to be obeyed. By altering
that address, you can fool the PC into redirecting the entire flow of
calculation to some totally different command.

You can't get at the PC-register directly; but you can produce the
required changes by using a whole string of branching commands: BCC,
BCS, BEQ, BMI, BNE, BPL, BVC, BVS. Each of these tells the
computer to look at one of the flags, see what it is, and depending on
that, to bump the PC up or down by a suitable amount-thereby shifting
control to the new instruction.

BEQ

Th~y all work in the same way, so once you've understood one, the
others are easy-except for the little matter of flag-handling. I'll start
with BEQ because that's especially straightforward. The mnemonic
stands for 'Branch if EQual' but what it really does is branch if the Zero
flag is set.

It has a 2-byte opcode. The first byte is F0. The second byte is a
displacement. It is treated as a signed binary number (seven bits plus sign

It's the
Animal Farm

opcode

Branch If Some
are More Equal

Than Others

57

digit) ranging from -128 ~o 127. We've met this idea before, but this is
the place where we have to face it head on. A positive displacement tells
the PC-register 'move so many places ahead' and a negative displace
ment tells it 'move so many places back'. I'll explain this more carefully
after we've seen an example.

Suppose we have two numbers stored in Cf/1/1/J and COOl, and we want
to see whether they are equal. If they are, we'll put the number EE in
address Cf/1/f2. If not, we'll put 00 there instead. Here's how we do it.

SEC 38

LOA Cf/1I1IJ AOooC0 Get first number M

SBCC001 E001C0 Subtract second number N

BEQskip F006 Branch to skip if M - N is zero

LOA #00 A900
} Otherwise store 00

STA Cf/1/f2 80 f/f2 C0

RTS 60 Back to BASIC

skip: LOA#EE A9EE Ifwe're here, M - N was zero

STA Cf/1/f2 80 f/f2 C0 Store EE instead of 00

RTS 60 Back to BASIC

First let's see how it works. The first few instructions we've seen before.
When we get to the BEQ instruction, the computer looks at the Zero
flag. If this is set to 1 (which means that the last operation that changed
the flag resulted in a zero-namely the SBC operation) then the Pro
gram Counter should be increased by 6. (That's the 2nd byte 06 in the
opcode-the displacement.)

Suppose we'd started with M and N (in Cf/1/1/J and COOl) equal: say
both were 7B (hex). Then the result of the subtraction would indeed be
zero (provided the Carry was cleared, as it was), so this branch would
occur.

At the time the BEQ instruction is being thought about, the PC
register has its beady eye on the next instruction in sequence, which is
LOA #00, beginning with the opcode byte A9. Now it gets the
message: 'move ahead 6 more bytes'. So it counts down the program
from that A9, getting

(A9)
I

00

1

80 f/f2

2 3

C0 60 §2J
4 5 6

which is the start of the LOA # EE instruction (at the line marked skip).
So the computer now carries out that instruction next. That stores EE in
address Cf/1/f2 and then returns to BASIC.

On the other hand, supposeM and Nwere different, sayM = 7B, N =
C3. Then the Zero flag would not have been set by the SBC command;

58

so the BEQ would have told the computer not to branch. This would
have left the PC pointing to the next command in the list, LDA#DD.
Continuing from there, the computer would have stored DD in 0/1/12
and then returned to BASIC. (Note that each part of the branch needs
its own RTS. It's what the computer actually carries out, not what else is
floating around in the program listing, that counts. If you missed out the
RTS in the 'not equal to Zero' branch, the program would just carry on
to skip and keep going-and you'd end up with EE in 0/1/12, willy-nilly.)

RELATIVE BRANCHING

Now let me say more about the way to calculate the correct displacement
byte in a branching command. I've underlined it above: it was 06. Why?

Consider how the program bytes go into memory (see Figure 11.1).

C000 data
COOl data
C0f/J2 data
C003 38
C004 AD
C005 01
C006 C0
O/I/fl ED
COOS f/J2
Cf/1/1) C0

CooA F0 c I BEQ opcode I
CooB 06 c I displacement byte I

.... 00
c::

COOC A9 I where the PC is pointing 1
0

01 0
(,) CooD DD
.... f/J2 c:: CooE 8D
Q) 03 E
Q) 04 (,)
CI:l 05
0..

CooF f/J2 I size of displacement, 061
C010 C0
C011 60

'" :.a 06 C012 A9 i where the PC should move to 1

C013 EE
C014 8D
C015 f/J2
C016 C0
C017 60

L--- --........
Figure 11.1

59

60

That's how it works for a positive displacement. For a negative one,
you do the same thing, still starting from the place the PC would have
gone to (the command immediately after the BEQ and the displacement
byte), but now you count backwards:

-1, -2, -3, ...

until you get to the byte that contains the start of the opcode you want.
However, you still have to take the resulting negative number and
convert it into a 2's complement signed binary number, and thence to
hex. Fortunately Appendix 1 does this for you.

For instance, to branch 37 bytes backwards, you look up -37 in the
Appendix, and get DB. This would be the displacement byte. Figure
11.2 gives a general picture:

<!-

~ F0 <!-

~ ? <!-

branch command

displacement code

where PC would h avegone~ ~ <!-

Figure 11.2

<!-

<!-

<!-

size of

displacement

to be coded

as "?"

-128

-3

-2

-1

0
1

·2

3

127

80 .

FD

FE

FF

f/1/J

01

f/J2

03

7F

t
2's

complement

hex code

As a convention, I'll underline all relative jump displacements in
Machine Code listings.

You're all sitting there thinking, 'But what do I do if I want to branch
more than 127 bytes?' Basically, you have to do it in several short hops;
or you can use the JMP command to be explained below. The answer in
practice is that by the time you're'writing programs that need such big
displacements, you won't need me to help you figure it out anyway.

LABELS

When you're writing the program, you don't want to go through all. this
rigmarole. Instead, what you do is leave a blank where the displacement
should go (I prefer an underline since that reminds you a byte is missing)
until you've written all the parts of the program. Then go back to that
blank, count bytes using the opcodes, and fill it in. (Note that it is the
number of bytes, not the number of instructions, that goes into the
displacement. Since opcodes have different lengths, the simplest sol
ution is to count the actual bytes.)

To identify the instructions that you want to branch to, you use labels:
short, snappy names like skip, loop5, and so on. Label the instruction
down the left, as shown, and refer to it in the mnemonic at the place
where the displacement would go. For instance:

BEQ skip

skip: LDA#EE

A good assembler will let you use the labels, and compute the relative
displacements automatically.

OTHER KINDS OF BRANCH

The other branching commands work in exactly the same way, using
relative addressing (the displacement byte). The only difference is which
flags they look at and how they react. Here's the full list, with opcodes in
brackets:.

Bee
Bes
BEQ
BNE
BMI
BPL
Bve
BVS

(90)
(B0)
(F0)
(D0)
(30)
(10)
(50)
(70)

Branch if Carry Clear:
Branch if Carry Set:
Branch if EQual (to zero):
Branch if Not Equal (to zero):
Branch if MInus:
Branch if PLus:
Branch if oVerflow Clear:
Branch if oVerflow Set:

if the C flag is 0
if the C flag is 1
if the Z flag is 1
if the Z flag is 0
if the N flag is 1
if the N flag is 0
if the V flag is 0
if the V flag is 1

61

62

Each has a 2-byte opcode: the byte shown, plus the displacement. Since
they can only be used in one addressing mode (relative) no special
format is required in their mnemonics.

TESTING THE SIGN

As one example of the use of branching, I'll write down a program that
will let you test what I said earlier about the Nand C flags. The basic idea
will be a problem that one often encounters in a program: given two
I-byte unsigned numbers (0-255), say M and N, decide whether M > N
or not.

I'll put the two numbers M and N in C000 and C00l as usual. In C002
I'll put a little flag of my own: 0 if M - N is negative, 1 if M - N is
positive. You'll see why in a moment.

Here's the code:

neg:

SEC

LD A Cf/I/1/J

SBCC00I

BCCneg

LDA#l

STAC002

RTS

LDA#0

STA C0f/f2

RTS

CLC
ASL FO
ROL FE

38

AD00C0

ED0lC0

9006

A90l

8D f/f2 C0

60

A900

8D f/f2 C0

60

LOA FB
AOC~5

PLP

I~8

Relative jump displacement

None of your
Assembly Language

in.!!lY. house, if
you pleasel

Load this in, with 3 data bytes; but this time don't run it. Break the
LOADER program using the S option; and write a BASIC routine that
will make it easy to test lots of possibilities:

5f/1/11J INPUT "M, N"; M, N

5010 PRINTM; "-"; N;" IS ". ,

5(/120 POKE 49152, M

5030 POKE 49153, N

5040 SYS(49155)

5050 X = PEEK(49154)

5060 IF X = 1 THEN PRINT "POSITIVE"

5f/f70 IF X = o THEN PRINT "NEGATIVE"

5080 GOT05f/1/11J

This loops indefinitely, and lets you test any pair M, N you like. How
ever, they must be between 0 and 255.

Start with GOTO 5f/1/11J and see what happens. Does it make sense? It
should do. Note that the machine treats M - M, a zero answer, as being
negative. So the Carry flag is reset to 0 on a zero answer.

Now let's see what would happen if you did the 'obvious' and used not
BCC, but BMI (Branch if MInus). Change the BCC line to:

BMI neg 30 06
and use the E option on LOADER to do it (good practice!). If you now
try the BASIC routine at 5f/1/11J, all will appear well when you use
numbers like 100 - 68, which the computer does consider to be positive.
But try doing 130 - 1. The machine steadfastly insists that this is
negative. What it's done is treat 130 as a signed number, namely -126.
Then -126 - 1 = - 127 which indeed is negative.

Moral: if you're thinking 0--255, use BCC and BCS, not BMI and
BPL.

JUMPS

There's a different way to change the PC-register (and hence move to
another instruction), the JuMP command

IMP (opcode 4C)

It is normally used in Absolute mode, that is, followed by a 2-byte
address. This address is the address of the instruction you want carried

63

64

out next: it is simply shoved into the PC. For instance, here's a program
that uses JMP to hop over an irrelevant area of memory:

CVI/IIJ
COOl

C1FD

C1FE

r----C1FF

jump

elsewhere

C2J/1IJ

CFFF

D~
D001

DEF7

~}vwom~~~~
4C JMP elsewhere

f/IIJ } To the instruction in D000
D0

Irrelevant junk

Carry on from here

}More pro~ lin~
B or whatever the end is

In the mnemonic you usually use a label:

JMP elsewhere

but you can also just put the address:

JMP D~

There's one other mode for the lMP instruction-indirect mode. See
Chapter 14.

Using branch instructions, you can
set up the Machine Code equivalent
of a BASIC FOR/NEXT loop. As usual,
you have to think it through carefully
yourself

12 Looping

Suppose you want the program to carry out a given task several times,
and then stop. In BASIC you'd use a FOR/NEXT loop; in Machine
Code you have to build one for yourself. If you've ever tried writing a
GOTO version of a FOR/NEXT loop (so that you can jump out of the
loop without leaving extraneous junk lying around in the machine)
you'll have got the idea already. Here are two ways to loop in BASIC:

10 FORK = 1 T07 10 K=1

20 PRINT "HELLO" 20 PRINT "HELLO"

30 NEXTK 30 K=K+1

40 IFK< = 7 THEN 20

In the second version we use K as a loop counter. Each time round the
loop, K is incremented by 1, until the test at line 40 finally fails, in which
case we exit the loop. And this is exactly what you have to do in Machine
Code.

A good example, with our present state of knowledge, is a program
that will multiply two 8-bit numbers, giving a 16-bit result, by using
repeated addition-for example:

17 x 6 = 17 + 17 + 17 + 17 + 17 + 17 = 102
I I

(decimal)
I

6 times

This is not an efficient way to do the job, but it should adequately
illustrate how to set up a loop. There are some slick tricks to improve on
what we'll end up with, but for now I'd prefer to be simple-minded.

The two numbers to be multiplied will be stored in Cf/I/1/J and COOL
The second should be non-zero. The answer will go into C002-C003 as a
2-byte number (junior: senior). I'll need C004 to act as a loop counter;
and C002-C003 can store the total as it builds up, as well as the answer.

65

66

So that's 5 data bytes. Here's the program:

LDA#00 A900

} Set running total to zero STAOII/12 BD02C0

STAC003 BD03C0

STAC004 BD04C0 Set counter to zero

INC COOl EE01C0
Minor adjustment for correct
number of loops

loop: CLC 1B

LDAC002 AD02C0

ADCC000 6D00C0

STAC002 BD02C0 . Junior byte of running total

LDAC003 AD03C0

ADC#00 6900 Senior byte may have Carry
to be added in

STAC003 BD03C0

INCC004 EE04C0 Increment counter (add 1 to it)

CLC 1B

LDAC001 AD 01 C0 Put second number in
accumulator

SBCC004 ED04C0 See if counter equals it

BNEloop D0E2 Branch back if not

RTS 60 Otherwise exit loop

There is a backwards relative branch of -30 from BNE loop, under-
lined. (In signed arithmetic, -30 is E2 hex. See Appendix 1.)

INCREMENT AND DECREMENT

You'll have noticed a new instruction:

INC (INCrement)

This can be used to increase the contents of a memory location by 1. Its
opcodes are:

EE (Non-zero page absolute)

E6 (Zero-page)

plus two indexed versions (see Chapter 13). TIlere is a corresponding
command:

DEC (DECrement)

which subtracts 1, with opcodes:

CE (Non-zero page absolute)

C6 (Zero-page)

Both commands 'wrap around' ignoring any Carries (except that they
set suitable flags), so that:

255 + 1 = 0 0 - 1 = 255

as far as these operations are concerned.

COMPARE

In the above example we decided when to end the loop by subtracting
the counter from the number qf loops required and using the result to
control a branch. That's not strictly necessary. Some bright spark
noticed that what you often want to do is to take a decision based on
what the flags would have been if you'd carried out the subtraction
without actually doing it. So he invented the CoMPare instruction:

CMP (opcodes C9, CD, C5 respectively for immediate,
absolute, and zero-page addressing)

What this does is to set the flags exactly as if you'd used SBC, but leave
the contents of the accumulator intact. This is a very smart idea: you
only need the flags to take the decision, and you'd often prefer not to
muck up the accumulator.

For example, in the routine above, we can replace the SBC COO4
instruction by:

CMPCOO4 CD04C0

It doesn't actually shorten the code in this particular case, but we'll see
examples later where it most certainly does. In any case, it's a more
civilized approach to the whole game; and in conjunction with indexing
(Chapter 13) leads to much more efficient programs.

THE INDEX REGISTERS

Speaking of indexing ... I haven't yet given you any uses for the index
registers. If they're not being used for more esoteric purposes (Chapter
13 again) they're perfect for use as loop. counters. They're already there
inside the 6510 chip, so there's no need to fiddle about with LDA and
STA and suchlike; and there's a whole host of instructions that affect
them directly, so that you can bypass the accumulator a lot of the time.

67

68

As I mentioned, there are two index registers, X and Y. Each is a
I-byte register. The relevant instructions come in X, Y pairs too. You
can look up the opcodes and the addressing modes that are available in
Appendix 4; I'll quickly run through the instructions (which are very
similar to the ones we've seen before, but using the X or Y registers in
place of the accumulator):

LDX,LDY:

INX,INY:

DEX,DEY:

STX, STY:

CPX,CPY:

LoaD a byte into X or Y

INcrement X or Y

DEcrement X or Y

STore contents of X or Y in memory

ComPare X or Y register with a selected byte.
This can be thought of as follows: subtract the
selected byte from what's in the X-register (or
Y -register), setthe flags accordingly, and then
forget what the result of the subtraction was

The increment, decrement and compare commands are what make
these registers into excellent loop counters. Let's rewrite the above
program using the X-register as loop counter.

This time we only need four data bytes: Cf/1/1/J and COOl for the two
numbers M and N to be multiplied; and O/I/12-Cf/11f3 to store the junior:
senior bytes of the answer. It goes like this:

LDA#00 A900 Initialize

STAO/I/f2 SD f/f2 C0

STAC003 SD 03 C0

LDXC001 AE0l C0 Put N into index

loop: CLC IS

LDAOl1lf2 AD f/f2 C0

ADC Cf/1/1/J 6D00C0

STAO/I/f2 SD f/f2 C0

LDAC003 AD 03 C0

ADC#00 6900

STAC003 SD 03 C0

Very similar so far. But now the denouement comes much more
abruptly:

DEX

CPX#OO

BNEloop

RTS

CA

E000

D0E9

60

Decrement index

Compare with zero

Branch if not equal

The E9 in the BNE is the displacement: it's actually -23.

69

70

To move systematically through a block
of memory, or run through a sequence
of addresses in turn, here's the very
thing you want:

13 Indexing

Suppose you want to copy a section of memory into some other section.
For example, you may wish to move a Machine Code program from our
standard Cf/1/1IJ starting-point to some other place, or put a pre-prepared
display on the screen while saving the old one. As a specific example,
suppose you want to copy the contents of page CE on to page CF. Then
you've got to start at CE00, .load it into the accumulator, store that into
CF00, then repeat on CE01 and CF01 , and so on.

This is delightfully repetitive and, therefore, just what a computer
ought to be able to do backwards, before breakfast, while standing on its
head and whistling, 'The Foggy Foggy Dew'. Unfortunately, this is not
the case, with our current repertoire of instructions. We as yet have no
way to modify the address part of an opcode.

Well, that's not quite true. We could simply store a new byte in
memory at the right place in the program-'rewriting' the address byte
in the opcode while the program is running. This is called a self
modifying program. Those went out with the Ark; and quite right too,
because it's hard to debug a program that won't sit still. (I recall the same
problem with my Aunt Matilda's poodle.) If running the program
changes the listing, then whatever caused the bug may be long gone. The
Wonderful Self-Erasing Bug is an absolute pig to deal with, and even
Sherlock Holmes would shudder at the very thought.

INDEXED ADDRESSING

In indexed addressing you don't actually change the address bytes in the
opcode; but you do change their meaning. The idea is to use them to
specify a base address, where a block of codes starts; and to use an index
to say how much further the CPU should move in order to reach the
address we really want. Again, it's a I-byte displacement; butthis time in
the range 0-255 rather than the -128 to 127 for branching. And it goes
not in the opcode, but in one ofthe index registers X or Y. This gives you
exactly one page worth of freedom in what you can address (although
you can cross page boundaries without trouble-other than a slight

slowing down that's only of interest to an electronic engineer). Here's
the basic picture:

IINDEX=oo

l change
index
value

I INDEX = 06

I INDEX = 08

!

I

I
I

~ BASE ADDRESS

~ BASE ADDRESS + 6

~ BASE ADDRESS + 8

There are folir variants (which for the purposes of this book I'm
considering as distinct addressing modes, otherwise Appendix 3 would
get all muddled): X-register or Y-register in combination with zero or
non-zero page base address. The opcodes are in Appendix 4. In fact a
base address on page zero isn't much use to us: it would only allow us
access to addresses on pages 0 and 1 which, as I've said already, have
been snaffled by the gentlemen who designed the operating system.
(Page 1 is, of all things, the stack to which the SP-register points.) So the
only modes that we really care about are the two non-zero page modes:
one for X and one for Y. At this level there's no essential difference
between X and Y: mostly I'll use X.

TRANSFERRING A PAGE OF MEMORY

For starters, here's a program that solves the problem we opened
with-transfer page CE to CF:

LDX#oo A200

loop: LDA CEoo, X BO 00 CE

STA CFf/1/J, X 9000 CF

INX E8

CPX#oo E000

BNEloop

RTS

00FS

60
(-11 displacement)

Note the fonnat of the mnemonics using indexed addressing:

LD A (two base address bytes), X

71

72

to say we're using the X-register as index. (for zero-page, you use the
same thing but omitting the 00 page number byte from the base address.)

The way the index works is this. The command:

LDA CEoo, X

tells the computer 'add the contents of X to CEoo and load the accumu
lator from that address'. So as X runs through 0,1,2, ... the accumulator
gets loaded with successive bytes from page CEo Similarly:

STA CFoo, X

tells it 'add the contents of X to CFoo and store the accumulator at that
address'.

All indexing works in this way: add the index to the base address to get
the actual address that will be used.

One other point to note: the use of CPX #00 to test for the end of the
loop. The point is that we increment X before testing; so on the first run,
X holds 1 at the time it gets tested; then 2,3, ... ,255. On the final (256th)
run through the loop, the INX bumps it up from 255 to 256, but that
wraps around to give 0 (the Carry bit falls off) so the loop ends at that
stage. The way I-byte addition wraps around from 255 to 0 is really quite
useful sometimes-just don't forget it, or you'll be amazed at what some
of your programs will do!

To test this routine, feed it in using LOADER; then take option S.
Type in the following BASIC program:

5000 FOR T = 0 TO 255

5010 POKE 52736 + T, T: POKE 52992 + T, 119

5f/J20 NEXT

This fills pageCE with 0, 1,2, ... ,255 in order; andCFwith 119 (77 hex).
(See below for a Machine Code way to do this.) Then we run the
Machine Code:

5030 S~S(49152)

and then take another look at page CF:

5040 FOR T = 0 TO 255

5050 PRINTPEEK(52992 + T),

5060 NEXT

Run this using GOTO 5000. For future reference, notice how long it
takes for BASIC to carry out lines 5000-5f/J20. It's slow. ~ ou'll find that
page CF has switched to 0,1,2, ... ,255, just as I claimed.

Note that, as I remarked obscurely above, you don't have to start
indexing at the top of a page. The base address can be any (2-byte)
address, so the block you're working with can straddle the boundary
between consecutive pages.

FILLING A PAGE WITH DATA

I used BASIC to POKE things to pages CE and CF above (and re
marked on how slow it is: about 5-10 seconds in fact). That's because I
thought you'd trust BASIC more than my Machine Code. When testing
something, it's wise only to use stuff that you know is OK. But Machine
Code can set up the data in pages CE and CF quickly and easily.

To fill page"CF with 77s (hex) we do this:

LDX#OO A200

LDA#77 A977

loop: STACFOO,X 9DOOCF

INX ES

CPX#OO E000

BNEloop D0FS

RTS 60

To fill CE with 0, 1,2, ... ,255 we use a variant:

LDX#OO A200

loop: TXA SA

STACEOO,X 9DOOCE

INX ES

CPX#OO E000

BNEloop D0F7

RTS 60

Note the new instruction:

TXA (opcode SA) Transfer X-register to Accumulator

which copies X into A (but leaves X intact). There are some similar
instructions involving the X, Y, and A registers:

TAX
TYA
TAY

(opcodeAA)
(opcode9S)
(opcodeAS)

Transfer Accumulator to X-register
Transfer Y -register to Accumulator
Transfer Accumulator to V-register

You can't do the obvious and replace:

TXA

STACEOO,X

73

74

by

STXCEOO,X

because there ain't no such animal. You can't use X-indexed mode to
play games with X itself. (The prospect of the X-register eating its own
tail is such a frightening one that the 6510 refuses to contemplate it.)

SEVERAL PAGES

If you want to transfer (or set up) more than 256 bytes of data, you have
three alternatives:

1. Cheat. If it's only two or three pages, repeat the program two or
three times in a row with different page numbers.

2. Write a self-modifying program in which the program byte that
holds the page number is changed by an STA instruction, and loop
it. Now I don't recommend this, but there may be occasions when
it's worth doing, even if it is considered bad style.

Suppose you want to fill pages C4 to CF with the byte 77. (This is
typical-though not with byte 77-of various 'initialization' routines,
and we'll encounter a similar problem in Chapter 20.) That's twelve
pages of memory. Here's a self-modifying routine to do it, using the
program above to set up each page, and another loop controlled by the
Y -register to deal with the twelve pages. The program starts at Cf/1/1/J, the
standard space:

LDY#C4 A0C4

LDX#OO A200

LDA#77 A977

loop: STAC4OO,X 9DOOC4 ~pagebyte

INX E8

CPX#OO E000

BNEloop D0F8

!NY C8

STY pagebyte 8C08C0 (see below)

CPY#D0 C0D0

BNEloop D0F0

RTS 60

By counting from Cf/1/1/J we see that the page byte we want to modify is
stored in address COOS. Hence the double-underlined part of the op
code. The BNE displacements are -8 and -16 respectively.

If you've got this far you'll find it easy enough to run this and test it
(using a suitable BASIC program to look at the memory area between
pages C4 and CF, namely 50176-53247 in decimal). So I'll leave that as
an exercise for you.

To drive home the point about self-modifying programs, however, try
changing the first line of the routine to the erroneous:

LDY#BF A0BF

and then pretend you don't know this mistake has occurred.
Now run it. It doesn't work, of course. So you want to list out your

program ready for a debugging session. What has happened to the
offending byte?

Well, first, you may have some trouble getting the program to break
when it gets stuck. And then you'll find that the bug has overwritten its
own program area with 77s!

3. There's a third (and much better) way, using 'Indexed Indirect
Addressing'. That's what the next chapter is about.

75

76

The final group of addressing modes lets
you leave a message at one address saying
'don't use this address, use the one 'I'm
going to tell you now'. It's the
treasure-hunt principle applied to
addressing.

14 Indirection

In a treasure-hunt, you have to follow a series of clues. Each clue tells
you where to find the next clue. Indirect addressing is much the same
but the process is only carried out once. You specify an address in the
opcode. This is not the address to be used in the final operation; it is the
place where that address may be found.

For example, suppose addresses 00FB and 00FC contain the bytes 37
and CD respectively. The command 'store the accumulator indirectly
through 00FB' would have the same effect as 'store the accumulator in
address CD37'. The address in the opcode, 00FB, contains the junior
byte of the actual address; and the next byte, 00FC, contains the senior
byte of the actual address. Like this:

Memory Address

J, J,

00FB junior byte

00FC senior byte

VJ111.'!1111J.'1fU1.f1ll1l.'!1111J.'1ll14 CD37

Why bother to go through this rigmarole, when you can perfectly well
store the accumulator in CD37 directly? The answer is that we can easily
put instructions in the program that change the contents of 00FB-00FC,
and hence change the address that we store stuff in. However, we don't
have the danger of a self-modifying program, because 00FB-00FC are
part of the data area, not the program area. (They're not in the usual
place we put data, but there's a good reason for that: see below.) So,

from within the program we can redirect the contents of the accumulator
to any place we wish in the entire 64K of RAM.

If you think it's a bit complicated, you'll no doubt be pleased to hear
that this is the simple version of what's going on. There's also an indexed
version-in fact, the indexing can be done in two different ways! But to
begin with, I'll eliminate the role of the index by setting the relevant
register to zero. Only when we've seen what pure unadulterated in
direction can do, will I add indexing too.

FILLING SEVERAL PAGES WITH DATA

Let's go back to the problem of filling pages C4 to CF with the byte 77.
The idea is to load 77 into the accumulator, and store it indirectly
through 00FB-00FC. A loop will make the contents of these two bytes
run through the desired addresses C400-CFFF in tum.

Accumulator

77

Varying 00FB (junior)
r-------------~

address bytes 00FC (senior)

77 C400

77 C401

1
77 CFFF

It's no coincidence that I've used a zero-page intermediate address
00FB-00FC. I had to. Indirection is only available through a zero-page
intermediary. The bytes that specify the final destination must go in page
zero. {That does not mean the final destination itself has to be on page

77

78

zero: just the 'ciue' that tells you where it really is.) As we saw earlier,
this means that the only safe intermediaries are OOFB-OOFE, so kindly
left for us by the designers of the operating system. (Thank you, Sirs
and/or Ma'ams-we really do appreciate the thought.)

Here's the code:

LDA#OO A900

STAFB 85FB } set indirect address to
LDA#C4 A9C4 bottom of area

STAFC 85FC

LDY#OO A000 ignore indexing feature

loop: LDA#77 A977
indirection through

STA(FB), Y 91FB OOFB ignore role of Y

CLC 18 here

INCFB E6FB

LDAFB ASFB
increment 2-byte

CMP#OO C900 intermediate address

BNEskip D002

INCFC E6FC

skip: LDA#OO A900

} test junior byte CMPFB C5FB

BNEloop D0EB

LDA#D0 A9D0

} test senior byte CMPFC C5FC

BNEloop D0E5

RTS 60

Note that we test for an end at D., rather than CFFF, because the
address is incremented before the test. So the loop deals with CFFF
increments to get D000, and then stops. It's very easy to loop once too
few or once too many, so it's wise to check if you can, and think out just
what happens at the start and the end.

POST-INDEXED INDIRECTION

The Y attached to the opcode STA (FB), Y above means that we're
using what's called post-indexed indirection. That means that the con
tents of the Y -register are added to the 'destination' address specified by

the intermediary. For instance, with the above addresses', and 05 in the
Y-register, everything looks like this:

37 00FB

CD

Accumulator

CD37

+1 CD38

+2 CD39

05 I~
+3 CD3A

Y-register index +4 CD38

value
+5 CD3C

By using this we can get a more efficient program: leave 00FB at zero,
and increment the Y -register instead to run through a page; then in
crement the page number in 00FC. The resulting code is:

LDA#00 A900

STAFB 85FB

LDA#C4 A9C4

STAFC 85FC

loop1: LDA#77 A977

LDY#00 A000

loop2: STA(FB), Y 91FB

INY C8

CPY#00 C000

BNEloop2 D0F9

79

80

INCFC E6FC

LDAFC A5FC

CMP#D0 C9D0

BNEloopl D0ED

RTS 60

This is ten bytes shorter, a 25% reduction in length.
Note the fonnat of the opcode:

STA(FB), y f------- indexed by Y

l ~ comma

1'-_________ brackets for indirection

'---------- one-byte (page 0) address

This amazing process is known as post-indexed indirection because the
indirection is done first, and then the index is added to the destination
address. There is also:

PRE-INDEXED INDIRECTION

This uses the X-register, and the index is added to the address byte
before the indirection is done-that is, to the intennediate address
. specified in the opcode. So the position of the intermediary ticks up one
space if the X-registerindex is incremented. The opcode format reminds
us that it is the X-register and that it is added to the intermediate
address-for example:

STA(FB,X)

I'd love to make a big song and dance about how wonderful pre
indexed indirection is (because it's a smart idea with a lot of clever uses).
But . . . usual snag, this time compounded.' Since the position of the
intennediate address moves around in page zero, we need plenty of
spare space on that page to put ,our indirect addresses into. All we have is

YY~.~'J
Y ,

Y'

I'm sure it's extremely versatile,
Molesworthy; but I don't think

the world is ready for
pre· indirected . post· indexed·

inter· indirectional . indirectly·
posted - indecisive adpressing

C -IG ~

four miserable bytes. So the only time it's worth using pre-indexed
indirection is if we're doing pure indirection on one address (set index to
zero and leave it there); or we want to hop around between two possible
alternatives (flip index from f/1/J to 02 and back again-02 because they're
two-byte addresses). In consequence, I'll say no more about it.

pre-indexed indirection

through 00FB

add

Accumulator

02
X-register

-

STRAIGHT INDIRECTION

37

CD

FF

CD

ignored

00FB " '\
·00FC \

\
.00FD \

00FE

I
I I

I I
I I

I I

It-'"

\
\
\

\

The final addressing mode that uses indirection is available only on the
JMP instruction, and it's pure-and-simple indirection with no fancy
indices. For instance:

JMP(C0DE)

means 'look at address C0DE and take that as the junior byte of a
two-byte address; use the next byte C0DF as the senior byte; jump to the
address so formed' .

It's the Machine Code equivalent to BASIC's ON ... GOTO, for those
who've encountered this. The idea is to store a list of possible addresses

Rl

82

you'd like to jump to; shovel the rightone into C0DE-C0DF, and use
that to direct the jump. I won't give an example here; but you might
consider a routine that has to branch seven different ways depending on
whether address 0/1I1IJ holds the number 1, 2, 3,4, 5, 6 or 7; with the
actual addresses stored in the next 14 bytes (in junior: senior pairs).

A subroutine is a jump with a variable
return address-it remembers where it
jumped from. The details are controlled
by the machine stack, which can also be used
for temporary storage.

15 Stacks and Subroutines

In BASIC, you can use subroutines to structure programs into nice,
manageable chunks. This makes them easier to write, and easier to
debug. Let's remind ourselves how they work. The subroutine is called
using the command GOSUB followed by its line number in BASIC. The
effect is just like a GOTO, except that the machine 'remembers' the line
number that it jumped from. At the end ofthe subroutine, the command
RETURN tells it to jump back, to the line immediately following the
one it came from. So the same subroutine can be called from different
places, and all the returns will be handled correctly. Moreover, you can
call a subroutine from within another subroutine. Indeed a subroutine
may call itself, a technique known as recursive programming.

It's much the same in Machine Code, but using the actual addresses of
the instructions in place of their line numbers (because they don't have
any). The analogue of GOSUB is:

JSR (opcode 20) Jump to SubRoutine

which must be followed by a 2-byte absolute address-the address to be
jumped to. The analogue of RETURN is:

RTS (opcode 60) ReTurn from Subroutine

which we've seen already: it's the mandatory 'return to BASIC' ending
of all our Machine Code routines. (In fact the Sixty-four treats our
Machine Code routine as if it were a subroutine in its enormous BASIC
operating system program, which is why we have to return in this way.)

THE MACHINE STACK

How do these work? The 'jump' part is handled in much the same way as
an ordinary jump, JMP: the new address is inserted into the two bytes of
the PC-register, fooling the 6510 into looking at a different area of
program memory. But if that were all that was happening, JSR would be
the same as JMP. So JSR performs a second function: it stores the
address of the instruction that follows the JSR, so that when an RTS is
encountered, this address can be recovered from storage and popped

83

back into the PC to continue the main program where it left off. This is
done by using a stack.

A stack is a segment of memory with a fixed 'bottom' and a variable
top. (In the Sixty-four, the machine stack is always page 1.) The stack
pointer, or SP-register, holds the address ofthe top; it is called a pointer
because that's what it does, like this:

-
SP~ free

last item

bottom

Extra items can be pushed on to the stack by moving SP up one and
putting the new item in memory; and they can be pulled off the stack by
reducing the SP by one. (It's not actually necessary to delete the pulled
item from memory: the stack routines ignore anything above the SP.)
For example:

~ r------ ~

00 SP~ 00 00
SP~ 00 XX SP~ XX

CC CC CC

BB BB BB

AA AA AA

original push XX pull

In fact the SP points to the first unused location.

PUSH AND PULL

Although the JSR instruction takes care of all this pushing and pulling
for you, there are some commands that let you deal with the stack
directly. They're quite useful, too: you can push something you want to
remember temporarily, then pull it when you need it. The only thing to
watch out for is that you haven't pushed something else on top! The
instructions are:

PHA (opcode 48)

PLA (opcode 68)

PusH Accumulator on to stack

PulL Accumulator from stack

which store and re~all the accumulator contents; and:
84

PHP (opcode 08)

PLP (opcode 28)

PusH P-register on to stack

PulL P-register from stack

which do the same for all the flags.
Stacks work on the principle 'last in, first out'. Imagine a pile of books

on a desk. PHA means 'add a book to the top of the pile'; and PLA
means (in effect) 'take a book off the top'. So if you PHA three items in
tum:

PHA 'Robinson Crusoe'

PHA 'Ulysses'

PHA 'Gorky Park'

then to get them off in the right order, you need:

PLA 'Gorky Park'

PLA 'Ulysses'

PLA 'Robinson Crusoe'

HOW A SUBROUTINE USES THE STACK

Subroutines push their return addresses on to the stack, and pull them
off when an RTS is encountered. Because addresses occupy two bytes,
they push and pull in two-byte chunks. (The senior byte is pushed first
and pulled last, but we're not likely to care either way.) However, if
you've been using the stack during a subroutine, make sure that you've
pulled off everything that was pushed on, otherwise you'll return to the
wrong address. This also applies to the final 'return to BASIC': don't
leave junk on the stack.

No, it W2!il run
the "Thriller"

Videol

••
Here's an example. The CPU has just read the instruction:

JSR CB03

and has moved its PC on to the next instruction at C048:
85

86

PC-register

~--~~--~--~~~~~
senior junior

J0FB

J0FC

J0FD

J0FE

J0FF

SP-register

FD

t--------;

I--------l

m."rTTTTTTTTlrTTTTTTTTlTTrnm

~HlHHlHf#HHIH'I#f.!

Machine stack
(Page J of RAM)

.- -

JSRCB03

next?

.- --.....- -

RTS

.....- --

C045

C046
C047

CB03

CB04

CB0S

CB06

CB07

Subroutine

Now it takes the two bytes from the PC and pushes them on to the stack;
moves the SP to the new 'top' address; and places CB03 in the PC, to
make the program jump to the subroutine:

pe;:-register

CB 03

senior junior

SP-register

FB

J0FB

J0FC

J0FD

J0FE

J0FF

JSRCB03

1-------1

RTS

C045

C046
C047

~

CB03

CB04

CB05

CB06

CB07

Subroutine

The CPU then steps through the subroutine until it reaches the RTS. At
this point, the PC is pulled off the stack (resetting the SP again) and
control is back inside the main program:

PC-register

C0 48 ~
senior junior

SP-register

FD

10FB
1-------1

10FC (48) junk
1------'----1

10FD
m,.,.1777Tl'TTTT7TTTTTl777Tlm

10FE
ffffh'Hffl'HfHHl+hIfHH'ffd

10FF

Stack

-
JSRCB03

continue

./" ----....- -

RTS

--

C045

C046

C047

C048

CB03

CB04

CB05

CB06

CB07

Subroutine

I repeat that all of this is done automatically. But you ought to find it
easier to understand how to use subroutines, and what can go wrong if
you tinker with the stack, if you know exactly what's going on.

AN EXAMPLE

As an example of the use of subroutines, I'll write a routine that goes
through a page of memory, and replaces all bytes that are not within a
certain range (say 48-57 decimal, the ASCII codes for the digits 0-9), by
a specified byte (say 32, ASCII for 'space'). We'll have four data bytes:

Cf/1/1/J Page number to be used

COOl Byte to be placed if out of range

011112 Bottom of range

COO] Top of range, plus 1

87

88

The subroutine will carry out the task 'replace the byte by 32'. It turns
out (after writing the code)' that this will start at address Cf/f29. The main
program starts at C004:

LDA Cf/1/IIJ AD f/1tJC0

STAFC 85FC load start of page

LDA#f/1tJ A9f/1tJ into f/1tJFB-f/1tJFC
ready for

STAFB 85FB indirection

LDY#f/1tJ A0f/1tJ

loop: SEC 38

LDA(FB), Y BIFB

} see if byte below range CMPO/1IJ2 CD f/f2C0

BCSskipl B003

JSRchange 2029C0 subroutine: calculate
address later

skip1: SEC 38

} See if byte above range CMPCf/1tJ3 CD03C0

BCCskip2 9003

JSRchange 2029C0
Second use of
subroutine

skip2: INY C8

CPY#f/1tJ C0 f/1tJ

BNEloop D0E7 Relative jump by -25

RTS 60 Back to BASIC

When you're actually writing this, you don't know what the subroutine
address will be, so you can't fill it in in the JSRs. Put two underlines, and
fill them in later. (Use two so that the BNE displacement count is easy to
make correctly.) Now we count up, and find that the next free address is
Cf/f29. So we write the subroutine:

change: LDACf/1tJl AD01C0

STA(FB), Y 91FB Indirection

RTS 60 Back to main program

To test this out, write a BASIC routine to fill page CF with random
bytes. Then load it with data bytes:

CF 32 48 58

and run it. Check that only bytes in the range 48-57 are left: all others
have become 32.

A more dramatic way to use this routine will. appear in the next
chapter, on the screen display. You'll be able to see the bytes change!

The display that you see on your monitor
is produced using information stored in
two areas of memory. By changing the
contents of these areas, you can play
tricks with the screen.

16 Screen and Colour Control

If you've read Easy Programming, Chapter 19 you'll know most of
what's needed as regards the organization of the Screen and Colour
Memory areas; but in case you haven't, I'll remind us all here. The
screen display consists of 25 rows, each holding 40 characters. The rows
are numbered 0-24, and the columns 0-39. That makes 1~ characters
altogether:

1\124_

111&4
11~

1144
1184
1224
1284

13~ A
d 1344

d 1384

r 142'
e 1484
5 15114
S 1544

1584
1624
1684

17~

1744
1784
1624
1664

1~
1944
1984

Column number __ _

111111111122222222223333333333
8123456789812345678901234567890123456789

t
2023

SCREEN MEMORY

8
1.

2

4
5
6 R
7 0

w

n
10 U
11 m
12 b
13 e
I. r

15 ~ 16
17
16
19
28
21

22
23
24

The memory area that specifies the characters is called the Screen
Memory or Video RAM, and it runs from address 1024 to 2023 decimal
(04f/1/J-f/J7E7 hex). Since the computer's memory has no natural rect
angular structure, everything is laid out in order as a single long line of
addresses. The addresses run along the rows, and move down a row only
when the row ends, going back to the first column just as you do when

89

90

you read a book. So the hex addresses for Screen Memory correspond to
these positions on the screen:

0400 0401 0402
0428 0429 042A

(/flC0 (/flCI (/flC2

0427

044F

f/f7E7

In general, the address for row R, column C, is (in decimal):

1024 + 40 * R + C

and to display a given character at this position we need only store the
correct byte in this address.

The code required is not ASCII: it is the code listed in Appendix E of
the Manual, page 132. With a few exceptions this is ASCII minus 64 for
the alphabet, ASCIi minus 32 for graphics, and plain old ASCII (how
uninventive!) for the digits 0-9.

OK, let's give it a whirl. To display a round ball graphics character in
row 12, column 20, we first calculate the address. It is:

1024 + 40 * 12 + 20 = 1524 (05F4 hex)

The code for a round ball is 81 according to Appendix E of the Manual,
which is 51 hex. So we should use the following Machine Code routine:

LDA#51

STA05F4

RTS

A951

8DF405

60

Load this, but instead of running it, use a BASIC routine:

5000 PRINT CHR$(147)

5010 S1{S(49152)

5020 GOT05020

This starts us out with a nice clear screen, and avoids messy error
messages until we break. Try it out, and check that it works. (On some
early versions of the Sixty-four's ROM, it appears not to; but if you
change the background colour by POKE 53281, 7 you'll see the ball. It
just got printed in the same colour as the background.)

LINES OF CHARACTERS

Try out this routine, in the same way:

LDA#04 A904

STAFC 85FC

LDA#7B A97B

STAFB 85FB

LDX#12 A212

LDY#f/I/J A0f/I/J

loop: LDA#51 A951

STA(FB), Y 91FB

CLC 18

LDAFB A5FB

ADC#28 6928

STAFB 85FB

LDAFC A5FC

ADC#f/I/J 69 f/I/J

STAFC 85FC

DEX CA

CPX#f/I/J E0 f/I/J

BNEloop 'D0EA

RTS 60

This runs through a loop, with X as loop counter, and uses indirection to
store the byte 51 in a series of addresses that are 28 hex apart-that is, 40
decimal. In other words, it increases the row number but leaves the
column fixed. The result is a vertical line of blobs. The start address is
047B, which is row 3 column 3.

If you change the ADC #28 to:

ADC#29 6929

you'll get a diagonal row, because 29 hex is 41 decimal which adds 40 (1
to row number) plus 1 (1 to column number). If instead you try:

ADC#01 6901

you get a horizontal line. To get a diagonal line going downwards to the
left, you might expect to use:

ADC#27 6927

Try it. Does it work? Well, sort of. What's the problem? Wrap-around!
91

92

COLOUR MEMORY

The screen colours are held in Colour Memory or Colour RAM. This is
just like Screen Memory as regards its structure; but it runs from 55296
to 56295 decimal (0 __ 03FF hex). The colour codes are the usual ones
on the Sixty-four:

Black 00
White 01
Red 02
Cyan 03
Purple 04
Green 05
Blue 06
Yellow Vfl
O~ange 08
Brown 09
Light red 0A
Oarkgrey 0B
Medium grey 0C
Light green 00
Light blue 0E
Light grey 0F

The codes in Colour RAM give the foreground (ink) colour. To set the
background and border colours you store the corresponding bytes in
addresses 53281, 53280 respectively (0021, 0020).

You can adapt the routine above so that it makes colour 'changes
instead of printing blobs. Change LOA #04 to:

LOA #00 A900

and LOA #51 to:

LOA #Vfl A9 Vfl

for yellow characters. To make the result show up, use this BASIC
program:

5000 PRINTCHR$(147)

5010 FOR T = 1 TO 24

5020 PRINT "* *** * * ***** * ** * ***** * * * * *** * ** ** ** * * ****";
5030 NEXT

5040 SYS(49152)

5050 GOTO 5050

HOW YOUR APPETITE WAS WHETTED

We can now go back and take a look at the routine that I used to
introduce Machine Code in Chapter 1. The first step is to disassemble it:
translate from hex into mnemonics. You'll find Appendix 6 very useful
for this: it lists all the opcodes in numerical order, with their addressing
modes. The result is:

LDX#OO A200

LDAC0 00 ADOOC0

store: STA0400,X 9DOO04

INX E8

CPX#OO E000

BEQend F003

JMPstore 4C06C0

end: RTS 60

There is one data byte at Cf/1/IlJ which starts out at 00 but is modified by
POKEs later.

What this routine does is to fill page 04 with the byte specified in CfI1I1/J.
Now page 04 is the start of Screen Memory; so you see a block of screen
change to a single character. The rest of the BASIC makes random
changes to the byte concerned every time you hit a key; and uses POKEs
to alter the page number-first through Screen Memory, then through
Colour Memory. Notice how quickly this simple Machine Code pro
gram achieves these effects.

DIGIT SIEVE

Now, as promised in the previous chapter, I'll write a routine that uses
the screen to display the effect of a program that runs through a block of
memory (here the Screen RAM) changing all bytes outside a selected
range to a specific byte. You may like to guess just what its effect will be,
before you try it out!

There are four data bytes in OIIl1/J-O/I/J3: the page number (04), the
byte to be inserted (20), the lower limit of bytes not to be changed (30), .
and the upper limit (3A). The code is: .

LDAC000

STAFC

LDA#OO

STAFB

ADOOC0

85FC

A900

85FB

93

94

LDY#f/1/J A0f/1/J

loop: SEC 38

LDA(FB), Y B1FB

CMPO/1/f2 CD 02 C0

BCS skip1 B003

JSRchange 2031 C0

skip1: SEC 38

CMPCf/1/J3 CD03C0

BCCskip2 9003

JSRchange 2031 C0
skip2: !NY C8

CPY#f/1/J C0 f/1/J

BNEloop D0E7

INCFC E6FC

LDAFC A5FC

CMP#08 C908

BNEloop D0DF

RTS 60

change: LDACf/1/J1 AD01C0

STA (FB), Y 91FB

RTS 60

This is just like the example at the end of the previous chapter, except
that instead of going through a single page, it goes through pages 04-07.
That's the Screen Memory, plus a 'harmless' area from 07E8 to 07FF
which includes the sprite data pointers. So, provided we're not using
sprites, no trouble arises. If we are, then the test for the end of the loop
has to be modified and is a little more complicated (test FB and FC).

What this routine does is eliminate from the screen display any
character that is not a digit 0, 1, ... , 9. That's because it replaces any
character code not in the range 48-57 (decimal) by a space (32 decimal).
To see it in action, we need to set up an interesting screen:

50f/1/J PRINT CHR$(147);

5010 FOR T = 1 TO 999

5020 PRINT CHR$(40 + JNT(80 * RND(0)));

5030 NEXT

5040 GET A$: IF A$ = " "THEN 5040

5050 Sl'S(49156)

5060 GOTO 5060

Wait till the screen fills, then hit a key. Wham!
For an interesting variation, replace lines 5050 and 5060 by:

5050 FOR K = 120 TO 49 STEP -1

5060 POKE 49155, K

5VJ70 Sl'S(49156)

5080 NEXT

5090 GOT05'11J0

For yet another variation, use this last version, but add:

5005 POKE 49153,83

which changes one data byte. This is a Valentine's day message, and a
sad one: 'I gave you my heart and you left me with nothing.' Try it and
you'll see what 1 mean!

SCREEN INVERTER

If you add 128 decimal to the contents of an address in Screen Memory,
the corresponding character changes to 'inverse video'; that is, the
foreground and background colours interchange. By looping through
the whole Screen Memory area, you can switch the entire display to
inverse video in a flash:

LDX#04 A204

LDA#04 A904

STAFC 85FC

LDA#oo A900

STAFB 85FB

LDl'#oo A000

loop: CLC 18

LDA (FB), l' BIFB

ADC#80 6980 80 hex = 128 decimal

STA(FB), l' 91FB

!NY" C8

CPl'#oo C000

BNEloop D0F4
9S

96

INCFC E6FC

DEX CA

SEC 38

CPX#f/1IJ E0 f/1IJ

BNEloop D0EC

RTS 60

If you change the initial LDX #04 to LDX #01 or LDX #f/J2 or LDX
#03 then only the first 1, 2, or J pages of screen will invert. Here's a
BASIC routine to illustrate the program's speed:

5VI/IIJ PRINT CHR$(147);

5010 FOR T = 1 TO 24

5f/J20 PRINT "1111222233334444555566667777888899990f/11J0";

5030 NEXT

5040 GET A$: IF A$ = " " THEN 5040

5050 IF A$ = "S" THEN STOP

5060 S~S(49152)

5f/f70 GOT05040

This fills the screen with characters, and inverts every time you hit a key
(other than-S which stops the program).

PRINT AT

Another useful routine is a 'PRINT AT R, C' command, which lets you
print a given character in a given row and column. Ordinary Sixty-four
BASIC lacks this command; but you can obtain the same effect by
cursor control. Let's write a Machine Code routine instead. (Actually,
there's one in ROM already, which you can use-see Chapter 21-but
it's instructive to write your own.) The idea is to compute 1f/J24 + 40 * R
+ C and use indirection. In fact, the + C is done by indexing.

How do you multiply by 40 in Machine Code? A loop that adds 40
times would work, but it's slow. Instead, we shift left three times, getting
8 * R; remember that; shift left twice more to get 32 * R; then add 8 * R
+ 32 * R to get 40 * R. Easy!

There will be three data bytes: the screen code of the character to be
printed, the row number, and the column number. These go in Cf/I/1/j
OII/J2 as usual. I suggest you use:

51 0A 0F

for a first test.

LDA#OO
A900 }

STAFE 85 FE

LDACOOI
store R in FD-FE

AD01C0

STAFD 85FD

CLC 18

ASLFD 06FD

ROLFE 26 FE

ASLFD 06FD 'quick and dirty'
productby8

ROLFE 26 FE

ASLFD 06FD

ROL 26 FE

LDAFD A5FD

STAFB 85FB

CLC 18 add 1024 and store
LDAFE A5FE inFB-FC

ADC#04 6904

STAFC 85FC

CLC 18

ASLFD 06FD

ROLFE 26 FE double twice more to
get 32 * R

ASLFD 06FD

ROLFE 26 FE

CLC 18

LDAFB A5FB

ADCFD 65FD

STAFB 85FB 8 * R + 32 * R = 40 * R

LDAFC A5FC

ADCFE 65 FE

STAFC 85FC

LDYCf/!1J2 AC02C0 use indexing to add C

LDAC000 ADOOC0 character screen code

STA(FB), Y 91FB print character

RTS 60

97

98

You should devise a BASIC routine to test this thoroughly. For
instance:

5f/1/11J PRINT CHR$(147)

5010 FORR = 0T024

5020 FORC=0T039

5030 POKE 49153, R: POKE 49154, C

5040 SYS(49155)

5050 NEXT: NEXT

will check out the screen positions; and suitable POKEs to 49152 will
make sure you're printing the correct character.

A code representing the key currently
being pressed is stored in
address 197. You can use this
for:

17 Keyboard Control

If you want to write Machine Code routines that respond to the key
board (for example, controlling moving graphics), you have to find a
way to detect, from inside Machine Code, which key is being pressed.
You can do this by taking a look at the contents of address 197 decimal,
00<::5 hex, which contains a (curiously coded) version of the key cur
rently being held down-the code being 64 for 'no key'. The codes are
neither ASCII nor Screen Codes; and I've listed them in Appendix 8. To
check it out, try a simple BASIC program:

7f/1/11J PRINT PEEK(197)

7010 GOTO 7f/IIIIJ

and GOTO 7f/1/11J. Start pressing keys.
By testing to see what code is in OOC5 and branching accordingly, you

can obtain keyboard control of your Machine Code.

LOOP-Y

Here's a simple example. The Y-register controls a loop which prints a
character to the screen and erases the spaces on either side of it. If you
press no keys, the character moves steadily to the right. If you press 'R'
for reverse it moves left; and if you press'S' the program stops. For
simplicity, the character moves through one page of Screen Memory.

LDA#00 A900

STAFB 85FB

LDA#06 A906

STAFC 85FC

LDY#00 A000

loop: LDA#20 A920

STA(FB), Y 91FB
99

100

INY C8

INY C8

STA(FB), Y 91FB

DEY 88

LDA#51 A951

STA (FB), Y 91FB

test: LDA#l1 A911 code for key R

CMPC5 C5C5 see if it's being pressed

BNEskip D002

DEY 88 Y has already moved 1 J- place right: now move
DEY 88 2 places left

skip: LDA#0D A90D code forS

CMPC5 C5C5 see if it's being pressed

BNEloop D0E5

RTS 60

If you run this, you'll find that everything goes haywire. You see a lot of
blinking blobs and precious little that resembles a moving one. The
reason is simple: it's moving too fast! The TV can only display 50
pictures every second, and the blob is moving much faster than that.

This is a common problem in Machine Code: the answer is to add a
time delay. The easiest method is to use a subroutine:

PUTTING IN A PATCH

We can add a JSR instruction that takes the program to a 'delay' routine.
This puts a patch in the original program.

We begin as before:

LDA#00 A900

STAFB 85FB

LDA#06 A906

STAFC 85FC

LDY#00 A000

loop: LDA#20 A920

STA (FB), Y 91FB

INY C8

INY C8

STA(FB), Y 91FB

DEY 88

LDA#51 A951

STA(FB}, Y 91FB

Now's a good place to put the patch:

JSRdelay compute destination
from listing

After which we resume the original progam:

test: LDA#l1 A911

CMPC5 C5C5

BNEskip D002

DEY 88

DEY 88

skip: LDA#0D A90D

CMPC5 C5C5

BNEloop D0E2

RTS 60

Finally we add:

ADELA Y ROUTINE

relative jump un
changed by patch

jump changed by patch

The idea here is to use the X-register to run through a loop of length 256
doing nothing, after which we return to the main program. The X
register is important in the main program, so we push it on to the stack
(via the accumulator) at the start of the loop and pull it off at the end.
Here's the code:

delay: TXA 8A

PHA 48

LDX#00 A200

dloop: DEX CA

CPX#00 E000

BNEdloop D0FB

PLA 68

101

TAX AA

RTS 60

Note the sequence:

TXA Transfer X to A

PHA Push A (which holds X now) on to stack

PLA Pull A off stack (still holding X value we wanted to

remember)

TAX Transfer A to X (back to square one).

You might imagine that a loop of256 operations would slow things down
enough, but no! It's still too. fast. So we use the Y-register to loop the
whole delay 256 times. Surely 65536 operations will make it slow
enough?

Change the above subroutine (but leave the main program intact) to
the following:

delay: TYA 98

PHA 48

TXA 8A

PHA 48

LDY#00 A000

LDX#00 A200

dloop: DEX CA

CPX#00 E000

BNEdloop D0FB

DEY 88

CPY#00 C000

BNEdloop D0F6

PLA 68

TAX AA

PLA 68

TAY A8

RTS 60
102

This time note that we pull the X- and Y-registers off the stack in the
reverse order to how we pushed them:

TYA

PHA

TXA

PHA

PLA

TAX

PLA

TAY

1---.,

X-register Y-register

+--_....J

~------------------~

Well ... now it's too slow. Snail's-pace moving graphics! But we can fix
that, because we've now got a general purpose delay loop which we can
fine-tune just by changing the start value ofY. You'll find that changing
the LDY #00 (delay 256) to:

LDY #0A A0 0A delay Sloops

produces Zt reasonable effect. Reduce 0A to 05 or 04 and it's really fast;
increase to 12 or 16 and it's pretty slow . You can use this delay-loop
routine, with suitable initial Y-values, whenever a time delay seems to
be needed; and then adjust the Y-value to suit your tastes later.

103

Now a briefreturn to programming
theory, to take a quick look at another
important group of instructions:

104

18 Logic

There's a final group of Machine Code commands that you ought to be
told about-if only because we'll need them in the next chapter on
sprites. These are the logic instructions:

AND
ORA
EaR

First, a little bit of mathematical logic:

THE LEGACY OF GEORGE BOOLE

A mathematician called George Boole got the idea of using mathe
matical calculations to study logic around 1854, when he published a
book called The Laws of Thought. He couldn't possibly have guessed
what electronic engineers would be doing with his ideas a century later:
his Boolean algebra is just what's ne€;'({ed to design computer circuits.

We can use the bits 0 and 1 to represent the logical values 'false' and
'true' respectively. And we can calculate with these using Boole's rules.
For example, consider the sentence:

It's Tuesday AND it's raining.

When is this true? Would it be true if it were Wednesday? No-even if it
were pouring pussy-cats and pooches. And if it were Tuesday, but the
Sun was shining and the neighbours were lounging around in bikinis, it
still wouldn't be a true statement. Both parts in an AND statement have
to be true for the whole thing to be true. Or, as Boole essentially put it
(in different symbols):

0AND0=0
0AND1=0
1AND0=0
1AND1=1

(false AND false = false)
(false AND true = false)
(true AND false = false)
(true AND true = true)

You're no doubt familiar with this idea from BASIC, and it takes a
similar fonn in Machine Code, as we'll see.

There's also the OR statement (ORA in 651O-ese):

00RA0=0
00RA1=1
10RA0=1
10RA1=1

based on the idea that p OR q is true provided at least one ofthem is: 'it's
snowing, OR I'm a blue-nosed skunk'. We don't insist on both!

Lastly in this order of ideas is the exclusive OR, otherwise known as
EOR (which unaccountably makes me think of Winnie-the-Pooh). Here
p EOR q means 'p OR q but not both', and we therefore have:

0EOR0=0
0EOR1=1
lEOR0=1
1 EOR 1 = 0"'~f---- note the difference!

BYTE LOGIC

That's how the logic operations work on individual bits: what about
bytes? In Machine Code (as in BASIC) they operate on each bit in
dependently. Thus, to find:

10010101 EOR 11001011

we take bit 7 (left-hand ends) and work out:

lEOR1=0

to get bit 7 of the result; then move on to bit 6:

0EOR1=1

followed by bits 5, 4, 3, 2, 1,0:

0EOR0=0
lEOR0=1
0EOR1=1
lEOR0=1
0EOR1=1
lEOR1=0

and stick them in line to get the answer:

01011110

Similarly with AND and ORA.
The opcodes for the logic commands are listed in Appendix 4, in all

addressing modes (of which there are eight).

105

MASKING

Perhaps the main use of logic operations in Machine Code programming
is to test, or change, individual bits in a byte. Recall that the bits in an
8-bit byte are conventionally numbered:

106

7 6 S 4 3 2 1 o
I I

so that the more senior bits have higher numbers. Suppose I want to test
a byte to see what bit 3 is. How do I do it?

There are lots of numbers with bit 3 equal to 1-namely 128 of them;
and 128 with bit 3 equal to 0. There's no very nice pattern to them as far
as their arithmetical properties go.

Consider the byte:

00001000

which has 0s everywhere except bit 3, the one we're interested in. Call
this number M, for mask. (It is equal to 8 decimal, of course). The idea is
to AND the mask M with the byte concerned. Bits 7, 6, S, 4 and 2, 1,0 of
the result must always be 0, because 0 AND anything is 0. If bit 3 of the
number is 0, then the final result is:

00000000

whereas if bit 3 is 1 the result is:

00001000

In other words, setting M = 08, we have:

P AND M = Vl/Jifbit 3 ofp is0
P AND M = 08 if bit 3 of pis 0

Similarly we can test bits 0, 1, ... , 7 by using the masks:

01 (hex)
02
04
08
10
20
40
80

1 (decimal)
2
4
8
16
32
64
128

for bit 0
for bit 1
for bit 2
for bit 3
for bit 4
for bitS
for bit 6
for bit 7

Suppose that we're not so much interested in the value of bit 3: instead
we want to set it to zero. Then we can form the difference:

p - (pORA08)

which knocks that digit out. There are other variations on these masking
tricks, but once you've got the general idea, it's easy enough to see how
they work.

107

An unusual and spectacular feature of the
Sixty-four is the use of sprites-large
coloured graphic blocks that can be moved
around the screen, overlapping as they
pass. In BASIC, it's hard to make them
move very quickly. Machine Code is different
you have to work hard to slow them down!

19 Sprites

Sprites, or MOBs (Moveable Object Blocks), are moderately large
graphic designs that are handled by a special VIC chip and can be moved
about the screen as the programmer wishes. They can be made the basis
of many attractive games and displays. They are not entirely straight
forward to deal with, however: the aim of this chapter is to introduce
some of the fundamental ideas-enough for you to use sprites yourself.

I'd like to start with a general run-down of the main techniques of
sprite-handling, because even experienced BASIC programmers may
find this a little tricky. Those of you who've read Easy Programming
may find some sections of this chapter as~onishingly familiar! Please
bear with me: not everyone reading this book will have come across the
material before.

1 1 1 1 1 1 1 1 1 2 2 2 2 Bytes
o 1 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 0 1 2 3 .

" " " " 1 0 " " 2 0 " 0
3 0 0 " 4 0 0 0
5 1 248 0
6 1 224 0
7 60 192 " 8 7 202 112
9 135 255 255

10 255 255 252
11 127 255 24"
12 63 255 192
13 127 254 " 14 63 240 " 15 127 192 " 16 14 0 " 17 0 " " 18 " " 0

19 0 0 0

2" " 0 "
Figure 19.1

108

SPRITE DESIGN

The information that defines a sprite consists of a 21 x 24 grid, whose
cells are either blank or blocked in. For example, Figure 19.1 shows a
'Star Cruiser' shaped sprite. .

These blank or blocked in cells must be converted to a series of
numbers, to be stored in the appropriate place (see below). To do this,
replace every blank cell by a 0 and every full cell by a 1, as in Figure 19.1.
Take each row of 24 digits and split it into three 8-digit pieces. For
example row 8 of the figure breaks up as:

00000111 11001010 01110000

These look like binary bytes ... and indeed that's the idea. Converted to
decimal they become:

7 2f/J2 112

So each row of the sprite can be thought of as a series of three decimal
numbers (between 0 and 255). The numbers for the entire sprite are
listed down the side of Figure 19.1; and conventionally they are read in
order from top left to bottom right; that is, the three bytes for row 0,
then the three for row 1, and so on until row 20. That makes 63 numbers
altogether.

You can design your sprite on squared paper, and work out the
decimal numbers by hand. But wouldn't it be much nicer if the computer
did all the hard work?

COMPUTER-AIDED SPRITE DESIGN

Here's a fairly simple program to let you design a sprite on screen and
generate the list of data. To keep the listing within bounds. various
possible improvements have been left out. If you want to make it more
sophisticated, go ahead!

7010 POKE 53280, 4

7f/J20 PRINT CHR$(147)

7030 FOR S = 0TO 20

7040 IF S = 8 * INT(S/8) THEN PRINT

"------------------------,,

[24 - signs]

7050 IF S < > 8 * INT(S/8) THEN PRINT
""

7060 NEXTS

7080 PRINT: PRINT: PRINT

109

110

7100 DIM S(20, 23)

7110 FORR = 0T020

7120 FOR C = 0TO 23

7130 CDE = 63: GO SUB 8VIIf/J

7140 GETA$

7150 IF A$ < > "0" AND A$ < > "1" THEN 7140

7160 IF A$ = "0" THEN S(R, C) = 0: CDE = 32: GOSUB 8VIIf/J

7170 IF A$ = "1" THEN S(R, C) = 1: CDE = 102:

GOSUB 8VIIf/J

7180 NEXTC

7190 NEXTR

7200 POKE 53280, 3

7210 GET A$: IF A$ < > "N" AND A$ < > "Y" THEN 7210

7220 IF A$ = "N" THEN POKE 53280,4: GOTO 7110 .

7250 PRINT CHR$(19);

7260 FORR = 0T020

7270 FOR X = 0TO 16 STEP 8

7280 V=0

7290 FORC = 0T07

7300 IF S(R, X + C) = 1 THEN V = V + 2 t (7 - C)

7310 NEXTC

7320 PRINT TAB (24 + X/2); V;

7330 NEXTX

7340 PRINT

7350 NEXTR

7360 GOTO 7360

8f/111/J POKE 1024 + 40 * R + C, CDE

8010 RETURN

RUN this. The border turns purple, for reasons which will-appear in a
moment. You get a 21 x 24 grid of dots and dashes, ruled into 8 x 8
sections for convenience. There is a ? sign at top left. If you hit '1' it is
replaced by a chequered pattern; if '0' by a space. It then moves on one
place. You can continue in this way, plotting a block or a space, until the
whole grid is filled.

At this point the border turns cyan, to remind you that you must press
a key. (There's not much room fora message, so this is an easy way out.)
'Y' for 'yes' tells the program to continue; 'N' for 'no' means you made a
mistake and want to try again. (On the rerun you must enter all the 0s
and Is again: one place where improvement would be possible.)

The computer then automatically lists out the data for the rows, down
the right hand side. Copy them down on paper. (Or print them out to a
printer, or copy to a file on cassette tape or disc.)

I've set up the numbers in decimal here, but of course you can convert
to hex. The important thing to realize is that loading sprite data is fine in
BASIC-it's moving the sprites. etc., where Machine Code becomes a
must. To make things as easy as possible, I'll use BASIC where I can.

THE SPRITE REGISTERS

Special sections of memory are reserved for sprite-handling. The ad
dresses start at 53248 decimal (D000 hex) and end at 53294 (D02E).
From now on I'll use hex addresses since our final aim is Machine Code.
Not all of the sprite registers are useful to a beginner, and I'll ignore the
more esoteric ones. In addition there are several pointers in addresses
07F8-07FF which tell the computer whereabouts to look for the 63 bytes
of graphics data needed to define each sprite. I'll describe them in more
detail in a moment; but first here's a quick run-down.

Sprite positions

Addresses D000-DOOF hold the column number (or X-coordinate in
Hi-res) and row number (Y-coordinate) for each of the eight sprites.
These numbers range from 0-255. Each is held as one byte in a single
address.

OffsetOag

The eight bits of a single byte at address D010 define an offset to the right
of the X-coordinate (column number). If bit K is set to 1, then 256 is
added to the column number. This is needed to place sprites towards the
right-hand side of the screen.

Enable/disable

The eight bits of a single byte at address D015 enable (switch on) the Kth
sprite if bit K is set to 1, and disable (switch it off) if bit K is 0.

Expand vertically

The eight bits of a single byte at address D017 stretch the Kth sprite to
twice its height if bit K is 1.

III

Expand horizontaUy

Similarly the eight bits in address D01D stretch Sprite K to twice its
width if bit K is 1.

Collision flag

If two sprites 'collide' then the corresponding bits in D01E are set to 1.

Colours

Each address D027 to D02E holds the colour code (0-15), as in Chapter
16) for one sprite.

Data Pointers

Addresses 07F8-07FF (top end of Colour RAM) hold pointers to the
start addresses of the data for Sprites 0-7 respectively. If the Kth pointer
has value PTR, then the address for the data starts at 64 * PTR. We will
call this the PTRth block of memory, from 64 * PTR to 64 * PTR + 63.
This lets you define sprites anywhere in the first 16348 bytes of RAM.
There are ways to use the other 49152 bytes, but they're messy: see the
Reference Guide pages 101 and 133. But you can't just dump sprites in
any old addresses: the BASIC system will clobber the data. See below
for recommended addresses.

The addresses for controlling sprites are summarized in Tables 19.1 and
19.2, which are repeated for convenience as Appendix 7. For the mean
ing of the omitted addresses, see the Reference Guide pp. 131-181.
That's 50 pages: I told you sprites weren't entirely straightforward!

Table 19.1 Sprite data pointers

Address Contents

07F8 Sprite 0 data pointer
07F9 Sprite 1 data pointer
07FA Sprite 2 data pointer
07FB Sprite 3 data pointer
07FC Sprite 4 data pointer
07FD Sprite 5 data pointer
07FE Sprite 6 data pointer
07FF Sprite 7 data pointer

112

3. POKE the data into position.
4. Enable the sprite.
5. Define the colour of the sprite.
6. Set the row and column numbers for the sprite.

Let's take the Star Cruiser Sprite. above. and set it up as Sprite 1. This
will do the job:

9f/1/1IJ V = 53248

9100 DATA 0. 0. 0. 0. 0. 0. 0.0.0.0.0.0.0.0.0

9110 DATA 1.248,0,1,224,0.60,192.0.7. 2f/f2. 112. 135.255.

255

9120 DATA 255, 255. 252, 127.255.240.63.255. 192.127.254.0

9130 DATA 63.240.0,127,192,0.14.0.0.0.0.0,0.0.0

9140 DATA 0. 0. 0. 0. 0. 0

9200 POKE 2041. 13 [Sprite 1 pointer to 13th block;

2041 = 07F9 hex]

9210 FORG = 0T062

9220 READH [read data]

9230 POKE 832 + G. H [POKE to block: note 832 = 64 * 13]

9240 NEXTG

9250 POKEV+21.2 [enable Sprite 1]

9260 POKE V +40. 7 [Sprite 1 yellow]

9270 POKE V + 2. 100 [Sprite 1 in column 100]

9280 POKE V + 3. 100 [Sprite 1 in row 100]

Type this in carefully and RUN 9000: you should see the Star Cruiser in
yellow, as required.

You can experiment with changing the positions by direct commands:

POKE V + 2. 110

moves it to the right:

POKE V + 3.90

moves it up:

POKE V +40.5

turns it green. Try other values, see what happens.

115

MOVEMENT

You could have done all that in Machine Code, of course. But, as I said,
initial setting-up is OK in BASIC. However, I'll have to use Machine
Code to get any reasonable speed of movement.

I'll want to use much the same code, but modified on each occasion,
for the next few stages. The modifications come at the beginning, which
is awkward using LOADER. So I'll use a trick: the No OPeration
command:

NOP (opcode EA)

This means 'ignore this instruction'. A block of NOPs .will provide a
program area which we can edit to fit extra bits in. Otherwise the NOPs
will be harmless (though causing a tiny initial delay).

Put a block of 12 NOPs (an arbitrary, and unnecessarily large number)
into the start of the program:

116

NOP EA

NOP EA

and then continue with the guts of the thing:

LDX#OO A200

loop: STXDOO2 8E 02 D0 X-coordinate of
Sprite 1

JSRdelay 201BC0

CLC 18

INX E8

CPX#OO E000

BNEloop D0F4

RTS 60

(To move vertically change STX DOO2 to STX DOO3.)

It's fairly likely we'll need a time delay, hence the JSR delay. The first
time, I tried this with the long delay (looping Y and X registers), but that
turned out to be over optimistic, and the sprite limped along like a
one-legged tortoise. So I suggest you use the shorter version:

delay: TXA 8A

PHA 48

LDX#80 A280 reasonable length for
loop

dloop: DEX CA

CPX#00 E000

BNEdloop D0FB

PLA 68

TAX AA

RTS 60

Now prepare for the movement by adding BASIC lines:

9800 GET A$: IF A$ = " " THEN 9800

9810 SYS (49152)

and RUN 9000.
You'll see the Star Cruiser Sprite build up in yellow. Hit a key: it will

rapidly disappear from the centre of the screen and whiz across from left
to right, stopping about three quarters of the way across. In fact its
horizontal coordinate is now 255 decimal, the largest we can deal with
using only address D002. I'll show you one way to get round that in a
moment; but first, we'll see how to make the sprite bigger.

EXPANSION

To make the sprite twice as wide, edit out the first five bytes of program,
changing them from EA to:

LDA#02

STAD01D

A902

8D1DD0

now repeat the procedure: the sprite will be stretched horizontally. Edit
the next three EA bytes to read:

STAD017 8D 17D0

and it will be twice as high too.
What did we do? We set bit 1 of registers D01D and D017 to 1, by

storing 2 t 1 = 02. If you look at Table 19.2 you'll see that these control
the expansion.

WHOLE SCREEN MOVEMENT

If you want to position your sprite on the right-hand side of the screen,
beyond column 255, you use the offset flag in D010. If bit K of this is set

117

118

to 1, then 256 is added to, the column number for Sprite K. Here's an
example. Load it in from Cf/1/1/J as usual (no block of NOP-s now!):

LDAD010 AD 10 D0 } use masking with FD

ANDFD 29 FD (11111101 binary) to
reset offset for Sprite 1

8D 10D0 8D 10D0 t00

LDY#00 A000

LDX#00 A200

loop: STXD002 8E f/J2 D0

JSRdelay 2028C0

INX E8

CPX#00 E000

BNEloop D0F5

INY C8

CLC 18 add 2 to offset to set
INCD010 EE 10D0 J-bit 2 of it to 1 and

INCD010 EE10D0
hence move Sprite. 1 by
256 columns

CPY#f/J2 C0f/J2
BNEloop D0E9

SEC 38

DECD010 CE10D0

RTS 60

delay: TXA 8A

PHA 48

LDX#00 A200 change 00 to 80 for
faster action

dloop: DEX CA

CPX#00 E000

BNEdloop D0FB

PLA 68

TAX AA

RTS 60

Now RUN 9f/1I1/J as usual: this time the sprite whizzes across the screen
and disappears off the right-hand edge. (A bit of it pokes out of the left
side at the end: you can prevent this by resetting the enable/disable flag,
bit 2, if you wish to experiment.)

KEYBOARD CONTROL

We've already seen how to read the keyboard in Machine Code pro
grams, so let's modify the above routine to give us control of the vertical
position of the star cruiser on the TV screen. Key 'U' will mean 'up'; 'D'
is 'down'; and'S' is 'stop', because I'm going to make the cruiser fly
repeatedly across the screen. Now the code (loaded in at Cf/1/1/J) has a few
extra wrinkles:

start: CLC 18

LDA #0D A90D look for key'S' (code
CMP C5 C5 C5 0D) being pressed and

BNE skip D0 01
RTS ifit is

RTS 60
skip: LDA D010 AD 10 D0

ANDFD 29 FD

STA D010 8D 10 D0

LDY #00 A0 00

LDX #00 A200

loop: STX D002 8E 02 D0

JSR delay 20 35 C0 subroutine addresses -- J-worked out after
JSR keys 20 41 C0 writing code and

INX E8 inserted

CPX #00 E0 00

BNE loop D0 F2

!NY C8

CLC 18

INC D010 EE 10 D0

INC D010 EE 10 D0

CPY #02 C002

BNE loop D0 E6

SEC 38

DEC D010 CE 10 D0

JMP start 4C 00 C0 repeat whole thing

delay: TXA 8A subroutine at C035

PHA 48

119

120

LDX#OO A200
dloop: DEX CA

CPX#OO E000

BNEdloop D0FB

PLA 68

TAX AA

RTS 60
keys: LDA#12 A912 subroutine at C041

CMPC5 C5C5 look for key 'D'

BNEskipl D003

INCD003 EE 03 D0 __ increase row number
by 1

skipl: LDA#IE A91E key'U'

CMPC5 C5C5

BNEskip2 D003

DECD003 CE03D0

skip2: RTS 60

Now when you start up with GOTO 9000 or RUN 9000 and hit a key the
cruiser will traverse the screen repeatedly. Touch key 'u' for upward
movement; key 'D' for downward. It's extremely fast! When you've
tired ofthat, key'S' will stop the thing. Hold'S' down for a few seconds.

SPRITE PRIORITY

If two sprites overlap, the one with the smallest number appears to be on
top of the other. The one 'underneath' will however show through any
'holes' in the one on top, just as you'd expect in real life.

To try this out, I'm going to set up another sprite. Same routine (for
the moment this is good practice, but later I'll suggest a better approach
if you want to use a [ot of sprites):

9400 DATA 0,255,0,3,255, 192, 15, 195,240,63,0,252,255,

0,255

9410 DATA 63, 0, 252, 127, 195,254,31,255,248,3,255, 192

9420 DATA 0, 255, 0, 0,195,0,1,129,128,3,0,192,6,0,96

9430 DATA 15,0,240, 15,0,240,7, 129,224,3, 195, 192

9440 DATA 1,231,128,0,0,0,31,255,248

9500 POKE 2040, 14

9510 FOR G = 0TO 62

9520 READH

9530 POKE 896 + G, H

9540 NEXTG

[Sprite 0 pointer to 14th block]

[block 14: 896 = 64 * 14]

To enable Sprite 0 as well as Sprite 1, we must change line 9250 above to:

9250 POKE V + 21, 3

because 3 = ~11 in binary, so bits 1 and 0 are set to 1. Now we
continue:

9560 POKEV+39,5 [Sprite 0 green]

9570 POKE V, 120 [Sprite 0 in column 120]

9580 POKE V + 1,95 [Sprite 0 in row 95]

9590 POKE V + 29,3 [expand Sprites 0, 1 horizontally]

9600 POKEV+23,1 [expand Sprite 0 vertically]

(Again, you could do a lot ofthis in Machine Code; but for the purposes
of illustration BASIC is easier. You might like to work out a Machine
Code routine for lines 9560-9600 though, as an exercise.)

You should still have the previous piece of Machine Code-the one
with keyboard control-in memory. If you RUN 9000 you can make the
star cruiser pass across the other monstrosity by judicious use of the 'U'
and 'D' keys. See how it seems to go behind? That's because the green
object (Sprite 0) has priority over the cruiser (Sprite 1).

Suppose we want the cruiser to pass in front of the Green Thing. Then
we must change the priority. A simple way is to make the Green Thing
be Sprite 2 rather than Sprite 1. This entails the following changes:

9500 POKE 2042, 14

9250 POKE V + 21, 6 [6 = ~110]

9560 POKE V + 41, 5

9570 POKE V + 4, 120

9580 POKE V + 5, 95

9590 POKE V + 29, 6

9600 POKE V + 23,4

Try it now: the cruiser goes in front, not behind.

121

USING THE SAME nATA FOR SEVERAL SPRITES

We can set more than one sprite to the same data, by making two or
more pointers the same. Suppose we've got Sprites 1 and 2 set up as
above; but now we want Sprite 0 to be a Black Thing (also double in size)
in another position. We can do this: enable all three sprites by changing
9250 yet again:

122

9250 POKE V + 21, 7 [7 = ~111]
Now set up Sprite 0:

9700 POKE 2040, 14 [data for Sprite o from same block, 14]

[Sprite 0 black]

9770 POKE V, 70 [Sprite 0 in column 70]

9780 POKE V + 1, 124 [Sprite 0 in row 124]

9790 POKE V + 29, 7 [all 3 sprites stretched horizontally]

9795 POKEV+23,5 [only 0 and 2 vertically]

If you RUN now you'll find two things, plus one cruiser.

COLLISION DETECTION

By using the collision register, D01E hex (or V + 30 with V = 53248 as in
our BASIC programs), you can tell when a collision between sprites
occurs. If two sprites collide, then those two bits are set to 1. For
example if Sprites 1 and 2 collide, then D01E will hold:

~110=06

This value is updated at every collision. So to test for a 1:2 collision you'd
need a piece of Machine Code like this:

LDA#06
CMP1ED0
BEQaction

action: Whatever you want to happen
when they collide.

Address D01F (V + 31) responds to a collision between sprites and text
in foreground colour: bit K is set if Sprite K collides. (The Reference
Guide says 'sprite-background collision' but means 'sprite-foreground
collision' .)

WHERE TO STORE SPRITE DATA

For three or fewer sprites, you can use blocks 13, 14 and 15. These
actually lie in the cassette buffer, an area of memory only used when the
cassette recorder is operating. So it's a safe place to store sprites.
Unfortunately, it's not long enough to hold all eight 64-byte blocks. So
you need to try somewhere else. Unless you have a very long BASIC
program, the Reference Guide suggests blocks 192-199. Again, if you
want to know more, consult the Reference Guide.

THAT'S JUST THE START

This has been a long chapter, and we've barely scratched the surface.
You can, for example, have multicoloured sprites. But space is running
out, and I hope you've got enough ideas to keep you busy as it is. Once
you've mastered what I've told you about sprite-handlirig, you might
take a look at the Reference Guide for additional possibilities, beyond
the scope of this book.

123

The Manual tells you how to use graphics
characters, but it doesn't mention that the
Sixty-four is capable of something much
more impressive:

20 High-Resolution Graphics

Each character cell on the TV display is in fact made up of an 8 x 8
square of tiny cells, or pixels which are used to build up the character
(deep down inside the electronics). By obtaining direct access to these
cells, you can plot graphical displays on the Hi-res (High-resolution)
screen. That means you have a display of25 x 8 = 200 rows and 40 x 8 =
320 columns. It's almost the same number system that the sprites use,
but restricted to the screen area (see Figure 20.1).

124

o Column number ~ 319
0 ___ .'1~~-~1 III I,ll" ~

Row
number

L~
bne text cell

--------------------~
~lrt1"

One Hi-res cell
at position (X.V)

199J.It: _________ ~J;jll
Figure 20.1

m-RESMODE

In order to make your machine capable of high resolution graphics, you
must put it into hi-res mode, set up an area of memory to hold the
graphics data, and clear out that area. It is also necessary to assign
colours. The Reference Guide explains this on page 123. Here's a BASIC
program (so you can see what's involved) that clears the screen to light
green. If you change the 13 in 11080 to

16 * INK + PAPER

where INK and PAPER are the colour codes for foreground and back
ground, you can get any combination of colours you want. The following
routine will put the screen memory area at address 8192: .

11_ REM HI-RES INITIALIZA nON

11010 POKE 53265, PEEK(53265) OR 32

11t20 POKE 53272, PEEK(53272) OR 8

11030 BM=8192

11040 FOR U = BM TO BM + 7999

11050 POKEU,0

11060 NEXTU

11070 FOR U = 1t24 TO 2023

11080 POKEU,13

11090 NEXTU

11100 RETURN

RUN this. First you get junk; then the screen clears to a mostly black
background but with some coloured blobs where the text was; then it all
clears to light green. (Change the 13 in line 11080 to 16 * INK + PAPER
where INK and PAPER are the colour codes you want. This program
gives black ink on light green paper.)

Note that the screen memory clearing is rather slow: about 20 seconds
in BASIC.

AND NOW IN MACHINE CODE

Since BASIC is so slow, here's the same program converted into
Machine Code:

LDAD011

ORA #20

STAD011

AD 11D0

0920

8D11D0

\

125

LDAD018 AD 18D0

ORA #08 0908
STAD018 8D 18D0

LDA#00 A900

STAFB 85FB

LDA#20 A920

STAFC 85FC

LDY#00 A000

loop: LDA#00 A900

STA(FB), Y 91FB

INCFB E6FB

CMPFB C5FB

BNEskip D002

INCFC E6FC

skip: LDA#3F A93F

CMPFB C5FB

BNEloop D0EE

CMPFC C5FC

BNEloop D0EA

LDA#00 A900

STAFB 85FB

LDA#04 A904

STAFC 85FC

LDY#00 A000

loop2: LDA#0D A90D

STA(FB), Y 91FB

INCFB E6FB

LDA#00 A900

CMPFB C5FB

BNEskip2 D002

INCFC E6FC

skip2: LDA#E7 A9E7

CMPFB C5FB

126

BNEloop2 D0EC

LDA#VJ7 A9VJ7

CMPFC C5FC

BNEloop2 D0E6

RTS 60

If you run this using SYS(49152), you'll find the screen clears in a trice!

PLOT

The hi-res columns and rows define a system of coordinates on the TV
screen, as shown in Figure 20.1. The main job is to find a way to plot a
single pixel at column X, row Y-that is, coordinates (X, Y). By
combining such plots we can draw lines, curves, and fill in entire regions.
Here's a BASIC routine to draw a single pixel in row Y, column X. It
assumes that Y is between 0 and 199, X between 0 and 320. If you want to
know why it works, see the Reference Guide or Easy Programming,
Chapter 32.

12., REM PLOT X, Y

12010 BY = BM + 320 * INT(Y /8) + 8 * INT(Xl8) + (Y AND 7)

12020 BT = 7 - (X AND 7)

12030 POKE BY, PEEK(BY) OR (2 t BT)

12040 RETURN

Assuming you've got the 'clear hi-res screen' Machine Code in place at
~, here's an example of how to use hi-res plotting:

13., SYS(49152)

13010 FORX=0T0319

13020 Y = 100 + 80 * SIN(X/10)

13030 GOSUB 12000

13040 NEXT

In conjunction with the plot subroutine, this gives a wavy sine curve.
Changing line 13020 leads to other curves.

HOW DOES THIS WORK?

This section gets a little technical, so you can skip it if you want to and
come back later.

127

128

Each byte in the Hi-res Screen Memory holds data for an 8 x 1 row of
pixels on the Hi-res screen. A binary 0 means 'no dot here' and a 1 means
'put a dot here'. So for example the byte 10110101 gives the effect shown
in Figure 20.2.

Figure 20.2

When you set the system variable in address 53265 to give Hi-res
mode, the computer is instructed by the operating system to interpret
the data in this way. This is called bit-mapped graphics.

The addresses for our Hi-res Screen Memory correspond to the actual
screen positions as shown in Table 20.1.

Table 20.1

o
1
2
3

Hi-res 4
row 5

number 6

1 ;
10
11
12
13
14
15

o
8192
8193
8194
8195
8196
8197
8198
8199

8512
8513
8514
8515
8516
8517
8518
8519

1
8200
8201
8202
8203
8204
8205
8206
82f/f7

8520
8521
8522
8523
8524
8525
8526
8527

2
8208
8209
8210
8211
8212
8213
8214
8215

39-Lo-res column number
8504
8505
8506
SSVfl
8508
8509
8510
8511

o Lo-res row number

1
1

In hex, these addresses start at 21/1111J. So each character cell, which used
to correspond to one address in Screen Memory, now corresponds to
eight addresses: a block of memory eight bytes long. The blocks are
arranged in the same order as the cells in Screen Memory: go along
Lo-res rows first, and skip down a row after column 39.

Suppose we want to put a diagonal line in the top left corner, 5 pixels
long. The addresses and contents take the form of Figure 20.3

Address

8192 (2000 hex)

8193 (2001)

8194 (2002)

8195 (2003)

8196 (2004)

. . . .
V-- -
Figure 20.3

7
7

\
)

V

Contents

m0000000. ·f
g, j

0t1000000·

o 0(110 0 0. 0 0 •

0001 0000 •

0000tti-000 •• 1
~~: ..

I .. V

So this program should do the trick:

Decimal

128

64

32

16

8

Hex

80

20

10

08

10 GOSUBll~

20 POKE 8192, 128

30 POKE 8193, 64

40 POKE 8194,32

50 POKE 8195, 16

60 POKE 8196, 8

70 GOT070

[Enter Hi-res mode subroutine]

Try it and see.
The same approach works in general:

1. Find the relevant address.
2. POKE it with the necessary value to produce the desired screen

display. Or use a Machine Code STA command, as we'll see later.

Since we don't want to obliterate anything that's on the screen already.
we must assume that the address may hold a non-zero value. That
requires us to OR the contents with the new value (see Chapter 18).

Line 12010 calculates the correct address:
Line 12020 calculates the value to be POKEd in. to plot one new
pixel.
Line 12030 ORs this with the existing contents and POKEs the
result back in.
For more details, consult the Reference Guide, page 125.

1:!9

A MACHINE CODE 'PLOT' ROUTINE

Unless you're very ambitious, you'll probably want to use a BASIC
program to 'drive' the hi-res plotting. But there's no need to use BASIC
for the actual PLOT X, Y routine at the heart of it. Let's do it in Machine
Code.

130

I'll give it you as a bare routine: at the end I'll suggest ways to
incorporate it, and the 'clear hi-res screen' routine, into a single
package.

It uses four data bytes:

O/I/I/J XJ -coord
COOl XS-coord
CfI/J2 Y -coord
COO3 test

junior byte of column number
senior byte of column number
row number (up to 199)
used during debugging

So the program starts at COO4.

(up to
319 total)

A 16-bit adder is going to be indispensable. First we write one which
adds the contents of OOFB-OOFC to OOFD-OOFE and stores the result in
00FB-00FC. Zero-page keeps the code simpler.

add: CLC 18

LDAFB AS FB

ADCFD 65 FD

STA FB 85 FB

LDAFC AS FC

ADCFE 65 FE

STA FC 85 FC

RTS 60

It's just like the 16-bit adder from Chapter 8, but implemented in page
zero. Note that I've written it as a subroutine (at COO4).

Next we start the main program, which is at C012 (49170 decimal).
We've got to build up the equivalent of BASIC's:

BY = BM + 320 * INT(Y/8) + 8 * INT(X/8) + (Y AND 7)

where BM = 8192 = 2V111/J hex. We start by getting 2V111/J into place:

main: LDA#20 A920

STAFC 85FC

LDA#OO A900

STAFB 85FB

STAFD 85FD

The next job is to build up INT(Y/8). This is done by right-shifting it
three times in a row:

LOA Y-coord

LSR

LSR

LSR

AD02C0

4A

4A

4A

} not worth looping!

Now for the tricky bit. To multiply by 320 isn't that hard; but there's an
easier way than direct multiplication. Note that 256 + 64 = 320. To
multiply by 256 is simple: move the junior byte to senior! Since I've
cunningly put #00 into FD already, all we need is:

STAFE 85 FE

Now add it to the accumulating total in FB-FC:

JSR add 2004 C0

You might imagine that the way to get 64 * INT(Y 18) is to double
INT(Y/8) six times; but with what we've got already it's easier to halve
256 * INT(Y/8) twice!

CLC 18

LSRFE 46 FE

} take care with carries
RORFD 66FD

LSRFE 46 FE

RORFD 66FD

JSRadd 20~~

That's built up the equivalent ofBM + 320 * INT(Y/8). Now for the 8 *
INT(X/8). This is just X with its bits 0--2 reset to 0, so we can mask them
off. We only have to work on the junior byte of X, too!

LOA XS-coord AD01C0

STAFE 85 FE

LOA XJ-coord AD00C0

AND#F8 29F8 F8 = UUl000binary:
mask in use

STAFD 85FD

JSRadd 20~C0

This leaves only the (Y AND 7) term in this part of the calculation,
which doesn't take much effort at all:

LOA #00 A900
131

STAFE 85 FE

LDA Y-coord AD02C0

AND#f/f7 29 f/f7

STAFD 85FD

JSRadd 2004C0

We've now finished that part of the computation, and the address for
storage of the relevant byte of screen is in OOFB-OOFC. Cunningly placed
ready to use post-indexed indirection! (There's no flies on this baby, let
me tell you.)

132

However (puff, pant), we're not finished. There's the next part, the
stuff with BT. First we need to calculate 7 - (X and 7). Again, only the
junior byte is required:

LDA XJ-coord ADOOC0

AND#f/f7 29 f/f7

STAFD 85FD

LDA#f/f7 A9f/f7

SEC 38

SBCFD E5FD

TAX AA BT is in X-register

I've shovelled it into the X-register because I want to use it to control a
loop to build up 2 t BT:

INX

CLC

LDA#01

loop: DEX

CPX#OO

BEQskip

ASL

CLC

BCCloop

E8

18

A901

CA

E000

F004

0A

18

90F7

forces a branch with a
} relative displacement

(relocatable code,
notJMP)

Now all we have to do is OR this with the contents of the Screen Memory
byte (indirect post-indexed addressing works wonders here) and store it
(ditto) back again:

skip: LDY#OO A000

ORA (FB), Y 11 FB

STA (FB), Y 91 FB

During development I added a line:

test: STA COO3 8D 03 C0
which let me find out what byte was ending up in the accumulator by
PEEKing 49155. (And a good job I did, I can tell you, because I made an
absolute bog of the first attempt, by missing out one line of program.)
You can omit this; but don't ever omit the final:

RTS 60

to get back to BASIC.
To use this routine, you have to load Xl, XS, and Y in place in the

data area (0I1/1IJ, COOl, COO2) and then use:

SYS(49170)

to kick off from main and not add!

C -Ie$"

A HI-RES PACKAGE

The Computer Centre's
become an Equal Opportunity

Institution, and she's the
token Black Widow

All the above got developed a bit piecemeal. The final task is to put the
bits together into an organized package that you can use reliably.

You've currently got the plot routine in memory. After the final RTS,
you can add on the clear-screen routine we had before. This will be at
address C074 (or C071 if you omitted the test line, as is your right): check
with LOADER's print option to make sure. You've now got a plot
routine at address 49170 and a clear-screen routine at 49268 (or what
ever). Now you can write a BASIC 'driver' program: for example
drawing a circle:

15~ SYS(49268): REM CLEAR HI-RES SCREEN

15010 FOR D = 0 TO 359

15020 DR = PI * D/180: REM CONVERT TO RADIANS

15030 X = INT(l60 + 90 * COS(DR))

133

15040 Y = INT(1~ + 90 * SIN(DR))

15050 XS = INT(X/256): Xl = X - 256 * XS

15060 POKE 49152, Xl: POKE 49153, XS: POKE 49154, Y

15070 SYS(49170): REM PLOT X, Y

15080 NEXT: NEXT

15090 GOTO 15090

You can modify this in lots of ways, of course. And you can write
Machine Code routines at higher addresses still, to drive the clear-screen
and plot routines.

134

What LOADER lacks is a good editor.
But the Sixty-four already has an excellent
editor, the one it uses for BASIC. Here
we show you how to fool the computer into
using the BASIC editor to edit Machine
Code instead!

21 MINIASS-
An Aid to Band Assembly

So far, our techniques for assembling code and loading it into memory to
be executed have been, shall we say, fairly primitive.

You can, of course buy an assembler to do the whole job for you (see
Chapter 22) but that has two disadvantages. First of all, it costs you
money, and secondly, you tend not to learn so much about the way
Machine Code really works, because the assembler hides things from
you. In any case, assemblers on cassette, are, by and large, less than
ideal; you really need the disc versions if you want powerful utilities.

This chapter presents you with a compromise; a remarkably simple set
of BASIC routines which will take away some of the hard work, and
which will certainly make debugging easier.

THE EDITOR

It will have struck you by now that we need a way of editing code simply,
to add subroutines, change the program for debugging, or just because
you've forgotten to put in an instruction. Well, we've already got one
the BASIC editor. If only we could harness it in some way to edit
Machine Code, half our problems go away before we start. This is where
a feature of Commodore BASIC, which is usually a nuisance, suddenly
comes into its own. If you write a line number followed by gibberish,
BASIC will happily load it, and only complain when it tries to execute it.
If the 'gibberish' is hex Machine Code, and we never try to execute it
but, rather, execute only a loading routine with a higher starting line
number, all will be well. So our code could look like this:

10 : A200
20 : A0FF

30 : BDooC0

40 : 09F0
50 *

LDX #00
LDY #FF

LDA C000,X

ORA#F0

135

Notice three things:
1. Each line starts with a colon. This separates the line number from

the code, which doesn't matter for lines 10-30, but line 40 without
the colon would be interpreted 4009, and so would come after line
50.

2. Each byte of code is separated by exactly one space. If two or more
spaces appear, the program assumes the instruction is complete and
ignores anything which follows. That allows you to comment every
line, by writing the assembler equivalent for instance, as I've shown.

3. An asterisk in the colon position acts as a delimiter for the code,
showing where it ends.

STORING BASIC
Now, to make this work, we need to know how BASIC code is stored in
the Sixty-four. It's pretty straightforward. It starts from 2048 (decimal)
which always contains a zero. The next two bytes hold a pointer to the
beginning of the next line. The following two bytes hold the line
number, and then comes the text of the line, delimited by a zero byte.

Here's an example:

10 : A200

20 : A0FF

Machine Address Contents Interpretation

2048 0 always zero
2049 12 J- next line pointer = 8 x 256 +
2050 8 12 = 2060
2051 10 ~ line no. = 0 x 256 + 10 = 10 2052 0
2053 58
2054 65 A
2055 50 2
2056 32 space
2057 48 0
2058 48 0
2059 0 end of line
2060 23 J- next line pointer = 8 x 256 +
2061 8 23 = 2071
2062 20 J- line no = 20 2063 0
2064 58
2065 65 A
2066 48 0
2067 32 space
2068 70 F
2069 70 F
2070 0 end of tine

THE CODE

We'll make the main routine start at 1~. All it has to do is ask where
the assembled code is to be loaded, initialize the line start address (LS)
and then call a routine to handle a single instruction (i.e. one line). Then
it simply resets the line start address using the line pointer bytes and
repeats the process. The instruction decoder returns a flag called
FINISH, which is zero (false), ifthere are instructions left to deal with,
and -1 (true) if it has come across the terminating asterisk ..

1~ INPUT "START ADDRESS FOR CODE"; SA

10010 LS = 2049: PB = SA

10020 GOSUB 12000: REM DECODE AN INSTRUCTION

10030 IF FINISH THEN END

10040 LS = PEEK(LS) + 256 * PEEK(LS + 1)

10050 GOTO 10020

The instruction decoder looks like this:

12000 REM DECODE AN INSTRUCTION

12010 PT = LS + 4: FINISH = 0

12020 IF PEEK(PT) = 172 THEN FINISH = -1: RETURN

12030 IFPEEK(PT) = 58 THEN GOSUB 14000: RETURN:

REM NO LABEL

12040 GOSUB 16000: RETURN: REM LABEL

PT is set to LS + 4 to skip the next.Iine pointer and line number. PT
should now be pointing at an asterisk (172), in which case we've finished,
or a colon (58), in which case we call a subroutine at 14000 which handles
the instruction if there's no label. What's all this about labels? I never
said anything about them. Well, no author likes to be accused oflabel.

We'll defer this discussion till later (a good thing ifthat pun is anything
to go by). For the minute, we'll assume that the character following the
line number is guaranteed to be either a colon or an asterisk, so line
12040 can't be reached.

Since PT is pointing at a colon, we have to increment it by 1 to point at
the first hex digit of a byte. Then we'll call a subroutine at 2~ which
decodes the byte and stores it in address PB. PB is bumped by 1 to be
ready for the next byte, and PT is bumped by 2, which will leave it
pointing at either a space between bytes, or several successive spaces, or
an end of line number. In the latter two cases, the line is finished with so
we can RETURN.

137

138

14000 PT = PT + 1

14010 GOSUB 2f/11111/J: REM DECODE A BYTE INTO PB

14020 PB = PB + 1

14030 PT = PT + 2

14040 IF PEEK(PT) = 0 OR (PEEK(PT) = 32 AND

PEEK(PT + 1) = 32) THEN RETURN

14050 PT = PT + 1

14060 GOTO 14010

DECODING A BYTE

2f/111/1/J FO R N = 0 TO 1

20010 D(N) = PEEK(PT + N)

2f/J1f20 IF D(N) > 64 THEN D(N) = D(N) - 7

20030 D(N) = D(N) - 48

20040 NEXTN

20050 POKE PB, (D(0) * 16 + D(l))

20060 RETURN

This almost writes itself. We pick up the two alpha codes at PT and PT +
1. These could be '0' to '9' (codes 48 to 57) or 'A' to 'F' (codes 65-70).
We now proceed much as in Chapter 2. For convenience, we want' A' to
carry on directly from '9' since it has the value 10, which just means
subtracting 7 from any letter. Now any code is just 48 larger than its true
value so we subtract 48. Finally we multiply the first value by 16 and add
the next to create the decimal equivalent to the hex code, and poke the
result to PB.

LABELS

Now all this works like a charm, and you can insert, delete and modify
lines to your heart's content, rerun the loader and everything is fine.
Well, almost everything. The one remaining problem is that if any
branches occur around the edited code, you'll have to alter the branch
offsets. Wouldn't it be nice if the loader did that for you?

This implies that any branch instruction must be labelled somehow,
and that the address part of the branch also contains a reference to the
label. (See Chapter 11 for a discussion oflabels in mnemonics.) To make

the coding easy, I'm going to put some severe restrictions on the nature
of an allowable label:

1. It must start with 'L' (I'll relax this restriction later).
2. It must contain exactly two characters.

It's easy to see why I'm making these restrictions. A two-character code
looks pretty much like any other byte, so we don't have to muck about
with the pointers, but starting with 'L' means it can't be a hex number, so
it's easily distinguishable as a label.

Now a piece of code looks like this, for instance:

10 : A200

20L1

30
40

: A0FF

: BD00C0

: D0L1

Branch back to here

BNEL1

To make this work, we need to make some modifications and additions.
First, we now know why there has to be a routine at 16000, to handle the
condition that the line to be dealt with has neither a colon nor an asterisk
as its first character. Second, the byte decoder (2f/111111J) has to be revised
to account for a label in the address field. Finally, this routine needs to
know what to put there instead, and this implies that we need an extra
routine which, before anything else is done, searches through the code
for labelled instructions, noting where they are and setting up a couple
of arrays to keep a record, like this:

SYM$ NB

If the 'A2' in the above example is regarded as being in byte 0, then L1
refers to byte 2 (A0). The symbol array (SYM$) contains L1 and the
corresponding element ofNB (Number of bytes) is 2.

With this arrangement, the modification to the byte decoder is pretty
straightforward. Lines 20050-2f11KJb become:

20050 CODE = D(0) * 16 + D(1)

20060 IF CODE < = 255 THEN POKE PB, CODE: RETURN

139

Thus, the code to be poked is evaluated as before, but it is possible now
for the result to be greater than 255 (FF) if the first character is 'L'. So if
we reach 2f/11Jl0we've found a label:

2f/11f70 S$ = CHR$(PEEK(PT)) + CHR$(PEEK(PT + 1))

20080 FOR L= 0 TO 50

2f/1/1)0 IF SYM$(L) = S$ THEN 20120

20100 NEXTL

20110 PRINT "LABEL"; S$; "NOT FOUND": END

20120 CODE = NB(L) - PB + SA - 1

20130 IF CODE > =0THENPOKEPB,CODE

20140 IF CODE < o THEN POKE PB, 256 + CODE

20150 RETURN

Line 2f/11Jl0 creates the label as a string, which is then searched for in
SYM$. When it's found, L points to the number of bytes it is into the
code in NB. Line 20120 then evaluates the offset. To take my example,
and assuming that the code is loaded from 5f/11Jl1/J onwards, we have:

SA = 5f/1/1/11J

PB = 50008

NB(l) = 2

(because it's pointing at Ll in line 40)

So CODE = 2 - 50008 + 5f/1/1/11J - 1 = -7, which is the number of bytes
to be skipped. However, since this is negative, it can't be poked directly.
We have to form its complement by adding 256 (line 20140).

THE DECODE WITH LABEL ROUTINE (16.)

This one's a dolly. All we have to do is move the pointer PT along to the
colon and call the 'decode without label' routine:

16000 PT = PT + 2

16010 GO SUB 14000

16020 RETURN

THE SYMBOL TABLE

All of which just leaves the problem of generating the symbol table
(SYM$ and NB) in the first place.

140

To do this, we must count every byte in the program, which shouldn't
be too difficult. The number of bytes per instruction is one more than the
number of single spaces.

In outline, the code is going to look much like the decoding suite of
routines we've already got, except that no decoding takes place:

22f/1/1/J DIM SYM$(50), NB(50)

22010 BC = 0: P = 0: LS = 2049

22020 GOSUB 24f/1/1/J: REM COUNT ONE LINE

22030 IF FINISH THEN RETURN

22040 LS = PEEK(LS) + 256 * PEEK(LS + 1)

22050 GOTO 22020

COUNTING A LINE (24M)

24f/1/1/J PT = LS + 4: FINISH = 0

24010 IF PEEK(PT) = 172 THEN FINISH = -1: RETURN

24020 IF PEEK(PT) = 58 THEN GOSUB 26000: RETURN:

REM NO LABEL

24030 GOSUB 28000: RETURN: REM LABEL

THE 'NO LABEL' CONDITION (26M)

In this case, all we have to do is count the bytes and increment BC
accordingly:

26f/1/1/J PT = PT + 3

26010 IFPEEK(PT) = 0THENBC = BC + 1: RETURN.

26020 IF PEEK(PT + 1) = 32 THEN BC = BC + 1: RETURN

26030 BC = BC + 1

26040 GOTO 26000

THE 'LABEL' CONDITION (28M)

This time we have to record the label and its relative address first, then
call the 'No label' routine:

28f/1/1/J S$ = CHR$(PEEK(PT)) + CHR$(PEEK(PT + 1))

141

28010 SYM$(P) = S$: NB(P) = BC: P = P + 1

28f/f20 PT = PT + 2

28030 GOSUB 26000

28040 RETURN

And that's it! There are a few things to beware of. First, there's almost
no error-trapping built in. It would be sensible to write a pre-processing
routine which checked the syntax of the code, since an extra space in the
wrong place, or a missing colon will confuse the program totally.
Second,. don't forget to add line:

142

10005 GOSUB 22f/1/11J: REM SET UP SYMBOL TABLE

On the plus side, there are a couple of features which just 'happened'. I
can't claim any credit for them, but they're there anyway.

First, you can add two leading spaces after each line number (except
when there's a label), so that everything is columnated like this:

10

20L1

30

40

:A2oo

: A0FF

: BDooC0

: D0L1

LDX#0

LDY#FF

Loop back to L1 until zero

because BASIC removes them again. That makes it more difficult to
make a mistake because everything lines up nicely. Of course, when you
list, the extra spaces disappear, but it doesn't matter so much then.

Second, labels don't have to start with 'L'. The real restriction is that
they must start with a symbol whose ASCII code is greater than 70, so
that the computed 'byte' exceeds 255. This means any letter from 'G'
onwards will do. So you can have more labels than you're likely to need,
but if you want more than 51 you'll have to redimension SYM$ and NB.
Incidentally, there's no check for more than 51 labels either!

To execute MINIASS, RUN 10f/1/11J. 'GOTO' would work the first
time you use it, but not subsequently because you would be re
dimensioning the symbol table. Then enter the start address for the code
(not the data area!) in decimal. So for instance, if you have 6 bytes of
data from C000 to Coo5, the start address is C006 = 49158.

PROJECT: SEPARATE ASSEMBLY

Here's an idea for a modification to MINIASS which could prove useful.
Suppose you have several separate routines which you want assembled
and loaded to a different area of memory.

They could appear like this:

10

20

30
40
50 *

100
110
120

130 *

and soon.

first routine

} second routine

As things stand, MINIASS can deal with all of them if you assemble
the first routine, delete lines 10-50, rerun MINIASS and so on.

It would be nicer, though, if you could enter the starting line number
for the routine to be assembled, so that the program would skip to that
routine directly. It's easy to do, because we know the bytes which
identify the line number are at LS + 2 and LS + 3. The only thing you
need to worry about is where to dimension the symbol table!

Notice that, in either event, since the symbol table is re-initialized on
every assembly, labels will be treated as local to each routine, so you can
re-use label names in successive routines without MINIASS getting
confused.

ANOTHER PROJECT

LOADER has several options not available in the current version of
MINIASS: listing a Machine Code program to check it is stored cor
rectly in merflory; running it; recording it to cassette or disc; loading it
back in from cassette or disc. You can easily pinch the relevant routines
from LOADER and combine them with MINIASS to get a really
versatile utility. The main item it lacks is something that will auto
matically assemble mnemonics into hex. If you're prepared to type in a
table of all 151 mnemonics together with their opcodes; the number of
bytes they require; and to add a few book-keeping routines, you can
remedy this yourself. It's a nice project for a rainy February.

143

There's much more to Machine Code than
I've been able to tackle here, of course;
this is just a start. To go much further
you'll need more sophisticated software
aids-hand-assembly isn't really sensible
for complicated programs. I'd like to
finish by tidying up:

22 Some Loose Ends

There are a number of odd points and ideas that I haven't been able to
make yet but shouldn't finish without mentioning. The first is:

SA VING MACHINE CODE AND BASIC IN ONE GO

Here's one way. Include the above two routines in your BASIC pro
gram. SAVE the BASIC program first, then use the 'F' option to save
the Machine Code as a second file. In reverse: LOAD the BASIC; take
option 'I', and input the file as a secondary stage.

An alternative is to POKE the system variables that determine where
the BASIC program and variables areas go, to fool the Sixty-four into
opening up a gap to put your Machine Code into. Transfer it down to
that region. Now a simple SA VE will save BASIC and Machine Code in
one go. See the Reference Guide, page 312 for the addresses of the
system variables. (If you're that serious about programming, you'll
already have bought it!)

RELOCATABLE CODE

All that talk of moving code around brings us to another topic. If you
write code that avoids absolute addresses, it can be transferred to
another region of memory without any problems. This is known as
relocatable code. You can usually avoid JMP altogether; but JSR does
pose problems so you may have to do a little editing on the code before
or after transfer.

THEKERNAL

You can JSR to any routine in the Sixty-four's ROM: all you need to
know is the address involved in a particular routine, and what state the
registers must be in first.

144

Particularly useful are the Input/Output routines, which are available
through a program called the KERNAL which sits in memory from E~
to FFFF. A full description may be found in the Reference Guide: a few
routines that you may be especially interested in are described here.

Some KERNAL routines require other preparatory routines first.
You must call those before you call the main routine.

CHKIN: Address FFC6
This opens a channel for input. The logical file number has to be put in
the X-register. Unless you intend to use the keyboard as communication
device you must use OPEN as a preparatory routine.

CHKOUT: Address FFC9
This works the same way as CHKIN, butfor output.

CHRIN: Address FFCF
This gets a character from the input channel and puts it in the accumu
lator. Unless you are using the keyboard, preparatory routines OPEN
and CHKIN are required. The X-register is used.

CHROUT: Address FFD2
This is like CHRIN but for output. Preparatory routines OPEN and
CHKOUT, except for TV screen output.

CLALL: Address FFE7
This closes all files. Registers A, X are affected.

CLOSE: Address FFC3
This closes a single file. Load the logical file number into the accumu
lator. The X and Y registers will be affected.

GETIN: Address FFE4
Gets a character from keyboard (no preparatory routines, but note that
it uses the keyboard buffer), or other input device (preparatory routines
CHKIN, OPEN). It puts the character in the accumulator.

OPEN: Address FFC0
Opens a logical file. Preparatory routines SETLFS and SETNAM must
be used.

(-/(,8
No, Naismith - a

Disc Operating System is
not something used in

spinal surgery

145

PLOT: Address FFF0
This sets the screen cursor position. The column number should go in
the X-register, the row in the Y-register. The accumulator is used.

SETLFS: Address FFBA
Sets up a logical file. Load accumulator with logical file number, X
register with device number, Y-register with command (255 default).
The device numbers are:

o Keyboard
1 Cassette recorder
2 RS-232C device
3 TV display
4 Serial bus printer
5 Serial bus disc drive.

SETNAM: Address FFBD
Sets up a file name. The length ofthe name goes in the accumulator, and
the X- and Y-registers get the junior and senior bytes of the address
where the name starts in RAM.

For example, suppose you want to PRINT a character to the screen at
row 7, column 5. Suppose the character is 'X' with ASCII code 58 hex.
First you position the cursor at row 7, column 5, using PLOT:

LDX#05

LDY#f/J7

JSRPLOT

A205

A0f/J7

20F0FF

Now you use CHROUT to output the character:

LDA#58

JSRCHROUT

A958

20D2FF

The CHROUT routine automatically updates the cursor position. So to
print 'FRED' on the screen, you can use:

LDA#46 A946 ASCII for 'F'

JSRCHROUT 20D2FF

LDA#52 A952 ASCII for 'R'

JSRCHROUT 20D2FF

LDA#45 A945 ASCII for 'E'

JSRCHROUT 20D2FF

LDA#44 A944 ASCII for 'D'

JSRCHROUT 20D2FF
146

Don't forget to add the final:

RTS 60

if you try these out.

ASSEMBLERS

To help you edit and load Machine Code, there are a number of
commercial assemblers available. These let you write in assembly
mnemonics, using labels, etc., and convert to hex automatically.

One point to note is that almost all of them are slow to use, because
they tend to come in sections that have to be loaded into the computer
one at a time ... load editing program; edit assembly code; save
assembly code to a file; load assembler; read in assembly code from file;
output hex code to another file; read that file in; load in place; and
execute. For short programs, an assembler isn't really much use.

For longer programs, on the other hand, an assembler is a must.
Commodore produces one called 64MON; several others are com
mercially available.

You could even write your own!

147

Appendices

-(

;. / .

. ~ ,.

'~.'

1 Bex/Decimal Conversion

d 4 A B c D E F

-128 -127 -126 -125 -124 -123 -122 -121 -12d -119 -118 -117 -116 -115 -114 -113

9 -112 -III -lid -199 -198 -UJ7 -196 -IdS -194 -ldJ -192 -Idl -100 -99 -98 -97

A -96 -95 -94 -93 -92 -91 -9(/ -89 -88 -87 -86 -85 -84 -83 -82 -81

B -89 -79 -78 -n -76 -75 -74 -73 -72 -71 -79 -69 -68 -67 -66 -65

c -64 -63 -62 -61 -69 -59 -58 -57 -56 -55 -54 -53 -52 -51 -59 -49

D -48 -47 -46 -45 -44 -43 -42 -41 -49 -39 -38 -37 -36 -35 -34 -33

E -32 -31 -3d -29 -28 -27 -26 -25 -24 -23 -22 -21 -2d -19 -18 -17

F -16 -15 -14 -13 -12 -II -19 -9 -8 -7 -6 -5 -4 -3 -2 -I

d 6 19 II 12 13 14 15

16 11 18 19 2d 21 22 23 24 25 26 27 28 29 3d 31

32 33 34 35 36 46 47

48 49 59 51 52 62 63

4 64 65 66 ~ 68 69 79 71 72 73 74 75 76 n 78 79

81 82 83 84 85 86 87 88 89 9(/ 91 92 93 94 95

6 96 97 98 99 100 191 192 IdJ 194 IdS 196 197 198 199 lid III

7 112 113 114 115 116 117 118 119 12d 121 122 123 124 125 126 127

8 128 129 13d 131 132 133 134 135 136 137 138 139 149 141 142 143

A 169 161 162 163 164 165 166 167 168 169 179 171 172 173 174 175

B

c

D 2d8 2d9 21d 211 212 213 214 215 216 217 218 219 22d 221 222 223

E ru m m m m m ~ m ill m ~ m ~ m ~ m

F ~ W m w ~ lli m ill m ~ ~ m m m ~ ill

151

2 Mnemonics

ADC
AND
ASL

BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BVC
BVS

CLC
CLD
CLI
CLV
CMP
CPX
CPY

DEC
DEX
DEY

EOR

INC
INX
INY

lMP
JSR

LDA
LDX
LDY
LSR

NOP

ORA

152

Add with Carry
Logical AND on each bit
Arithmetic Shift Left

Branch if Carry Clear
Branch if Carry Set
Branch if result zero
Test bits from memory
Branch if minus (signed arithmetic)
Branch if result non-zero
Branch if plus (signed arithmetic)
Force break
Branch if overflow clear
Branch if overflow set

Clear Carry flag
Clear decimal mode flag
Clear interrupt disable bit
Clear overflow flag
Compare accumulator with memory
Compare index X with memory
Compare index Y with memory

Decrement by 1
Decrement index X
Decrement index Y

Exclusive OR

Increment by 1
Increment index X
Increment index Y.

Jump to absolute address (or indirect address)
Jump to subroutine

Load accumulator
Load index X
LoadindexY
Logical Shift Right

No operation

Logical OR

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEC
SED
SEI
STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Push accumulator to stack
Push processor status to stack
Pull accumulator from stack
Pull processor status from stack

Rotate left one bit
Rotate right one bit
Return from interrupt
Return from subroutine

Subtract with Borrow
Set Carry flag
Set decimal mode
Set interrupt disable status
Store accumulator to memory
Store index X
Store index Y

Transfer accumulator to index X
Transfer accumulator to index Y
Transfer stack pointer to index X
Transfer index X to accumulator
Transfer index X to stack register
Transfer index Y to accumulator

153

3 S11lll11UlrY of Addressing Modes and
MnemoDic Formats

154

Symbols used in this appendix:

MOP Mnemonic for operation (e.g. STA)

jj Zero page address (junior byte)

JJ ss Non-zero page address (junior byte, senior byte)

dd Relative displacement: signed binary between -128 and 127

nn Number byte

() Indirection

, X Using X index

, Y Using Y index

Implied and Accumulator addressing Either no address required, or
the accumulator assumed. Format:

MOP

Immediate addressing Numerical data, not an address. Format:

MOP #nn

Absolute (non-zero page) addressing Using a two-byte address.
Format:

MOP jj ss

Zero-page addressing Using a single byte to specify address on page 00.
Format:

MOP jj

Pre-indexed by X Indirection via a byte whose addre~s on page zero is
the specified byte plus the contents of the X-register. Format:

MOP (jj, X)

Post-indexed by Y Indirection via an address on page zero, to which
the contents of the Y-register are added. Format:

MOP (jj), Y

Indexed (four kinds) Zero or non-zero page, X or Y register used as
index byte. Formats:

MOP jj,X
MOP jj, Y
MOP jj ss, X
MOP jj ss, Y

Indirect Two bytes specify the address at which the effective address
may be found. Only used by JMP. Format:

MOP (jj ss)

Relative Signed displacement byte to be added to the Program
Counter, used for branching. Format:

MOP dd

155

4

• This table shows all of the opcodes for the 6510 microprocessor, listed
alphabetically by mnemonic, in all available addressing modes:

0 0

e Cll) e Cll)

e ~ ~
Q) 0. 0 0.

Q) N I N I

N >- I e I e I >< c:: c::
c:: '0 0 0 0 0
0 '0 0 c:: N c:: N

0 c:: Q) 0 >< >< >< >- >-.... Cll) >< 0 ~ 0 Q) '0 '0 0 '0 ~ '0 '0 '0
.~ :.a =' 0. '0 .5 Q) 0 Q) 0 u .=:

0 "0 I .5 >< >< >< >< 0
0.. E e I 0 0 0 0 "" ~ Vl I :.a 0 Vl '0 '0 '0 '0 Q) E E .0 Q)

"" ~ c:: c:: c:: c:: c:: - - « N Il.. - - - - - ~

AOC 69 60 65 61 71 70 75 79
AND 29 20 25 21 31 30 35 39
ASL 0A 0E 06 IE 16
BCC 90
BCS B0
BEQ F0
BIT 2C 24
BMI 30
BNE 00
BPL 10
BRK 00
BVC 50
BVS 70
CLC 18
CLO 08
CLI 58
CLV B8
eMP C9 CD C5 Cl 01 0005 D9
CPX E0 EC E4 - -
CPY C0 CC C4 - -
OEC CE C6 DE 06
OEX CA -
OEY 88
EOR 49 40 45 41 51 50 55 59
INC EE E6 FE F6

156

Q) Q)
0 00 0 00 0 ~ ~ ~ ~

~ Q) 0. Q) 0. Q) N I N
N >- I 0 I I

I >:: c:: ~ c:: e c:: "0 0 Q) 0 Q)
0 "0 Q) c:: N c:: N

Q) c:: Q)
Q) >< ><: >:: >- >-..... Q) 00 >< Q)

"0
~ ~

Q) "0 "0 "0 "0 "0 Q)

.~ :.a ;::l 0. "0 .5 Q) Q) Q) Q) u .:::
Q) '0 I .5 >< >< >< >< Q)

"S.. 0 I ~ ~ E rJJ I Q) Q) Q) Q) :.a .0 ~ Q) rJJ "0 "0 "0 "0 Q) E E Q) ~ 0
~ N c:: c:: c:: c:: c:: ~ - - ~ ~ - - - - -

INX E8
INY C8
JMP 4C 6C
JSR 20
LDA A9 AD A5 A1 B1 BD B5 B9
LDX A2 AE A6 BE B6
LDY A0 AC A4 BC B4
LSR 4A 4E 46 5E 56
NOP EA -
ORA 09 0D 05 01 11 1D 15 19
PHA 48
PHP 08
PLA 68
PLP 28
ROL 2A 2E 26 3E 36
ROR 6A 6E 66 7E 76
RTI 40
RTS 60
SBC E9 ED E5 E1 F1 FD F5 F9
SEC 38
SED F8
SEI 78
STA 80 85 81 91 90 95 99
STX 8E 86 96
STY 8C 84 94
TAX AA-
TAY A8 -
TSX BA -
TXA 8A
TXS 9A
TYA 98

157

5 Effect of Operations on Flags

This table lists, for all operations that affect the Processor Status
Register (flags), what the effect is. Operations not listed have no effect.

* Set or reset according to result of operation
o Always reset to 0
1 Always set to 1
7 Bit 7 of the byte involved
6 Bit 6 of the byte involved

Operation N V D I Z C

ADC * * * *
AND * *
ASL * * *
BIT 7 6 *

tBRK *
CLC 0
CLD 0
CLI 0
CLV 0
CMP * * *
CPX * * *
CPY * * *
DEC * *
DEX * *
DEY * *
EOR * *
INC * *
INX * *
INY * *
LDA * *
LDX * *
LDY * *
LSR 0 * *
ORA * *
PLA * *
PLP * * * * * *
ROL * * *

t BRK also sets the B flag.

158

Operation N V D I Z C

ROR * * *
RTI * * * * * *
SBC * * * *
SEC 1
SED 1
SEI 1
TAX * *
TAY * *
TSX * *
TXA * *
TYA * *

159

6 Opcodes in Numerical Order for
Disassembly

This uses the same symbols as Appendix 3.

00 BRK 59 EOR jj ss, Y B0 BCS dd
01 ORA (jj, X) 5D EOR jj ss, X Bl LDA (jj), Y
05 ORAjj 5E LSR jj ss, X B4 LDY jj,X
06 ASL jj 60 RTS B5 LDA jj,X
08 PHP 61 ADC (jj, X) B6 LDX jj, Y
'11) ORA#nn 65 ADC jj B8 CLV
0A ASL 66 ROR jj B9 LDA jjss, Y
0D ORA jj ss 68 PLA BA TSX
0E ASL jj ss 69 ADC#nn BC LDY jjss,X
10 BPL dd 6A ROR BD LDA jjss,X
11 ORA OJ). Y 6C IMP (jj ss) BE LDX jjss, Y
15 ORAjj.X 6D ADC jj ss C0 CPY #nn
16 ASL jj, X 6E ROR jj ss Cl C"'hlP (jj, X)
18 CLC 70 BVS dd C4 CPY jj
19 ORA jjss. Y 71 ADC (jj), Y C5 CMP jj
10 ORA jjss, X 75 ADC jj, X C6 DEC jj
IE ASL jj ss, X 76 ROR jj, X C8 INY
20 ISR jj ss 78 SEI C9 CMP.#nn
21 AND OJ. X) 79 ADC jjss, Y CA DEX
24 BIT jj 7D ADC jj ss, X CC CPY jj ss
25 AND jj 7E ROR jj ss, X CD CMP jj ss
26 ROL jj 81 STA (jj, X) CE DEC jj ss
28 PLP 84 STY jj D0 BNE dd
29 AND#nn 85 STA jj Dl CMP (jj), Y
2A ROL 86 STX jj D5 CMP jj,X
2C BIT jj ss 88 DEY D6 DEC.jj, X
2D AND jj ss 8A TXA D8 CLD
2E ROL jj ss 8C STY jj ss D9 CMP jjss, Y
30 BMI dd 8D STA jj ss DD CMP jj ss, X
31 AND (Jj), Y 8E STX jj ss DE DEC jj ss, X
35 AND jj, X 90 BCC dd E0 CPX #nn
36 ROL jj, X 91 STA (jj),Y El SBC (jj, X)
38 SEC 94 STY jj, X E4 CPX jj
39 AND jj ss, Y 95 STA jj,X E5 SBC jj
3D AND jj ss, X 96 STX jj, Y E6 INC jj
3E ROL jj ss, X 98 TYA E8 INX
40 RTI 99 STA jjss, Y E9 SBC #nn
41 EOR OJ, X) 9A TXS EA NOP
45 EOR jj 9D STA jj ss, X EC CPX jj ss
46 LSR jj A0 LDY #nn ED SBC jj ss
48 PHA Al LDA OJ, X) EE INC jj ss
49 EOR #nn A2 LDX #nn F0 BEQ dd
4A LSR A4 LDY jj Fl SBC (jj), Y
4C IMP jj ss A5 LDA jj F5 SBC jj, X
4D EOR jj ss A6 LDX jj F6 INC jj, X
4E LSR jj ss A8 TAY F8 SED
50 BVC dd A9 LDA #nn F9 SBC jj ss, Y
51 EOR OJ), Y AA TAX FD SBC jj ss, X
55 EOR jj, X AC LDY jj ss FE INC jj ss, X
56 LSR jj, X AD LDA jj ss
58 CLI AE LDX jj ss

160

7 Sprite Registers Made Easy

Address Contents Function

0000 Sprite 0 column number
0001 Sprite 0 row number
0002 Sprite 1 column number
0003 Sprite 1 row number
0004 Sprite 2 column number
0005 Sprite 2 row number
0006 Sprite 3 column number
0007 Sprite 3 row number Sprite positions
0008 Sprite 4 column number
0009 Sprite 4 row number
000A Sprite 5 column number
000B Sprite 5 row number
000C Sprite 6 column number
0000 Sprite 6 row number
000E Sprite 7 column number
000F Sprite 7 row number

0~10 Sp7 Sp6 SpS Sp4 Sp3 Sp2 Sp 1 Sp0· Offset flag
0015 Sp7 Sp6 SpS Sp4 Sp3 Sp2 Sp 1 Sp0 Enable/disable
0017 Sp7 Sp6 SpS Sp4 Sp3 Sp2 Sp 1 Sp0 Expand vertically
0010 Sp7 Sp6 SpS Sp4 Sp3 Sp2 Sp 1 Sp0 Expand horizontally
001E Sp7 Sp6 Sp5 Sp4 Sp3 Sp2 Spl Sp0 Collision flag

0027 Sprite 0 colour code
0028 Sprite 1 colour code
0029 Sprite 2 colour code
002A Sprite 3 colour code Colours
002B Sprite 4 colour code
002C Sprite 5 colour code
0020 Sprite 6 colour code
002E Sprite 7 colou_r code

07F8 Sprite 0 data pointer
07F9 Sprite 1 data pointer
07FA Sprite 2 data pointer
07FB Sprite 3 data pointer Pointers
07FC Sprite 4 data pointer
07FD Sprite 5 data pointer
07FE Sprite 6 data pointer
07FF Sprite 7 data pointer

161

8 Keyboard Scan Codes

This lists the contents of address 197 (00(:5 hex) when a given key is
pressed. Using PEEK(197) or STA C5 (Opcode 85 C5) permits de
tection of the key currently held down, bypassing the keyboard buffer.

Key Code Hex Key Code Hex Key Code Hex

(none) 64 40 46 2E T 22 16

* 49 31 A 10 0A U 30 IE
+ 40 28 B 28 lC V 31 IF
, 47 2F C 20 14 W 9 09
- 43 2B D 18 12 X 23 17

44 2C E 14 0E Y 25 19
/ 55 37 F 21 15 Z 12 0C
0 35 23 G 26 lA RETURN 1 01
1 56 38 H 29 ID CLR/HOME 51 33
2 59 3B I 33 21 INST/DEL 0 00
3 8 08 J 34 22 CRSR i! 7 qn
4 11 0B K 37 25 CRSR~~ 2 f/12
5 16 10 L 42 2A ~ 57 39
6 19 13 M 36 24 f1 4 04
7 24 18 N 39 27 f3 5 05
8 27 IB 0 38 26 f5 6 06
9 32 20 P 41 29 fl 3 03

45 2D Q 62 3E £ 48 30
, 50 32 R 17 11
= 53 35 S 13 0D

162

Other titles of interest

Easy Programming for the Commodore 64
Ian Stewart & Robin Jones

The Commodore 64 Music Book
James Vogel & Nevin B. Scrimshaw
A guide to programming music and sound on the Commodore 64.

Gateway to Computing with the Commodore 64
Ian Stewart
There are two books in this series designed to introduce the
fundamentals of computing to young people in a new 'fun' way.

(The series is also available for the BBC Micro, ZX Spectrum
and Dragon.)

Brainteasers for BASIC Computers
Gordon Lee
'A book I would warmly recommend'-Computer and Video Games.

£6.95

£5.95

(hdbk) £6.95
(pbk) £4.95

£4.95

Shiva also publish a wide range of books for the BBC Micro, Electron,
ZX Spectrum, Atari. VIC 20. Commodore 64. Oric and Atmos computers.
plus educational games programs for the BBC Micro. Please complete the
order form overpage to receive further details.

ORDER FORM

I should like to order the following Shiva titles:

Qty Title ISBN Price

_ EASY PROGRAMMING FOR THE COMMODORE 64 o 906812 64 X £6.95

_ THE COMMODORE 64 MUSIC BOOK 1 85014019 7 £5.95

_ COMMODORE 64 ASSEMBLY LANGUAGE 0906812968 £7.95

_ GATEWAY TO COMPUTING WITH THE 1 85014 051 0 £6.95 (hdbk)
COMMODORE 64: BOOK ONE 1 85014 017 0 £4.95 (pbk)

_ GATEWAY TO COMPUTING WITH THE 1 85014 055 3 £6.95 (hdbk)
COMMODORE 64: BOOK lWO 1 85014 035 9 £4.95 (pbk)

BRAINTEASERS FOR BASIC COMPUTERS o 906812 36 4 £4.95

Please send mea full catalogue. of computer books and software: 0

Name

Address

This form should be taken to your local bookshop or computer store.
In case of difticulty, write to Shiva Publishing Ltd, Freepost, 64 Welsh
Row, Nantwich Cheshire CW5 5BR, enclosing a cheque for £

For payment by credit card: Access/BarclaycardNisa/American Express

Card No .. Signature

Is BASIC programming on your 64 too limited for you? Then
take a step beyond and get to know the core language of your
Commodore: Machine Code.

This book will introduce you gently, but thoroughly, to the
fundamentals of Machine Code programming. In no time at
all , you will be exploring the possibilities of:

• . Sprites
• Colour
• Keyboard control
• Moving graphics
• High and low resolution displays

Numerous appendices will help you to develop and build up
your Machine Code. The 64's speed and versatility will
astound you, as will your ability to exploit and manipulate
them.

Accept the challenge and you will certainly reap the rewards!

G8 t NET +006.95

ISBN 1-85014-025_1

9 Ilt"'I"'/llllm

