commodore 64

machine code master
Alibrary of machine code routines

david lawrence & markengland

commodore 64

machine code master

Alibrary of machine code routines

R)|
P 34,50

Marterlaan 10-Den Dolder
Postbus 93
3720 AB Bifthoven

First published 1984 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12—13 Little Newport Street

London WC2R 3LD

Copyright © David Lawrence and Mark England
Reprinted 1983, 1984

ISBN 0946498 05 X

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording and/or otherwise, without
the prior written permission of the Publishers.

Cover design by Grad Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset and printed in England by Commercial Colour Press, London E7.

2

CONTENTS

Foreword
Part 1

'S I S

Mastercode Monitor
Mastercode Disassembler
Mastercode File Editor
Mastercode Assembler

Part 2

:S\OOO\IO\UI

The BASIC Extender

The BASIC/Machine Code Patch
BASIC Extender Program I1
Simple BASIC Action Keywords
The Problem of Parameters
BASIC Functions

Breaking New Frontiers

Appendices

Mmgo QW >

Checksum Generator
Mastercode User Guide

Table of Variables

Table of Subroutine Functions
ROM Routines Called

Table of Control Characters

Page

11
27
41
57

97
103
119
123
137
167
173

177
181
185
187
189
191

Contents in detail

CHAPTER 1

Mastercode Monitor

Examining memory contents, altering them, saving and loading machine
code programs.

CHAPTER 2

Mastercode Disassembler

Translating the 64 ROM or our own machine code programs into assembly
language.

CHAPTER 3
Mastercode File editor
Entering assembly language programs and saving and loading them.

CHAPTER 4

Mastercode Assembler

Creating machine code programs from assembly language, including
automatic error checking.

CHAPTER 5

The BASIC Extender

How to transfer the contents of the 64’s BASIC Interpreter to user
memory.

CHAPTER 6

The BASIC/Machine Code Patch

All the machine code techniques needed for extending the BASIC
language.

Machine Code Master

CHAPTER 7
The BASIC Extender 11
The final changes to link extended BASIC to the existing interpreter.

CHAPTER 8
Simple BASIC Action Keywords
Undead, Subex and Rkill.

CHAPTER 9

The Problem of Parameters

Picking up parameters from a BASIC program. Keywords: DOKE,
PLOT, DELETE, BSAVE, BLOAD, BVERIFY, MOVE, FILL and
RESTORE.

CHAPTER 10

BASIC Functions

Extending the 64’s mathematical functions. Keywords: DEEK, VARPTR,
YPOS.

CHAPTER 11
Breaking New Frontiers
The FAST command that wasn’t.

APPENDICES:

A) Checksum Generator: test your Mastercode Program as you enter it.
B) A User Guide to the Mastercode program.

C) A complete table of the variables found in the Mastercode program

and their uses.

D) A quick guide to the purpose of each subroutine in the Mastercode
program.

E) The ROM routines called upon by extended BASIC and what they
do.

F) Representation of control characters in the Mastercode program.

FOREWORD

This is not yet another machine code book for a popular micro which
spends half its pages explaining all the 6502/6510 machine code instruc-
tions and their various addressing modes, with a crude loader program and
a number of machine code routines of dubious usefulness tacked onto the
end. The intention of this book is to provide its readers with a solid BASIC
program for the entry of machine code and assembly language routines
and, along with it, a selection of machine code programs that are worth
having.

The BASIC program is called Mastercode and it is just about a complete
machine code programming tool, containing a Monitor to allow you to
examine and change the contents of memory, a Disassembler which trans-
lates machine code programs into assembly language format, and a File
Editor and Assembler which together allow assembly language programs
to be developed and transformed into machine code.

For the machine code routines in the second half of the book we have
adopted a new approach. What you will find there is a collection of
routines which you can use to extend the BASIC language on your 64 with
14 new commands. Apart from increasing the power of BASIC it will also
help you to learn the techniques of effective machine code programming
and the ways in which the machine code programmer can make use of the
routines already built into the 64’s BASIC Interpreter.

The book is not intended to be a primer in machine code. That is not to
say that it cannot be used by beginners. It is simply that we have assumed
that you will possess, or can get hold of, some other book which explains
each 6502/6510 instruction in detail. We decided that we could offer better
value by concentrating on the programs themselves and on explaining the
techniques that went into them. If you have to look up the odd instruction
in your 6502 text-book it will be a small price to pay.

All the programs in the book have been tested — in fact the Mastercode
program itself has been tested to exhaustion (ours). The machine code
routines in this book have all been developed on the Mastercode program
because only in that way could we be sure that you would be able to do the
same. If you run into bugs in anything you find in this book then the blame
is on us but we venture to suggest that they will not be major after the
testing that has been put in.

The book is a cooperative venture between two people with very dif-
ferent backgrounds. David Lawrence writes mainly BASIC programs and

Machine Code Master

is the author of several books on microcomputing. His interest in computer
hardware is minimal. Mark England studies electronic engineering, juggles
with silicon chips as if it were second nature and learned to write machine
code when the BASIC ROM on his micro burned out. He discovered he
didn’t need it anyway.

The idea came from David Lawrence, who was tired of buying machine
code books that never seemed to provide anything of interest when he
actually worked through them. Mark England did the vast majority of the
programming, though not without heckling. The final form of the book
arises out of Mark England’s need to explain to his co-author just what the
programs were about and have it translated for lesser mortals. In that
process of explanation and discussion a style of commentary and expla-
nation has developed which, we believe, does justice to the programs and
to the reader’s need to understand them.

The other partner in the writing of this book has been the Commodore

64. The book would not have been a possibility on many other home
micros. It is only because of Commodore’s philosophy of opening up their
machines to the programmer, providing access to a host of facilities and
routines within the interpreter that others seemto dotheir best tolock away,
that we have been able to take 64 BASIC apart and put it together again.
We have had some arguments with the 64, but it remains an invaluable
machine for those who wish to go beyond BASIC.
" Finally, our thanks are due to the staff of the Microchips shops in
Winchester and Southampton, who provided invaluable help when it came
to seeking out equipment and supplies. Thanks are also due to Jane Law-
rence who regularly, on her way to bed as we pounded the keyboard into
the early hours, told us what a wonderful job we were doing. We hope she
was right.

Part 1

CHAPTER 1
Mastercode Monitor

Every computer program, regardless of the language in which it is written,
begins its life as a series of instructions stored in a coded form within the
computer’s memory. In the case of most languages, the instructions which
make up the program are quite meaningless to the central processing unit
or CPU, the computer-within-a-computer which will eventually be called
on to execute the tasks dictated by the program. To overcome this prob-
lem, standing in between the program entered by the user and the CPU will
be yet another program, most often built into the machine at the time of its
manufacture, which takes the user’s program and translates it into a form
which the CPU is able to understand

The permanent, ‘built in’ program, however, performs another fun-
ction, for without its help it would be impossible for the user to enter
instructions in the first place. From the moment that the computer is
switched on, the built in program begins its task of scanning the key board
to detect an input from the outside world. It then takes those inputs and
stores them in the memory in such a way that they can later be ‘interpreted’
for the CPU. The user who writes programs in BASIC will seldom be
aware of this process. Program lines will be entered, the return key pressed
and the line will become part of the program — provided that the correct
grammar of BASIC has been observed. No real effort or thought is
required to insert a new instruction into the program, either at the end or
embedded in the middle, for the computer’s memory is automatically re-
arranged to make space for the new input.

When we turn to programming in machine code, the situation is not
quite as simple. There are no facilities built into the computer to allow a
new instruction to be simply entered from the keyboard in the confidence
that it will automatically be entered into the computer’s memory and the
present contents rearranged to make room for it. The first task of a
machine code programmer is, therefore, to devise a method of entering
instructions, examining memory and rearranging it to suit the developing
needs of the program that is being entered. This is true whether the
machine code instructions are being entered directly in the form of num-
bers (which is the eventual form in which they must be presented to the
CPU) or by means of a special language called ‘assembly language’ which
makes machine code programs easier to enter and understand. The sim-

11

Machine Code Master

plest tool which allows the necessary management of the memory to take
place is called a ‘Monitor’ and in this chapter we shall build up a flexible
Monitor program which will allow you to examine individual bytes of
memory or extensive chunks and to modify their contents at will.

SECTION 1: Initialisation and Menu
MODULE 1.1

LODOD REFIE #8500 H R R R KRR SN A

REM GENERAL INITIALISATION

RE M % % %% % %% % R R R R R R R D e)

BASE = 16

IF LEN (FTRE) +LEN (E#) < »255 THEN CLK
: GOSUE 19000

10035 DEV = 1 wm 54 4§ Ause "/’M"“Z o e,

LORAE DEFFN HEX(X) = (X AND 15) +48-((X A

ND 15) 59) %7

1O0S0 DEFFN DEC(X) = X—48+ (X *57) %7

10060 FALSE = @ @ TRUE = -1

10070 FOKE 53281,1 : FOKE 53080, 15

The purpose of this module is to set up a number of variables which will
be used later in the program. The function of the variables is explained
briefly in the table given in Appendix but full understanding will only
come as subsequent sections of the program are entered and the variables
actually used. At thisstage it is enough simply to enter the module correctly
— the only visible effect of RUNning it will be to change the screen colour.

CHECKSUM TABLE
10000 123 [leezo 2ze 10030 1273
100731 +e2ilb 10032 436 16y 10035 o
10040 187 10050 132 10060 21

19070 220

This table of checksums is here to help you ensure that you make no
errors in the entry of what will be a long and complex program. For an
understanding of how to use the table see Appendix A, which gives the
listing of the checksum program to be added to the end of the Mastercode
program when you start, enabling you to generate your own checksum
tables for comparison with those given in the book.

12

Chapter I Mastercode Monitor

MODULE 1.2

L DEADE FE %% 59 8 30K 3 B K 33 0N E RN
17001 REM TEMFORARY LINES

TSR REME % 5 %6 0 556 0503 3R W R N R AR
19010 BASE=16 @ RETURN

19@1 1 REM ***END OF MONITOR FPROGRAM®x*®

This temporary module is placed into the program at this point to allow
for the fact that the initialisation routine calls up a later section of the Mas-
tercode program which will not be entered yet. The lines contained in this
module will be overwritten when subsequent sections of the Mastercode
program are entered. The format is not critical, so no checksum table is
needed.

MODULE 1.3

11D FEMERRRRERRERFEEELREXRREFRERERE R LR

1@l BEM CONTEROL ROUTINE FOR MOMITOR

TRLEE FREM® % %R 58 R K8 H 555 58RI 350 K

10110 DATA EXIT TO BASIC,MEMORY MODIFY .M

EMORY DUMP,MACHINE CODE EXCUTE

10111 DATA LOAD MACHINE CODE FILE,SAVE M

ACHINE CODE FILE

1ALRG DATA DISASSEMBLER

1RLED DATA FILE EDITOR

1140 DATA ABSEMBLER

12198 DATH END

3 B RESTORE

A X o= @

1E PRINT "[BLUEJI{CLR]=—===—e—— PRCHTN

E CODE MONITOR ———e—me——-LGREENILCD T

1@eEe READ TF

1P260 IF THCFUENDY THEN PRINT TAR{S) X"

sUOTE s = X+l @ GUTO 180258

10265 IF X<1% THEN FOR ¥ = X TD 15 @ FRI

MT ¢ NEXT

1R27¢ PRINT "COMMAND (@ -7 X-1 ") 5 M3

s INFUT T

1@ERE IF TS0 OR Te=X THEN 1810

10E@S IF T=0 THEN PRINT "LCLRID4%CDO

CRYS DMIBYELRVS OFFIC4#CDI"

» CLOBE 1 @ END

131G ON T GOSUE 13100, 137200, 1 3500, 14200
L L4109, 15800, 24800, 20000

1AEEA GOTO 10188

13

Machine Code Master

Every complex program needs to provide the user with a means of
selecting which of its many functions is to be used next. Such a facility is
called a ‘control routine’ or, more simply, a ‘menu’. The menu given here
is more complex than it need strictly have been for the current program.
This is because the Monitor program is designed so that it can later be
extended by adding subsequent sections of the overall Mastercode Assem-
bler. Rather than having to enter new program lines to take account of the
extra functions that will be provided, the menu will automatically extend
itself to take account of new option names entered into the data
statements.

CHECKSUM TABLE

iaiae 123 121l 1@l 1@ies 123
12118 18652’-!3 1@a111l &2 12120 =
181728 178 13148 &5 1@arsa 122
19200 140 16220 122 18238 192
@238 1 218 19265 166
18278 234 & 1A205 FiE3
19318 199 185

SECTION 2: Output of Memory Contents to Screen

In this section of the program we shall examine those sections of the pro-
gram which are necessary to enable us to print out, in an orderly fashion,
the contents of a specified area of memory. The modules commented on
here may appear very insignificant and you may wonder why it is that they
have not been run together to make one module. As you continue through
the Mastercode program, however, you will see that individual modules
may actually be called up for use from many different parts of the pro-
gram. Keeping the modules to one particular function and one only will
enable us to save on the eventual number of program lines employed rather
than have to duplicate the same lines later in another section of the pro-
gram,

14

Chapter 1 Mastercode Monitor

MODULE 1.4

1 1ERE REME®REHERHEREERRRFEREEEEEEARERREF
11081 REM CONVERT DECIMAL TO HEX
110D FEME %% 5% E 5% R H W TR R KRR R R RN N

11@1@ T H s HJ:- Il
1120 HE = CHRE(FNHEX (T-INT(T/16) *1H)r+H

£ 2 T = INT(T/1&) = IF T>@ THEN 11020
11258 RETURN

This three line module transforms a decimal number into a hexadeci-
mal number, that is one with a base of 16 rather than a base of 10.
Machine-code programmers almost universally use hexadecimal num-
bers, for the simple reason that they conform much more logically to
the system of binary arithmetic used by a computer.

The hexadecimal numbering system has 16, rather than 10 digits, as
follows: 0123456789 ABC D E F. Most modern computers
store numbers in units of 256 (0 - 255), and the reason that hexadeci-
mal is so convenient is that with a two digit hexadecimal number, the
maximum value which can be expressed is also 255 (15*16 for the high
digit and 15 for the low). Using hexadecimal means that a much more
orderly representation of the values stored in memory can be made. In
addition, the binary system used by the computer means that very
often apparently significant numbers in hexadecimal like 1000 (or 4096
in decimal) are also significant in terms of the operation of the
computer. Beginning to think in hexadecimal is an important aid to
beginning to understand the workings of the micro.

Commentary

11020: The operation of this line is best explained by use of an exam-
ple. Assume that the decimal number 4375 has been stored in the
variable H. To convert that value into hexadecimal, we need to first
recognise that it is made up of 1*16f3 (16]13=4096) + 3*1612
(1612=256)+ 0*1611 (1611=16) + 11*1610(1610=1). This line isolates
each of these units of different powers of 16 and then translates them
into a character which represents the appropriate hexadecimal digit,
using the user defined function FNHEX (see line 10040) to select the
correct character. In the case of 4875 the hexadecimal number will be
130B. For units with a value from 0 to 9, FNHEX simply returns the
value of the appropriate character 0 - 9 (character codes 48 - 57). If the
value of the unit is from 10 - 15, then a further 7 is added to the cha-
racter code value to take it into the range A - F in the 64’s character
set.

15

Machine Code Master

'CHECKSUM TABLE

ligaa 12% 1iad1 167 liees 12%
ligie 178 li@z2e 74 11058 142
MODULE 1.5

i SRR LS SRR S B R T R R R T
115 HEM CONVERT HEX IM H# TO DEC IM H
119 FUE M 30 3 003 3 6 6 56 000 6 5 LT
115 ERF = FALSE ¢ H = @

THEM 12

11988 FOR X = 1 TO LERMNOHE)

IS8 T = FNDEC (ASC (MIDE (H#E, X 133y M o=
HeRBOABEST

1326 T<@ THEN ERR = TRLUE

TEGELE IF T:E

Although it is more sensible to input numbers in hexadecimal, working
in BASIC does mean that they have to be translated into ordinary decimal
for use by the program. This is accomplished by the current module.

Commentary

11975: Throughout the program the variable ERR (error) will be used to
indicate that an error has been discovered. The normal value of ERR will
be 0, which is the value assigned to the variable FALSE in the initialisation
routine. Whenever an error is detected ERR is reset to the value of TRUE,
which is minus one. The point behind using these “truth’ values is that it
also allows ERR to be set by a statement such as ERR = (A> 50). The
expression in brackets has a value according to whether it is true or false. If
false it will take the value zero, if true it will have the value minus one. By
this means ERR can be set to show that something is wrong much more
economically than using statements such as IF A> 50 THEN ERR = -1.

11980-12020: Examining each character of the string HS in turn, this loop
extracts the decimal value of the hexadecimal character using the user
defined function FNDEC (line 10050). Since the loop works from the left,
the result obtained so far must be multiplied by 16 for each subsequent
hexadecimal digit. If a character outside the range 0 - F is input, the ERR
variable is set to minus one as a warning to subsequent modules.

16

Chapter 1 Mastercode Monitor

CHECKSUM TABLE

12838 142

MODULE 1.6

12OSD RE M %% 8004 X5 90523069 3636936 96396269 3 3 6 %
12031 REM INFUT S8TART ADDRESS

[l i = PR TR R R R R L X
12057 HE = "¢

12060 INFUT "START ADDRESS (IN HEX)
" HFE @ GOSUBLIFSG

12080 IF ERR OR HI@ OR HX>65535 THEN 1206
@

12098 AD = H @ RETURN

When printing the contents of an area of memory to the screen, it is
necessary to specify the start point in memory. This is done in hexadecimal,
and the input is then translated into decimal by the previous module.

CHECKSUM TABLE
1E@058 123 12051 19 12992 122
12857 162 12060 5@ 12080 128

12099 199
MODULE 1.7

11850 REM®E% 35833 X 5 3% WX 0 K 359355365 953 %
11851 REM ASK CONTINUE 7

11852 REM®E %3 3% 3K 939 % 359 X 5% 5% % 3% % %%
11858 T = "*

11860 INFUT “"CONTINUE ¢ Y/N) : "3 T%
1187@ IF T#="Y" THEN CO = TRUE : GOTO 11
895

11880 IF T#<:>"N" THEN FRINT “"L[CUI"; : GO
TO 11850

11890 CO = FALSE

11895 RETURN

When an area of memory is dumped to the screen, this module is called
to enquire whether the user wishes to continue with another.

17

Machine Code Master

CHECKSUM TABLE

11858 123 11831 114 liasns
11858 174 118560 34 1i8va v
11888 255 ligea 259 11895 142
MODULE 1.8

11100 FREM®E 59835 %3 55 596 5 5 % 99 5 5 X 538 5 395 %% 4%
11131 REM BYTE INTD HEX

11102 REPM® 35535580 W39 5963 590K W X B
1111@ H = PEEE{AD) 1 AD = AD+1

11120 508U 11000

1113538 IF LEN(HE)Y<CZ THEN MHf = "@"+H$
11148 02% = Q2%+HE

11158 RETURN

This module does the actual work of taking a value from a location in the
memory specified by the variable AD. Module 2 is then called to transform
the value into hexadecimal form — single figure hexadecimal numbers are
‘padded out’ with a leading zero in order to ensure a standardised format
of two digits per byte of memory. Finally the hexadecimal number is added
to 028, which will be used to display the contents of the memory to the
screen.

CHECKSUM TABLE

litaey 1233 111801 &6 11182)
iii@ =5 1ii12@ 159 11138 22%
i1i14a 32 1118@ 142

MODULE 1.9

1233@@ REM® 3% 95 55 3563 3% 56 9 5% 3 9696 36 3 3 9 % % % % N % 56
13381 REM DUMF MEMORY TO SCREEN

IZZ302 REMS® 352555555 958 % % % 39 5% 5 3% %X %% %% %%
133510 GOSUB 12050

12320 PRINT "CCLRI" @ FOR X1 = 1 TD 18
H = ADh : GOSUER 11006

13240 02% = """ 3 01§ = H¥ 2 (O3F = "nv
IIS50 FOR X2 = 0 TO 7

133260 GOSUR 11100 : 02F = OP%+n v

13575 IF HXZ1L AND HC95S THEN O7%

REHY) @ GOTO 13380

13E77 O0Z%F = O3F+7,. 0

QZF+CH

Hi

18

Chapter 1 Mastercode Monitor

MEXT X2

FRINT Q1F TABRE) 02% TAR(IE1) 03F
MEXT X1

FRINT @« GOSUR 11850 : IF CO THEN 1

RETURN

We have now entered all the modules which are necessary to define a
start address and to pick up data from the memory. We can now proceed to
the part of the program which actually does something. Having defined the
start point, this module prints out the contents of an area of memory to the
screen.

Commentary

13320: The X1 loop will be used to print out 18 lines, each with eight values
taken from the memory, starting at the address now stored in AD.

13350-13380: The hexadecimal values returned from the previous modules
are stored in the string 02$. If the value contained in the particular
memory location is the code of an ASCII letter or digit, that character is
stored in the string O3$, for display next to the values concerned. In most
cases, the characters displayed will make no sense, since the fact that the
code is that of a printable character will be purely chance. However, when
examining areas of memory such as the variables area of the 64, or the
structure of the BASIC program itself, or a machine code program which
contains strings, this facility will be indispensable in getting a picture of
what an area of memory contains, since any strings held there will be
displayed.

CHECKSUM TABLE

129
2t
100
44

Review

Having entered this section you have the working basis of the program asa
whole. In the sections which follow you will find that many of the modules
employed are those which are already entered, since functions such as
translating into hexadecimal are common to them all. Before moving on to
enter the rest of the program, familiarise yourself with the operation of the
program so far. Examine the area of memory which contains the start of
(8}
A
) 19

Machine Code Master

the program itself (starting at 801 hex) and the variables area. This section
of the Monitor, on its own, is a powerful tool in unlocking the secrets of the
64’s memory.

MONITOR: Output of Memory from 801 hex

801 25 08 1@ 27 8F 206 2A ZA Yonww . RER
8@% 2A ZA 24 2A 2A 2A 2A Z2A e e e BN B
811 2A 28 2A Z2A 206 26 268 245 R I H R
819 2A 2ZA 24 2A 264 2A 24 24 FI TS
821 20 24 24 B0 42 88 24 27 *%%, H. ¥
B29 8F 20 47 4% 4E 45 52 41 . GENERA
831 A4C 22 49 4E 49 54 49 41 L INITIA
839 4C 49 53 41 54 49 4F 4E LISATION
841 00 &Lé& @8 2ZE 27 8F 24 2A I £
B49 Z2A 2A 2A 24 26 2A 26 2A WP e e e

851 2A 2A 2A 26 2A 20 2A 2A K N
BS59 2A 206 26 24 2A 2A 24 2A WA WK
B&1 204 Z2A 2A ZA 00 74 08 2F KHNH, .S
B69 27 42 41 353 45 20 BE 20 ‘BASE .

871 31 & B0 98 08 I8 27 8RE 16...07.
B79 20 C3 28 S0 354 52 24 29 « (FTR#)
881 AA L3 2B 45 24 29 BI B1 . {E¥)..
BB ZE2 E5 Z0 20 A7 20 9C 20 2855 . .

CONTINUE ¢ Y/N) =
SECTION 3: Modifying the Memory

Having learned how to examine the memory we now proceed to the next
stage, which is altering its contents. In this section we present two more
modules which will allow you to step through the memory, forwards or
backwards, displaying the contents of individual bytes and, if you wish,
altering the contents of the byte currently displayed.

MODULE 1.10

12000 RE M %3655 % 96 % 3 5 3 53 363 6 56 9 2 963656 56 9696 5 3%
170801 REM GET 1 BYTE

1Z002 REMSE %555 % 5 99 8 5 0 5 9 9305 e e e 5 396 96 36 9696 %5
172047 HE = "¢

1732010 INFUT YBYTE (IN HEX)
13020 GOSUR 11950

178040 IF ERR OR H<@ OR H>255 THEN FRINT
"LCUIY » GOTO 13000

17050 RETURN

“?l HE

20

Chapter 1 Mastercode Monitor

On the basis of previous modules you should have little difficulty in discer-
ning that this module accepts a hex value in the range 0-FF (0-255), calls up
a translation into decimal and returns that value to the next module, from
which it is called.

CHECKSUM TABLE

15061
lzata 1,
12E56 144

120828 1353
1EBEE 1TVA

MODULE 1.11

11 IR PRI 0 6 0 B B B0 0 3 K KKK R R K
15101 REM MEMORY MODIFY

TUEL A R R % W H R R R R R R KR R R R
1@ GOSUR 12050

1EIZ2E H = AaD GOSUE 110080 @ PRINT HE TA
Bihy v/ oy s O2F = MY

15140 GOSUR 11100 @ AD = AD-1 @ FRINT HF

LR R

1E16R INFUT “ +,~,1,E @ "3 T%

w170 IF T#="+" AND AD<6SSIS THEN AD = A
: GBOTO 13120

3 IF T#="-" AND AD:>® THEN AD = AD-1

O 1S5

173190 IF T#="E" THEN RETURN

173200 IF T#<:"1" THEN PRINT"L2*CUIY @ GO

TO 13120

17210 GOSUE 13000 : FOKE AD,H : GOTO 131

20

The purpose of this module is to allow the user to step through the
memory from a chosen start address and to modify the contents of indi-
vidual bytes. The major part of the module is concerned with outputting
the values in each byte to the screen in a comprehensible format and to
moving through the memory. Changes to memory contents are accom-
plished by the last line, including a call to the previous module

21

Machine Code Master

Commentary

13120-13140: Having obtained the start address, the address of the current
byte is printed out, together with the value which it contains.

13160-13210: Four prompts are used by the module. ¢+’ means move on to
the next byte, ‘- means move back one byte and ‘E’ quits the module. The
remaining prompt is ‘I’, which calls up the previous module and allows a
new value to be placed into the current byte.

CHECKSUM TABLE

12108 123 13181 112 123
15118 145 12128 228 i7
12158 174 1%16@ 192 78
12188 1146 13198 211 2@
1E218 229

MODULE 1.12

L2500 REME® K XS XK E 555K K55 K5 50550 R 55 W W’
13501 REM MACHINE CODE EXECUTE

1252 REM® %35 %% 5 %5 95 5 5 % 3 3 8 58 % 5 %% % % % % 5% %% %
13510 GOSUER 128380 : 8YS5 AD : RETURN

Should you wish to use the monitor to enter machine code programs
directly into the memory in hexadecimal form, this one line routine will
allow you to call up the machine code routine without having to quit the
program. It would be wise not to run any machine code program before
ensuring that the program so far entered has been saved.

CHECKSUM TABLE
12508 123 13531 18 125832 123

12518 1dsé

SECTION 4: Saving and Loading Files

Now that you have the ability to enter new values into the memory and
hence to develop a machine code program, you need to be able to save the
programs that you will eventually develop and enter. You also need to be
able to reclaim those programs from disc or tape, depending on where you
wish to store them. The four short routines which follow are designed to
make this possible.

22

Chapter 1 Mastercode Monitor

MODULE 1.13

11250 REME %3885 5% 3 3958 5 03 338333 H ¥R K%
11251 REM INFUT FILE NAME

11252 GOSUR 25508 : IF DEV=4 THEN 11299
11285 INg = ""

11268 INFUT " FILE NAME : "3 IN& 2 T = L
ENCINE)

11280 IF Tx16 OR T4@ THEN PRINT "L[CDIFIL
E NAME INVALID" : GOTO 11260

1129@ RETURN

When saving a block of information on tape or disc, this is done in the
form of a ‘file’, a named location which must first be ‘opened’ before
information is sent to it and then ‘closed’ when all the necessary infor-
mation has been stored. When the information is recalled, the name of the
file needs to be specified. This module allows the necessary file name to be
input.

CHECKSUM TABLE
11238 123 11251 194 11252 119
11285 241 112660 137 11288 216

11290 142

MODULE 1.14

1120@ REM®% %% %% 3% % 5% 59565 3 250 3 % 3 3 % 03 % % 5%
11201 REM INFUT FINISH ADDRESS

112007 REMEHE 3 3553 53335 3236933360636 3%
11205 HE = "

1121@ INPUT "FINISH ADDRESS (IN HEX) @
"y HE @ GOSUER 11950

11230 IF ERR OR H4O OR H:>65535 THEN 1120
1]

11240 EA = H : RETURN

The machine code programs which you will eventually develop with the
aid of the programs in this book will be contained in blocks of memory. To
save them, the program must be given two pieces of information, namely
where the block starts and where it finishes. We already have a routine
which obtains the start address, this one performs the same function for
the finish address.

23

Machine Code Master

CHECKSUM TABLE
1128w 123 11201 7@ 11282 123
11285 162 11218 1@l Pi23a 123

11240 268

MODULE 1.15

141 GHD FEFINS 35 50005 55630 3606 006 339 0 9396 0 26 46 36
141801 REM MACHINE CODE SAVE

T4 TS REME SRR IR R UK 8B 55256 H 35
14110 GOSUR 11250 : GOSUR 12050 @1 GOSUR
11200

141135 T = "NY @ IF DEV=8 THERN INFUT "0V
ERWRITE EXISTING FILE (¥Y/N ¥ @ - - 3
14116 IF TE="Y" THERN IN# = "@@: "+IN$
14120 1IF DEV=H THEN INF = INE+Y 5, WY
14125 IF SAXEA THEN 14190

141728 OFPEN Z2,DEV,2,INE @ PRINT# 7,480 @ F
RINT# 2,EA

141580 FOR X = A0 TO FEa& @ PRINTH 2,PEEE (Y
Y or NEXT @ PRINT# 2 @ CLOSE 2

14198 RETURRMN

Now that we can give a name to the file in which the information con-
tained in an area of memory is going to be stored and can specify the start
point and end point, we can proceed to enter this module, which will store
the information on tape or disc.

Commentary

14125: This line simply checks that the user has not defined a block of
memory whose end point is before its start.

14130: A file is opened, in this case an ‘output’ file, with the destination of
the information being dictated by the value of the variable DEV (device).
In the listing of this program it is set at 1 (line 10035), which directs the
output to a cassette recorder. If you are using a disc drive, then DEV should
be set to 8 in line 10035. Once the output file is opened, the first two pieces
of information to be stored in it are the start address (AD) and the end
address (EA). Later in the program, a facility will be added to allow you to
change the current device number at will.

14150: The contents of each byte in the block of memory to be saved are
now stored one by one in the file. At the end of the loop the file is closed.

24

Chapter 1 Mastercode Monitor

CHECKSUM TABLE

14108 133 14101 46
14118 224 14115 32
14120 179 14125 9
14156 161 14190 142
MODULE 1.16

14500 REMEREREEERERAERAXEREXR XL R R EREXERER
143501 REM MACHINE CODE LOAD
FE 13 0 3 3 36 06 2 3 0 0 06 00 e e 0
GOSUE 11258 @ IF DEV=8 THEN IN¥ =
-IS-;F‘:“

} OFEN 2,DEV.,@, INE @ INFUTH# 2.85A.EA
: IF 5T THEN CLO%E 2 : RETURNMN
14350 FOR X = 54 TO EA @ INFUTH 2,7 2 FO
EE K, T 3 NEXT @ CLLOSE 2 ¢ RETURN

This module is simply the mirror image of the last one. Instead of placing
information into a file, this module takes previously stored information
from the file and places it back into the computer’s memory.

CHECKSUM TABLE

i4zae 125 14702 1323
14216 286 1425@ 50
Summary

Having entered the whole of the Monitor you are now free to play about
with it, though its full power will only be realised once the rest of the Mas-
tercode program is entered. Try entering a new line: 0 A =13. Call up the
menu option which allows the memory to be changed and alter the contents
of byte 805 hex to 8F (143). List the program to 1 and you will see that your
first line has changed to a REM statment (143 represents REM in the pro-
gram file). Unless you are very sure of what you are doing it would be wise
not to try to change too many other memory locations at present, and
certainly not before you have properly saved your final version of the
monitor. If you do want to mess about, try modifying some of the colour
attribute bytes from D800-DBFF hex, the colour attributes memory of the
screen. Mistakes here are not likely to be disastrous.

25

CHAPTER 2
Mastercode Disassembler

Having now entered the Monitor program, which allows you to examine
areas of memory and to change their contents, we now move on to the next
stage, which is to enable you to translate the contents of an area of memory
which contains a machine code program into a more understandable form.
This more ‘readable’ form for a machine-code program is known as
‘assembly language’.

The advantage of working with assembly language is that while
POKEing numbers directly into memory does permit a machine code pro-
gram to be entered, there is no easy correspondence between the numbers
being entered into the memory or read back from it and the operations
which the machine code program will carry out. The program is merely a
list of numbers and very few programmers are ever capable of reading a
program in that form without constant reference to charts containing the
relevant codes and their meaning. Assembly language provides a means of
inputting instructions which will be both comprehensible to the user (with a
little practice) and yet represent every machine-code instruction in the pro-
gram exactly. In other words the assembly language program consists of a
series of instructions, or mnemonics, which correspond to individual
machine-code operations which the 6502/6510 chip is capable of recog-
nising and carrying out.

Instructions in assembly language will normally be in two parts:

1) An ‘operation code’ (opcode) which specifies the type of operation
which the 6502/6510 chip is being asked to carry out, such as move a num-
ber from one place in memory to another, compare two values or per-
form an arithmetic operation on a value.

2) Having defined the type of operation which must be performed it is now
necessary to define the number on which the operation is to be performed.
This part of the instruction is known as the ‘operand’ and may consist of a
number which will be acted upon directly or the address in memory of a
number which is to be operated on.

A typical machine code instruction, upon which the assembly language
translation is based, will therefore normally consist of one byte specifying
the ‘opcode’ and one or two bytes which are used to derive the number to be
operated upon. Some types of instruction need only one byte, that specif-

27

Machine Code Master

ying the opcode itself, since they invariably imply that the value to be
operated upon is at a fixed location which does not need to be spelled out.

In order to translate a machine code program in the computer’s memory
into assembly language, a program is needed which will be capable of
identifying an opcode and then of deciding how many of the succeeding
bytes of memory (0,1 or 2) are part of the operand associated with that
opcode. A program which is capable of doing this is known as a ‘disassem-
bler’. Its effect is to take the incomprehensible numbers which memory
normally contains and to translate them into something which (with a
little practice) can be read and understood by the user.

The brief and much simplified explanation given above will bear some
study if this is the first time you have been introduced to the idea of a disass-
embler. Once the concept is straight in your mind, you should have little
trouble in understanding the basis on which the following section of the
Mastercode program works. By means of a series of tables stored in
strings, the program is capable of identifying machine code instructions in
a specified area of memory and of printing out the type of operations and
their operands in assembly language. The program can be used in at least
two ways:

a) For the user who is developing programs in assembly language, the
Disassembler allows the program in memory to be more easily checked
during the process of entering and debugging.

b) For those who wish to go further in their exploration of the memory of
the Commodore 64, the program as listed is quite capable of giving a
complete translation of the machine’s ROM, the permanent built-in pro-
gram which actually runs the machine. In this way a better understanding
of the 64’s internal workings can be built up and it is possible to examine
ways in which individual routines within the ROM can be used effectively
within the user’s own programs.

SECTION 1: Setting up Tables

MODULE 2.1
12200 REPIR #5358 6 69 % 5 % % 5 K8 5 5 60 8K 36 5 5 5 5 5 5% %

12201 REM HEX LOADER
, G E R T Y R L T L Ly N R v vy
TiF = 1
FOR X1 = 1 TD LEN{(TE) QTEF 2
TEQ TIE = T1s+CHRE(FNDEC(ASC(MIDE (T# 4
Ly 12 1) 2 16+FNDEC(ASC (MIDFE(TF, X1+1,1)))
12260 NEXT X1
12278 RETURN
Thereal purpose of this module will not become apparent until the tables
in the following module have been explained. Its function is to take values

28

Chapter 2 Mastercode Disassembler

from the tables and to compact them into strings. The table values have
been set out in the form of two digit hexadecimal values (ie numbers in the
range 0-255 decimal). This module converts a pair of hexadecimal values
into a single ASCII character. The characters thus formed can be econo-
mically stored in a string (T1$).

CHECKSUM TABLE

1220@ 123

12210 223

12268 43

MODULE 2.2

2201 107 12202 123
12220 216 12230 154
12270 142

R nlrC I S E R ST XL L L LA ST EE L L R kb b
19981 REM INITALISE DECODER TARLES
19005 RE PR 959 5 5 5 9 RN B0 e 3 N R N

19085 BASE

= 16&

19@07 DEFFN DEC(X) = X-48+(X>57)%7

19010 DIM

17@11 T#
BR2BEI8Y
19012 T#
gRrazzgn
190135 T#
HB1273E8Y
19@314 T#
B@1L27xg"
19015 TF
B172038"
i9@le T
g172a3g"
198317 T#*
BBAZE38"

it

Hi

4

#

i

Tek (4)

TPARREATERGEIBEERI4EEBEIEE
TH+"PYRZIBIBIBLZ20LTBADEZTEERS
THE+"1CALIEBZB06B1 2738260127380
TE+"@A7DLZBEEEHVL27IGECAL 88T
TE+" 291 73GEBER1 7203823172058
TE+"QRL7IBABAB L 72QE00F 1738385

TH+ " 2ADDIRIBIHODEBERIEHOZEIE]

19318 GOSUER 122080 @ TAF(@ = T1F

19019 T#
BOOZETA"
19020 T*
12F 038"
19021 T#
BEFI8I8"
19022 T#
FIDIE38"
19025 T#

Hi

i

CRCEREEIOICDBIBEBEERAIBIHA

TE+"FEZFIEABEA12FIQEB 1683582

THE+"AEREFEIBEEI1EFIQEBIETEFZ638E

T#+"1F1IDIEZBIFIDIEZIBIEIDIEAEL

TH#+"@A41DEBEIBIFIDIEZBIQIDE436]

29

Machine Code Master

FlDLEZs:

17024 TF = THE+"I21IEHESI21114381a1 115381
El1143Egy

19@85 T = TH+ U811 3E3RE811 1438081 135
g1ii14xg"

199026 GOSUE 12200 2
17027 T4 = TLEZBIBEEIZERIAER
fﬂET"TQ“

19 28 T#
gERlar
19029 GOSUR 12200 @ TA:(@ = TAf@)+T1E
190728 T = "1711166112011CC1381114410 8

BElilastn
19631 THF = TE+"U7116661120100C1381114411
BliiAate
19@32 T = TE+"171116611201C0C0138111441 4
BlilAAly
19033 TH = THE+"171116611201900138111441 1
BlltAaLy
1903534 T# = TE+"1711&66611111COC1381144511
Blilsll®

i

TH#+ " QEIREBEBEEEE 1 OEEIDIREHEES

I9@35 T# = TE+"Z72166611211000138114451 1
Blilaagl"
19036 T# = TE+"271166611211CC01381114411
BliiAapl:
19037 TH = TH+"2711646611211C00138111441 1

Biliiav

12038 BOSUR 12200 @ TAF (1) = TIi$+UHRE(LS
i

12048 Tak(d) = "ADCANDASBLECCERLSRE
BBEITEMIBNEBFLERKBVCRYS Y

19041 TAF(2) = TAF(2)+"CLCCLDCL ICLVOMPOR
XCPYDECDEXDEYEORINCINK®

19042 TAF(2) = TAF(2)+"INYIMFISRLDALDXLD
YLSRNOFORAFHAFHFFLAFLFY

120435 TAF(Z) = TAF (D) + "RDL-R‘CJF\‘FE'T'IRTSSBEISE
COEDSEISTASTXSTYTAXTAY

198044 TAF(Z) = TAF (D) +"TEXTXATXSTYAT PP
17846 RETURN

READY .

30

Chapter 2 Mastercode Disassembler

These seemingly daunting tables are in fact remarkably simple if the gen-
eral explanation of the working of a disassembler given above has been
understood.

The three sections of the table defined between lines 19011 and 19029 are
used to create, via calls to the previous module, a line in the array TAS,
containing characters whose codes are in the range 0-56. These values point
to a subsequent table which contains the names, in assembly language, of
the 56 opcode types that are available when a machine code instruction is
expressed in assembly language, plus one code which shows that an invalid
opcode has been found. There are over 150 opcodes availablein 6502/6510
machine code, so why only 56 representations (or mnemonics) in assembly
language? The answer to the question is that machine code opcodes fall
into groups, such as those which load the accumulator with a value, and
such groups have a common mnemonic. Within each group, however,
there are wide differences between the operands ie the way in which the
value to be worked upon is obtained. Thus each opcode will have a unique
operand type associated with it but a mnemonic may be capable of being
associated with several different types of operand when the machine code
program is translated into assembly language.

Thus, an opcode with a value of 127 would have an entry at position 127
in TA$(0). The ASCII code of the character at that position will be used to
give a value between zero and 56. This value will then be used to point to
three characters in the section of the table which is defined between 19940
and 19944. These five lines of text, when broken up into units of three rep-
resent all the available 6502/6510 assembly language mnemonics for
opcode types.

The remaining section of the tables, defined by lines 19030 to 19037 give
the type of operand which is associated with that particular opcode. The
types of operand will be explained more fully subsequently.

SECTION 2: Operands and their Types

As was made clear in the foreword, there is no intention in this book to
provide an introduction to 6502/6510 machine code. It is assumed that
those who will wish to use the book will either already be familiar to some
extent with the concepts that lie behind machine code and assembly lan-
guage programming or that the book will be used in conjunction with a
general 6502/6510 assembly language primer which will explain the
various functions available on the 6502/6510 chip. It is, however, necess-
ary for the understanding of the program at this stage, to provide some
brief explanation of the manner in which the 6502/6510 chip understands
operands, that is to say the values or memory locations on which it is cap-
able of performing its 56 types of operation.

31

Machine Code Master

The 6502/6510 chip is capable of recognising 11 distinct methods,
known as addressing modes, by which the value which is to be operated
upon is obtained from a machine code program. Each individual opcode
requires the use of one of these 11 different methods. The disassembler
program must be capable of recognising the opcode and then of extracting
from that opcode the type of addressing which is to be used.

The two simplest forms of addressing are accumulator addressing and
implied addressing:

1) Accumulator addressing: some opcodes specify, without the need for
any further spelling out of a value or memory address, that the operation to
be performed is to be carried out on the contents of the accumulator reg-
ister within the CPU. An example of this type of addressing would be ‘shift
left accumulator’ (SLA in assembly language), which would shift bits0- 6
in the accumulator one place to the left, effectively multiplying the value
represented by those bits by 2. No further reference is needed when an
opcode of this type is specified and only one byte of memory is needed to
represent an instruction of this kind in a machine code program.

2) Implied addressing: accumulator addressing is a special case of this
addressing mode. There are other opcodes which imply within themselves
the place where the value to be operated upon is to be found. An example of
this would be ‘transfer accumulator to Y register’ (TAY). The effect of this
operation is exactly what it says and there is no further need to spell out
where the value to be transferred is obtained or where it will be placed. This
again is a one byte instruction in machine code.

3) Immediate addressing: opcodes which employ this type of addressing
require that the value to be acted upon is specified along with the opcode
itself, such values being in the range 0 - 255, or the possible contents of a
single byte of memory. An example of this type of opcode would be “load
accumulator immediate’ (LDA). An instruction involving this opcode
might be LDA {127. The effect of this instruction. would be to load the
accumulator with the value 127. When put into machine code this type of
instruction requires one byte of memory to specify the opcode and a fur-
ther one byte to specify the value to be operated upon.

4) Relative addressing: this is employed when jumps are to be made in a
program and a value is required to specify the point in memory to which the
execution of the program will jump. As with the previous addressing type,
this value is in the range 0 - 255 but this range is split into a positive and
negative half, with values from 0 - 127 implying a positive jump and values
from 128 - 255 specifying a negative jump (127 is subtracted from the
value). The jump is measured relative to the address of the byte following
the jump instruction. An example of this type of opcode would be ‘branch
non-zero’ (BNE). An instruction involving this opcode might take the
form BNE 127 - the effect of the instruction would be that if the previous
operation performed by the program had not resulted in a zero, a jump

32

Chapter 2 Mastercode Disassembler

forward would be made spanning 127 bytes of the program before exe-
cution commenced again. Relative addressing, like the previous type,
employs one byte for the opcode and one byte for the operand.

Before discussing the remaining types of addressing it is necessary to
understand two types which are not implemented in a pure form but which
form the basis for others:

a) Indexed addressing: this method employs one of two registers in the
6502/6510 chip known as the ‘index registers’. This type of opcode uses an
operand which specifies an address in memory but, before this address is
used, it or its contents are modified by the addition of the present contents
of one of the index registers. Thus an instruction using indexed addressing
requires that

i) there be a value in the index register

ii) that the operand specify an address in memory.

b) Zero page addressing: this refers to the fact that though the 6502/6510
chip has only five registers (locations within the chip into which values can
be placed and easily acted upon) accessible to the machine-code program-
mer, this limitation compared to other popular CPU chips is overcome by
regarding the whole of the memory from address zero to address 255 as
being a series of 128 two-byte registers which can be called upon to store
values for the CPU to operate upon. Zero page addressing is the addressing
mode by which this area of memory is accessed.

Going back now to the main addressing modes provided on the
6502/6510 chip we find:

5) Zero-page indexed addressing: in this form of addressing the two modes
given above are combined. In an instruction of this type the value con-
tained in the index register might be seven, in which case the two byte
operand would refer to an address in zero page memory (0-255) to which
would be added the contents of the specified index register plus.

6) Indirect addressing: here the operation specified by the opcode will be
performed upon an address which is not directly stated in the assembler
instruction but is contained in the two bytes whose address is pointed to by
the two byte operand. An example of an instruction of this type would be
‘jump’ (JMP). This opcode would be followed by a two byte operand. The
operand is not itself the address in memory to which program execution
should jump, rather the two-bytes beginning at the address specified by the
operand contain an address. It is this second address to which the jump
should be made. Thus JMP (JAAAA) would not specify a jump to address
$AAAA but to the address represented by the value stored in the two bytes
at SAAAA and SAAAB in the memory.

There are two further forms of indirect addressing available on the
6502/6510 chip which use the concept of indexing described before:

7) Pre-indexed addressing: as with normal indirect addressing, operands of
this type contain addresses at which will be found values to be operated

33

Machine Code Master

upon. Before obtaining that first address, however, pre-indexed operands
are added to the contents of the CPU X register. Thus if the X register
contains $100 and the operand is $100, then the address at which the
desired value will be sought is $200.

8) Post-indexed addressing: here the operand specifies a location in
memory, and the contents of that location are first obtained, then the con-
tents of the CPU Y register are added to that value. The result is an address
upon whose contents the operation is to be performed.

9) Absolute addressing: in this type, the two byte operand specifies an
address in memory at which will be found the value to be operated upon.
Thus the instruction ‘load accumulator’, when using this type of
addressing, might have the form LDA $AAAA, which would result in the
loading of the accumulator with the value stored in byte SAAAA in the
memory.

10 and 11) Absolute X and absolute Y addressing: in the case of these two
types the address specified in the two byte operand is added to the contents
of either the X or the Y register to arrive at the final address of the value to
be operated upon. Thus if the contents of register X is $5 and the operand is
$AAAA, then the address of the value to be operated upon for an instruc-
tion such as LDA $AAAA,X would be to load the accumulator with the
contents of the byte at AAAF in the memory.

Having given this brief explanation of the different type of operands
which the 6502/6510 chip is capable of understanding, you should now
find the sections of the program which deal with the creation of assembly
language instructions out of their machine-code equivalents easier to
understand without too much further commentary. In the modules that
follow, when an opcode is picked up from memory, the program will
obtain the correct types of addressing for the opcode by accessing the
tables stored in the previous section, obtaining a value which it will record
in the variable OP (OPerand). The value of OP when translated into an
addressing mode is given in the table below and you will find it useful to
refer to this when following the program modules for the Disassembler.

VALUE OF ‘OP’ ADDRESSING MODE
0 Accumulator

1 Implied

2 Immediate

3 Relative

4 Zero-page indexed, X

5 Zero-page indexed, Y

6 Zero page

7 Pre-indexed indirect (X)
8 Post-indexed indirect (Y)

w
oS

Chapter 2 Mastercode Disassembler

9 Absolute indirect

10 Absolute indexed, X
11 Absolute indexed, Y
12 Absolute
CHECKSUM TABLE

EURS Il S o 5 0 26 30 5 % oW R W R W R
REM ACCUMLUILLA
FrE 3 5 96 3 36 30 90 5 0 e 2 N O WO
O1F = OlF+"HY

MOIMPLTED (D=1

This brief module deals with the two simplest types of addressing mode:
a) Accumulator addressing: all that is required for the disassembly of this
type is the addition of ‘A’ to the standard opcode.

b) Implied addressing: here the opcode itself implies its own operand and
no further action is needed.

CHECKSUM TABLE

ey

35

Machine Code Master

MODULE 2.4
1SR P P 0 0 W3 IR N R
15551 REM IMMEDIATE (OF=2)
LEEED RE M %% % %95 3 6 585 3 5 5 3% 0 3 9 9 % 5% 50 KR K F 6 XK
1585460 GOSUR 11108
15578 01% = OlE+"#E"+HE
15580 RETURN

This module deals with immediate addressing. The byte following the
opcode is taken to be an operand in the range 0-255.

CHECKSUM TABLE

15550 123 15851 189 15552 123
15560 1649 15578 1353 15580 142
MODULE 2.5

BT R I T T X R R T T T IR
156@1 REM RELATIVE ((OF=3)

15652 REM®E%%% % 3% 3% 9% 3% %3 55 3 36 3 5 % % 5 35 3 % 56 5% %% %
15610 GOSUE 11108

15620 IF H>127 THEN H = H-256

1568 H = H+AD

15648 GOSUR 11000

15650 01F = QLFE+"FY+HE

18668 RETURN

This module deals with relative addressing and translates the byte
following the opcode into a number in the range -128 to + 127.

CHECKSUM TABLE

15680 123 1asl1 139 15602 123
15610 160 15620 23 1863@ 177
15646 159 15658 98 15660 142
MODULE 2.6

1EEAD REMW% % 5% 5% 5 3% % % K N % %336 3 3 % 5 93 % 5% 9% %
15501 REM ADD OFERAND IN OF TO O1¥%

1EERA2 REM* %35 % 3536 X 3 % 3 9 3 5 5 9 3% 5326 % 5 5% ¥ 55 %%
15310 ON OFP+1 GOTO 15450, 15500, 15550,156
20

36

4n K
15428
v
1547358
154480

IF OF:

GBOSLR
1% =
IF OF
EOBUR
Oig =
O1F =

IF OF=
IF OF-

Chapter 2 Mastercode Disassembler

& OND OF<1R THEN O1F = (1F+"

11100

CleE+"s" ¢ T# = HE
§ THEN 15390
11109

01 F+HE

OiF+TH
9 0OR OF=8 THEN 01F = OLF+")"
INT(OR /23y %3=1 THEN Ul$ = 01F

IF {F-INT (0P /2 %3=2 THEN 001% = (01¥%

IF OF=
RETURN

7 OTHEN O1% = OLE+") "

This simple section of IF statements formats the assembly language
instructions according to the different addressing modes. The best way to
understand the section is to compare what it does to the operand, on the
basis of the value of OP, given in the table previously.

CHECKSUM TABLE

15506 123 152382 123
18%1a 11@ 15348 160
1525@a 156 A 3 1&376 160
153860 80 1539@ 92 15400 230
15410 267 15420 209 154Z8 187
1544@ 14%

SECTION 3: Disassembly of Memory

We have now entered the sections of the program which enable the transla-
tion to be made from machine code into assembly language. It now
remains to.add those modules which allow the program to pick up the con-
tents of a specified area of the 64’s memory so that that the machine-code
instructions it contains may be disassembled and printed to thescreen.

MODULE 2.7

1570 RE 55 55 W56 5 3 e N N
REM DISASSEMEBLE INSTRUCTION
R % 5% % 36 5 36 9 2 36 96 % 3 3 3 5630 36 3 3 3 03 W e BN

5741
15702

37

Machine Code Master

15710 02§ = "

L5715 11108 & H o= H+l
1575 5 OTHEM H o= 3
15730 SC(MIDF (TAF (@) L H, 1))

L5750 01% = MIDE(TAF (2), THI+1, T+
15760 OF = ASC(MIDE CTAF (1), INT CHR 1) /72,
1))

1577@ IF (H AND 1) =1 THEM OF = DF/1s
15780 OF = OF AND 15

15790 RETURN

CHECKSUM TABLE

1a7aR 123 15781 94 15798 123
15718 219 189718 119 157358 148
197358 1351 15758 144 1a76@ 224

15774 146 15783 133 157%@ 144

This module constructs the assembly language instruction out of the
information picked up from memory.

Commentary

15715-15720: The opcode byte having been obtained, its value is placed
into the variable ‘H’.

15730: The opcode is used to obtain a pointer value from TA$(0) which will
indicate the position in TA$(2) of the three letter assembly-language
format of that opcode.

15750: A space is added after the opcode to conform with standard assem-
bly language format.

15760-15780: The addressing mode which is associated with the opcode is
obtained from the table at TA$(1).

MODULE 2.8

1TEERAY RENM® S5 500 555 5% 55 58 H W 523 KRR e W
158601 REM DISASSEMEBLE MEMORY AREA

1EBAE REM¥ %% %5 5 % 3 59 55 3 9 5 % 3 5 5% % % 5% % % % 6%
15310 GOSUR 12056

185828 FRINT "CCLRIY @« FOR I = 1 TO 20
15825 H = 4D @+ GOSUB 11900 : FPRINT HE TA

38

Chapter 2 Mastercode Disassembler

GODSUR 157860 @ GOSUB 157206
1 FRINT O02F TabB(14) Ol
18E6 NEXT I

158465 PRINT

157G GOSUER 11858

19880 1IF CO THEN 1532@

15890 RETURN

CHECKSUM TABLE
23 15891 13 i sa0
165 15820 93 P
207 15850 115 15860

15865 1832 iagva 172 15880
15890 14Z

This is the control module which formats the assembly language instruc-
tions obtained by the previous modules. For an explanation of the various
subroutine calls, see the Table of Subroutine Functions in the Appendix.

Summary

Even if you are working with this book in conjunction with a good
6502/6510 primer it will be worth, at this stage, spending some time play-
ing with your assembler and monitor. Try disassembling some of the
routines within the 64 ROM and trying to understand a little of how they
function. Some interesting addresses to begin disassembly are given below,
together with the purposes of the routines at that position.

Be warned, however, that any disassembler is only as good as the starting
position in memory that it is given. If you start the disassembly of memory
at a point which is in fact halfway through a machine-code instruction then
the first few bytes, at least, of the disassembly listing will be garbage, since
parts of operands will be translated as opcodes. Eventually, after rejecting
a number of apparently spurious instructions and perhaps listing some
nonsense instructions, the disassembler will get itself into synch with the
memory. After this it will be disturbed only by tables contained in the
memory, which it will again attempt to translate as if they were machine
code instructions. When you run up against such problems the only
solution is to move the start address along until you clear the table and
meaningful instructions are discovered from the start of the disassembled
listing.

39

Machine Code Master

Given below is a specimen disassembly of an area of the 64’s interpreter
starting at the address of a routine whose functionis to accept the input of
a new BASIC line using various subroutines in the 64’s monitor and
‘kernal’.

SPECIMEN DISASSEMBLY: Start Address A480 hex

24480 HURZAE JME (EBEREE)
~485 2A6BAS JSR £A560
486 8&78 aTX #7684
488 RB4TH STY ¥7ER
A48A 2@7IBG JER O ¥P@07E
#4a8D AR TAX

A4 8E Fiara BEC /486
A490 AZFF LDX $#%FF
A4 BHEA STX F3IA
A494 Y046 BCC #A/49C
A4 6 2ATIAGE JER 4579
P49 4CEL1A7 JMFP ¥ATVEL
A490 Z2ALHRAT JBR ¥ATAE
A49F EATING JGR #ASTS
AdhE g4ar STY @R
A4H4 201306 JSR #8613
A4a7 Y44 BCC *A4ED
A4AY ABB 1 L.DY #%@1
Ad4AR B1GF LDA (¥5F) Y
A4AD 8823 STA 23

COMTINUE (Y/N)

40

CHAPTER 3
Mastercode File Editor

Before proceeding to the main part of the Assembler program we shall
examine the File Editor, which allows assembly language programs to be
entered in a convenient form and practically edited.

In discussing the Disassembler we have already noted the format of some
of the individual instructions which will be used in assembly language pro-
grams. If you have used the Disassembler to translate part of the 64°s ROM
then you will also have seen the format in which assembly language pro-
grams are normally presented, consisting of three items of information for
every assembly language instruction:

1) The memory address at which the instruction is to be found.
2) The contents, in Hex, of the bytes involved.
3) The assembly language form of the instruction.

When entering an assembly language program to an assembler, only the
assembly language instructions are needed. There are, however, some
problems with simply entering a long list of assembly language instruc-
tions. What, for instance, if we have entered a long assembly language pro-
gram and then discover that it needs a few more instructions somewhere in
the middle or that some instructions need to be deleted. Does the whole
thing have to entered again in the right order? Obviously the ideal method
would be something like that provided by the 64’s BASIC interpreter —
numbered lines which are automatically deleted or inserted in the correct
place, with the ability to alter lines anywhere in the program at will. It is the
function of the File Editor to provide that facility, though the program
section given here goes further than that, allowing renumbering of the pro-
gram and the saving (or loading) of the assembly language file before the
Assembler proper goes to work on it and translates it into machine code.

It should be stressed that the File Editor is not genuinely part of the
Assembler in that it makes no test of the material being entered, it is purely
there to allow numbered lines of text to be inserted into a file. Nothing will
be checked or processed until the Assembler itself is entered and run.

SECTION 1: Setting Up

MODULE 3.1

TAEAR FE MRS R R RN W F B NN XN
24801 REM FILE EDITOR MERMU

41

Machine Code Master

24000 REM****************-ﬁ-**********ﬁ:**
24820 FRINT "[CLRILGREEN] ————mm i [

ILE EDITOR =mm oo e CELUEILCD) ™
24835 PRINT © @) EXIT FROM FILE EDI
TOR"

24840 FRINT ¢ 1) INFUT LINE(S)"
2485@ PRINT ©) LIST LINE(S) ™"
24860 PRINT ©) DELETE LINE(S)"
24870 FRINT © 4) RENUMBER FILE"
24880 FRINT ¢ 5) INITIALISE FILE"
24890 PRINT &) LDAD FILE®

24900 FRINT 7) SAVE FILE"

24910 PRINT * 8) ADD MACHINE CODE T
0 FILE®

24915 PRINT * 9y CHANGE DEVICE NUME
ERCS*CDI"

24928 INFUT Y COMMAND (@-%) @ "z CO
24943 IF CO=@ THEN RETURN
24930 IF COx@ THEN ON CO GOSUR 24600,244
02, 24500,24700, 24700, 27600, 23700, 25000
L4960 IF COX8 THEN ON CO-8 GOSUER 255H0
24270 GOTO 24800

A straightforward menu module.

CHECKSUM TABLE

24806 123 24801 11 248032 123
24820 125 24835 2ES 2484@ 179
24858 94 24860 216 24870 218
24880 102 24890 186 24900 172
24918 98 24915 243 24926 182
24948 148 24950 20 24968 252

24570 167

MODULE 3.2

ZATODR REP R R R0 020 WKW W NN W BB
245@1 REM INITALISE FILE

PATDE REM 532555355 3K 96X 396539 He 9NN
24310 PTRE = "% ¢ Ef = "% +» FOR X = @ TO
234 EF = EF+CHREX) 1 NEXT @ RETURN

This module sets up the variables necessary for handling a new file -—
calling this option when a file is already in memory will result in the loss of
the existing file. The two main variables are PTR$, which will indicate the

42

Chapter 3 Mastercode File Editor

position of entries in the file in their correct order, and E$, which will
record the position of spaces for new entries. The use of PTRS will be
described under Module 6.

CHECKSUM TABLE
24700 123 FATQL 145 243F0E 123
24318 217

MODULE 3.2A

19980 DIM FI$ (254 @ GOSUR 243200
This module is actually a part of the main initialisation routine for the
Disassembler tables. Its function is to set up the main file array (FI$) when

the program is first run. Once the program is running the array is re-initia-
lised by calling the previous module.

CHECKSUM TABLE

i
B

2 18

SECTION 2: Inputting Lines
MODULE 3.3

DAELBE FRE MR W53 R H N K BN H K

24601 REM INFUT LINE(S)

DALDT REME SRR KN H WK TN KRN H

24461@ PRINT "LCLRIY '

ZAAZO INE = """ @ INFUT IN¥ @ BOSUB 24000
: IF LN=-&65536 THEN 24665

24650 GOSUR 2I9Q0 @ IF LEN(IN®)=0 THEN 2

44688

74660 BOSUR 23100 @ IF NOT ERR THEN 2462

4]

24665 RETURN

74680 GOSUR 2IQEQ : IF NOT ERR THEN GOSU

B 23508

24696 GOTO 24620

i

This is the module which, when a line is input, allocates the necessary
tasks to the File Editor’s various routines. Other than distributing work
around other modules, its only functions are to allow the input of theline in

43

Machine Code Master

the form of IN$ and to determine whether a line number without a line
attached is being entered ie a deletion.

CHECKSUM TABLE

24608 123 24601 4% 24682 123
246183 144 2446280 251 24650 188
24660 94 24665 142 24680 6

24670 167

MODULE 3.4

DADDE RE NS K5 W02 2K W T KN NN
24031 REM GET LINE NUMBER

DADDT REM® RN W5 W0 R W TN I T WK KT KW RN
240160 LN = 65536

24220 IF LEN(INE)=0 OR INFI"@" OR LEFT#$(
IN$, 1) 29" THEN 24070

24030 FOR T = 1 T0O LEN(INE)

24046 IF MIDECINE, T, 1)<="9" AND MID¥F (IN%
L To1) »="@" THEN NEXT T

24088 LN = VAL(LEFTE(INE,T~1)) IN$¥ = M
IDFE(INF,T)

24090 RETURN

Having obtained an input in the form of IN$, a line number is obtained
from the beginning of the string. The string is examined character by cha-
racter to find the first one which is outside the range 0- 9, and then the VAL
of the string up to that point is obtained. Strings which do not begin with a
line number result in the line number (LN) being set to -65536, thus
flagging an error, otherwise the line number is stored in LN and the cha-
racters containing the line number chopped off the original string.

CHECKSUM TABLE

24000 123 2401 192 24802 123
24010 64 24920 99 24070 Z20=
24040 150 2aeep 79 24099 142
MODULE 3.5

ZEGUD REME R R R SRR W58 W53 3R
2F901 REM REMOVE LEADING SFACES

ZEPOE REMESE 55K K39 8336351503536 90 396 9%
2F910 FOR T = 1 TO LEN(INSE)

2520 IF MIDECINFE, T, L)=" " THEMN NEXT T
2930 INF¥ = MIDF(INE,T) @ RETURN

44

Chapter 3 Mastercode File Editor

The resulting IN$, stripped of its line number may now begin with one or
more spaces — this module removes them.

CHECKSUM TABLE

2Eene 123 2E501 112 2EebE 123
2EIB EBE 2E2G 31 23938 11
MODULE 3.6

ST AOE FE M RN K R RN IR
22p01 REM FILE ERITOR

DEART REMERFRERXXXEEXEREREXKRFRXELERERAE
2EIPI® REM FILE EDITOR
2EP2G REM FIND LINE NUMBER IN “LN° IN FI

LE
ZEOED T = LEN(FTR#)+1 : T2 = -1
2E@AQ T = T-1 : IF T<=0 THEN GOTO Z3aga

DEASY T = ABCMIDEPTRE,T,1))

23Q6B T ASCMIDE(FIF(T1) , 1, 1)) +E56%A5

COMIDEFIF(TL) 2,10

ZE@7@ OIF T2xLN THEN ZZ@40

DR ERR o= NOT(TZ2=LLN) : IF ERR THEN T =
T+1

ZTO9Y RETURN

ii

£

Before we proceed to the module which actually inserts a line into the
file, we must deal with this one, whose function is to determine the correct
position for the new line (if it has a valid line number). In examining the
module we shall learn something of the use of PTRS.

Commentary

23030: In searching for the correct position to insert a line we shall make
use of the string we have called PTRS, short for ‘pointer string’. A pointer
string is a standard method of overcoming the problems of inserting new
lines in multi-line arrays. It is not that this is difficult, it is simply that to
insert a new line at the beginning of what is potentially an array of some 250
lines involves shifting all the current lines, a task which can be time con-
suming and can also create problems with garbage collection, slowing
things down even more. Using a pointer string this can be overcome, since
the contents of the array need never be shifted at all. All that needs to be
done is to manipulate a single string. Instead of finding the correct place in
the array and then shifting everything else to make room for the new line,
what we shall do is to find what should be the correct position (as dictated
by the line number), place the line to be entered in the first empty space we

45

Machine Code Master

find and then put an indication of its actual position in the right place in the
pointer string.

Thus the pointer string might contain a series of bytes with values of
34,76,233,176...... What this would mean is that the true first line in the list
is to be found at position 34, the second line is at position 76, the third at
position 233 and so on. To access the array of lines in order we must first
look at PTRS, take from that the position of the first line, then look at the
second character of PTRS to find the position of the second line. Because
we have accepted the arbitrary limit of 255 lines for any one file all the
pointers can be held in the form of single characters in PTR$ — single cha-
racters can have an ASCII value of 0-255. To insert a new entry, all that will
be necessary is to split PTRS into two and place a new indicator in the
middle of it — a considerable saving of time. In this particular line the main
search variable (T) is set to LEN(PTRS$) + 1, so that the search will begin at
the end of PTRS.

23050: The value of character T in PTRS$ is the position of what should be
line T in the array (not the line with /ine number T but position T if we
counted from the beginning of the file).

23060: This obtains the line number of the line stored in FI$ at position T1.

23070: The search continues until a line number is found which is greater
than that of the line being entered (LN).

23080: Note that ERR is set if the line number being entered is not the same
as one already in the file. This is so that the next module will know whether
a line is being inserted or overwritten.

CHECKSUM TABLE

17

REM ADD LINE TO FILE

FLE VIR 396 3 3 3 3 56 36 3 0 2 56 363636 6 3 36 3 3 0 e
IF LNY@ OR LNH6S5ED THEN 232215
GOSUR 2E020

= IF NOT ERR THEN Ti = ASC(MIDE (FTRE
L T,13) @ GOTO 2E1I50

ZELZO OIF EF="" THEN ERR = TRUE @ GOTO 23

46

Chapter 3 Mastercode File Editor

T1 = ASC(EE) @ E¥ = MIDE(EF,D
T2 = INT (LN/2E&)
FIg(T1) = CHRE (LN-TE*REG) +CHFE (T2)

IF NOT ERE THERM 2332

TE = 0oy TiE o= v

IE Tl THEN T# = LEFTH(PTRE,T-1)
TF Te=LEN(FTRE) THEM Ti¥ = MIDEFT

PTRE = TE+CHRE(TLI +TLH
5 ERR = FALSE
RETURN

This is the module which actually accomplishes the insertion of the line
into the file.

Commentary

23105: Using two bytes, 0-65535 is the maximum range of possible line
numbers.

23120: If an error is returned from the previous module, all it means is that
a new line number is being entered. If there is no error then the line being
entered will simply overwrite an existing line and PTR$ does not need to be
altered at all.

23130: To speed up the process of entry even more, a second string (E$) is
used to record all the empty spaces in the file. Rather than scanning for the
first available empty space, the line will be inserted in the position indicated
by the first character in E$ — this character is now lopped off since it will
no longer be empty.

23150-23160: The line number bytes are created from LN and the new line
inserted. Note that having put the high byte into the variable T2
(=LN/256), there is no need to make another variable equal to
LN-256*INT(LN/256). Simply putting LN into ASCII form will lose
anything above 255 as if LN had been ANDed with 255.

23170-23210: If we are dealing with a new line number then PTR$ must
have a character added to it. The position of the character is indicated by T

47

Machine Code Master

and all that is necessary is to take LEFT$(PTRS$,T-1) and MID$(PTRS,T)
then to add the necessary character between them.

CHECKSUM TABLE
2F100 12= 22101 195
2E1e8 79 23110 1464
F13@ 40 23140 Z@é
53 84 23178 6@
23198 193 2E200 201
2E215 7B 23220 142
MODULE 3.8

ZIEOD REMS 000053336300 2 3 2 3669639656 96 969
REM DELETE LLINE FOINTED AT BY T

2 REIM 3 356330000526 56 36 5 6 369636 3636 36 0 6 96 X 3 3 X 36 %
"r.E: = n : Tl&‘ P i

IF Tx1 THEN T# = LEFT#(FTR%,T-1)
IF TZLEN(FTRE) THEN T1$f = MIDE(PTR

£,T+1)

= EF+MID$ (FTR¥,T,1)
: = THE+T1%
2EE60 RETURN

This may seem a strange module to discuss under the heading of input of
lines, since its purpose is to delete them. The reason we talk about it here is
that, when inputting lines, if you input a line number without a line
attached, the line with that number is deleted in the same way that it would
bein BASIC. The module is therefore called from the main control module
for input. The procedure followed is a mirror image of that involved in
insertion, with a pointer character being removed from PTRS$ and the
line’s position being recorded as a space in E$. Note that there is no need to
actually remove the contents of the line — it is still there but the File Editor
does not recognise its existence any longer and will overwrite it when a new
line is entered.

CHECKSUM TABLE

2EIB0 123 23FB1 193 1E3
2331a 7 23F2B 193 : : 242
2EE4A0 128 23350 218 23360 142

48

Chapter 3 Mastercode File Editor

SECTION 3: Listing and Deleting

MODULE 3.9

DADRE REM®ERHHEREREX KRR AEERERHFERENER
24201 REM FIRST AND LAST LINES

DADAD REME R SRR KW 3R W W RN WK R

S40ps [NE = """ : INPFUT “FIRST ~ LAST LIN

EG ¢ "3 INE

24210 SL = @ : FL = 65535 @ T3 = @ : ERR
= FALSE

”4?2@ IF LENC(INS) =0 THEN 24295

247230 GOSUB 24000

24240 IF LNF=0 THEN SL = LN @ GOTO 24268
24250 IF LN:~6%5536 THEN FL = —-LN : GOTO
24295

4260 GOSUER 2390@ : IF LEN(INE)=0 THEN F
L= 8L ¢ GOTO 24293

24770 INF = MIDF(IN$,Z) @ GOSUEB 2370@
24290 IF LEN(INS) @ THEN GUSUR 24000 : F
L. o= LN

4295 ERR = SL<@ OR SL»65535 OR FL-@ OR
FL>6SS55S OR ERR @ RETURN

This module is used in listing and block deletion to get a pair of line
numbers input in the format ‘100-330°.

Commentary
24210-24220: The start line (SL) and finish line (FL) are set to the ends of

the permissible range. If the user simply presses return when the prompt
appears, the whole of the file will be listed from start to finish.

24230-24250: The first line number is obtained through the subroutine at
24000. If it is greater than zero then SL is set equal to it. If <-300’ were input
this will be returned as minus 300. In this case SL will remain at zero but FL
will be set to 300 and the file will be listed up to line 300.

24260: Any leading spaces are stripped from what remains of INS after the
first number has been removed. If there is nothing left then FL is set equal
to SL and only one line is listed.

24270-24290: INS is stripped of the ‘-’ before the second number, any lead-
ing spaces are removed and the second value obtained.

CHECKSUM TABLE
24200 123 24201 57 24202 123
24205 168 24210 170 24220 73

49

Machine Code Master

24230 163 24248 11 242580 131
24260 180 ERETR b 240 125
24295 38

MODULE 3.10

ZEADE REMH KB KRR X R WKW 3 W F W H WKW NN
REM LIST LINES FPOINTED AT BY T
FREM¥E % 55265 56 55 63 305 % 3 36 365 5 % 9 % 5 % % % 5 %
L¢41w FRINT ASCIMIDFE(FIE(T) ,1,1)) +2546%45
CMIDEFTIFTY ,2,1)) TaAR(&) ;

SHA4Z20 PRINT MIDE(FIS(T)Y .3

2EAZ@ RETURN

This module prints a line whose position is indicated by the variable T.
The line number is obtained from the first two characters of the line, then
the rest of the line is printed.

CHECKSUM TABLE

23408 123 23431 157 25408 123
253414 178 25420 1739 EL4Ea 142
MODULE 3.11

SEEOE REM®SE KW RN T T 5T 5B W W F ¥ WK TN IH
REM 8TART AND FINISH FOINTERS

FREZ IV 996 0 06 3 36 26 36 30 326 0 36 6 6 96 36 6 30 636 36 36 3 06 36 36 36 6 9%
LN = SL ¢ GOSURBR 23020

SF = T

: : LM FL 2 GOSUER 23020

Tf?4w FF o= T

2E54% IF ERR THEM FP = Fp-—

23500 IF FPELENPTRE) THEN FP = LEN(PTEZ
) .

23568 RETURN

it

Using the start and finish line numbers, this module picks up from PTR$
the pointers to the first and last lines to be listed and stores them in SP and
FP.

50

Chapter 3 Mastercode File Editor

CHECKSUM TABLE

MODULE 3.12

DAGNEA FE PR R R R N R R NN
24481 REM LIST LIMES

DALQD IR RR R W RN WK I N R NI R
SAA410 BOSUR 24200 @ IF ERR THEN 24460
24470 FRINT "LCLRIT @ GOSUR 23500 : IF F
FOGROR FR=0 THEN 24460

TAA4EA FOR TL = GF TO FFP & T AKC(MIDFE (F
TR¥,Ti,10: @ GOSUR 23408 @ NEXT : FRINT
ma45s IF FEEE(152)=0 THEN GET T% : IF T#
=ui THEN 24455

24440 RETURN

1]

Using the start and finish pointers determined by the previous module,
this module now calls up the print module to list the lines to the screen. The
strange looking line at 24455 checks to see whether the lines are actually
being listed to a device such as the tape recorder or a printer. If not, the
listing will be displayed on the screen until a key is pressed.

CHECKSUM TABLE

24400 123 24401 1734 24402 123
24410 154 24420 241 24470 126
24455 214 24460 142

MODULE 3.13

DAEAE R PR R R X 220N BRI NI W W R RN
=45@1 REM DELETE LINE(S)

TAGDE REMR KR RN H R R R R AR AR R
=As1R GOSUR 24200 @ IF ERR THEN 24460
24570 BOSUBR 23508 @ IF FROBF THEN 2456@
24570 T = SF : FOR T1 = 8F TO FFP @ GOSUEB
PEIDB ¢ MEXT

24563 RETURM

This is the block delete module. It is included at this point because its sole
function is to call up modules previously entered, the largest of whichis the

51

Machine Code Master

‘get first and last lines’ routine. Instead of listing the lines specified, the
line delete module is called up for each line in turn. Note that because
PTRS is being shortened with each deletion, the character deleted for
each iteration of the loop is always at the same position.

CHECKSUM TABLE

24508 123 24581 74 2450F 12E
24518 154 245280 160 24830 179
24560 142

SECTION 4: Loading and Saving
MODULE 3.14

T:}mm FRE P 996 36 360 36 06 96 36 36 36 6 36 3630 06 6 96 96 06 06 366 36 3 9
. REM SAVE FILE TO DEVICE

FEE I 96 5 3 36 36 690 3 36 3 3 36 6 36 3336 K 36 36 36 36 36 36 96 3 %
"ﬂq LUSUR 112350

2 IF DEV=8 THEN IN#% = IN$+",5,W"
E3715 TE = "N = IF DEV=8 THENM INFJ Ry
ERWRITE EXISTING FILE (Y/N) & "z T#
2E716 IF THE="Y¥" THEN IN$ = "@@0:;"+IN$
SEIT7Z2@ OPENZ,DEV,2,INE @ CHMD 2

TED Sl o= @ 2 Flo o= 65534

L3758 GOSUR 24420 @ PRINT#Z2 , "END"
237&@ FRINTH#Z @ CLOSE 2

25780 RETURN

This module allows a file that you have created to be saved onto tape
or disc, or output to a printer.

Commentary
23705: The routine from the Monitor which requests a file name.

23710-23716: These lines are included for the benefit of those using disc
units for storage. Their effect is to allow the user to overwrite an existing
file on drive zero with a sequential file of the contents of FI$. The lines
are only accessed if DEV is set to 8 (disc drive).

23720-23760: A file is opened to the specified device and the CMD?2
instruction specifies that all further output will be sent to that device. All
that remains is to use the normal listing routines to print all the lines of
the file, terminate them with ‘END’ as a marker and finally close the
file.

52

Chapter 3 Mastercode File Editor

CHECKSUM TABLE
2 2ERTVL 177 2E7RE 123
166 BETLIB 179 2E71E E4

89 2720 138 BEVEIO 200
116 2ET7HB 54 2780 142
MODULE 3.15

STLDE REMER % 5% %% K HH XXX HEEERFRERFHRRRR
ar6A1T REM LOAD FILE FROM DEVICE

ST RE MR R R0 KK NN KR NN RN
TEALG GOSUR 113250

IF DEV=8 THEN INF = IN$+",5,R"
OFENZ,DEV,B, INF

INFUT#2 , INE @ IF 5T THEN GOTO 23

mrad@ IF INEC>UEND" THEN GOSUER 24000 : O
OSUR 23900 : GOSUR 23100 : GOTD 23635
2ET6HY CLOBE 2

PIH6E RETURM

The mirror image of the previous module. Note that when loading the
file back from tape or disc, all the normal input routines have to be used.
This is because the lines were listed in full with their line numbers, not the
two byte form of the line numbers that is normally stored in FI$. The cass-
ette saving/loading system has difficulty in saving non-printable ASCII
characters and simply saving the contents of FI$ would result in the corrup-
tion of some of the line numbers on reloading.

CHECKSUM TABLE

2rem@ 1235 2EHBL 51 2ELEDE 1E3
23610 166 2615 174 27630 E1
DERHES 57 23640 215 2ELE0 24F

266G 142

MODULE 3.16
DEEmo REMERRERREERREFERRRREREERERERRRERR

2Esmm REM CHANGE DEVICE MNUMEBER
b bl 74 HEM%*****************************

#5510 PRINT SPC(19) DEV
osEnn TNFUT "LCUINEW DEVICE NUMBER:";DEV
2EELO RETURN

53

Machine Code Master

The purpose of this module is to allow output to be made to cassette, disc
or printer. Note that trying to output to, or input from, a device which is
not present, or to input from a device which is not capable of giving an
input (such as the printer) may result in the program stopping. Data will
not be lost provided that you start the program with GOTO 10000 rather
than RUN. Before doing so it would be wise to ensure that file 2 is closed by
entering PRINT #2: CLOSE2 if you were saving when the program
stopped or simply CLOSE2 if you were loading. This will avoid the
possibility of “FILE ALREADY OPEN" errors being given.

CHECKSUM TABLE
25508 123 285501 14 2550 123
2E516 241 25328 113 25530 142

SECTION 5: Renumbering
MODULE 3.17

ZATRAD REFE® %55 %% 5% X% 5 X 535 356 3 % 5K 85N WK R
24721 REM RENUMBER FILE IN STEFS OF 1@
S24FWE RE M %% R 3 3 W 33 e 3 K K RN
247180 LN = 10 : ERR = FALSE

24728 IF LEN{PTR¥)<1 THEN 24780

24720 FOR T = 1 TO LEN(FTR¥)

24735 Tl = ABC(MIDF(FTRE,T, 1))

284748 FI£(T1) = CHRE(LN-INT{LNAZSSL) #256)
+CHRE (LNAZ2SS) +MIDE(FIF(TL) ,3)

24750 LN = LN+1@ : NEXT

24786 RETURN

Hardly worth a section in its own right, but the module does perform
independently of everything else you have entered so far. Its purpose is to
renumber your file in steps of 10. This is done by stripping each entry in the
file of its first two characters and then recreating them from LN, which is
incremented by 10 for each line.

CHECKSUM TABLE

24708 123 24701 235 247@0s 123
247180 173 24720 1469 24750 42
247E5 146G 24748 94 24750 45

24780 1472

54

Chapter 3 Mastercode File Editor

MODULE 3.18

DEANG REM*® %% X% EEREREEEERER XX XXX REEXER X
=501 REM ADD TO FILE FROM MEMORY

ST REME %% R R X R E X R R XEXRERERRRRENRRE
~Eei@ GOSUE 12050 @ GOSUE 11200 : GOSUR
24200

2EPEE FOR XY = AD TO EA STEF 135

2560 INE = " BYT " @ LM = 6L : SL = GlL+
5
TERTE OFOR XZ = @ TO 14 ¢ 02% = "¢

S50 GOSUE 11100 @ INF = INE+"$"+HE
EAQ@ IF XZ<14 AND AD<=EA THEN IN# = IN¥
+0 0 s MEXT XZ

75110 GOSUR 23100 : NEXT XY @ RETURM

We confess that this module is a bit of an afterthought, but a nice one for
all that. Its relevance really won’t become clear until you have entered the
Assembler but what it does is allow you to specify an area of memory and
then place it into an assembly language program file in the form of ‘byte
directives’ — the contents of each memory location are specified in the
assembler file. No automatic adjustment is made to instructions which
access addresses in the area from which the code was originally lifted. Such
instructions will still refer to the original area of memory.

CHECKSUM TABLE

25000 123 25001 200 2EeR 123
2581 223 250560 130 25060 74
25878 19 25080 170 25108 13

2511a 12u

Summary

Now that you have entered the File Editor it would be wise to play with it
for a while before going on to enter the Assembler. This will help to avoid
the upset of entering a long assembly language file and then having it
spoiled because you misuse the File Editor. You could, if you wish, enter
one or two of the assembly language programs to be found later in this
book, saving them to disc or tape and then reloading them to check that
you have the procedure off pat.

55

CHAPTER 4
Mastercode Assembler

Having entered the File Editor, we can now begin on the process of
entering the most important and complex part of the Mastercode program,
the Assembler. Its purpose is to allow you to enter programs in assembly
language, together with a variety of features which make such program-
ming easier, and then to see them automatically translated into a machine
code program. The price that has been paid for the flexibility and power of
this part of the program is that it is immensely complex. Enteringit willbea
long job for you, and no doubt there will be many errors along the way,
here you must rely on the Checksum Tables to guide you. At the end of the
process you will have the same program that we used to develop all our
machine code routines for this book. The program works and that is suffi-
cient justification for the effort that it will involve.

SECTION 1: Initialisation

MODULE 4.1
19046 TAEE) = THE (D) +"BY TWRDDRYENDORGFR
TSYM®

19047 T# = H4 1 FIRATRROFREAZBDG 1 BROLOT
Bisngss”
19748 T# = TH+"RECDECCCLECABBADEEEBCB4CY
BADAEACH
19049 T# = THE+"4AEADDABRBLBRBEZALALBLBEDS

BFR7EsD"

19REE TE = TH+"SEBCAAABBABATATRY

19051 GODSUR 17200 @ TAE(Z) = TLf

19057 T = nEE]LFFFFEFRYBAFFEF 1DREFFF
FREERE
19UEE T4
F191aFF"
19PS4 T# = TE+"FERDFFFF2CEYEEFFFFIDREFFF
SR G

19RES T = TE+"FFISEFFFFFFFFFFFFF31FFFFF
FE9IAFF"

19956 TH = TE+"FFS1FFFFFFAYSEFFFFESDAEFF &

TH+"FF LSFFFFFFFFFFFFFFQLIFFFFF

it

57

Machine Code Master

mr P R

THE4+ " FFADFFFFFF &S 7TEFFFF7DAEFFF

L (4) = TLE
}"_ F.. f.‘ fl s... i. 5.4 ’.. }.. !." i._ 5‘: i,. ’; ’_,’ ; i r 5':. f..

“E

| :‘_ e l." !Zil' E‘;} 1 {III’ i; IZZZ' i.“ ('.., _} ~..;i I, {I};} €‘." f' FI’ iIZZ' gi‘.." ?. }.ZT } FZZ' ,ZZZ' FZ' L..;

T+ BORBEFFADATAEFFFFRDFFAF 6

19064 T# = TE+"FFESFFFFEFFFFFFFFFALFFFFR
AETREFF "
19065 T# = TE+"FFDIFFFFL
GEECEHFFY
199
Fog

DEFFFFDDFFFFC

= TE+ M FEDESFFFEFFFFFFFFFFOLFFFFF

SUE 12200 1 TaEd) = Ta%
CERFLFFFFERESFEFFF

(43 +T 1
EDFFFFE

TE+FFFESFFFFFFFFFFFFFFE LFFFFF

1TEEB 1 TaE(4) =
GE = @ 1 DIM

19080
15181 #
191073 ERRE (1)
E*

19104 ERFE G
o

19105 ERRE (D = “INVALID OFREND OR OFCOD
EH

19106 ERRE (4) =
19187 ERRE(5) =
19108 ERRE (4) =

SIMGLE BYTE OUT OF Rakhs

BYTE OUT OF RENG

i

TMOLIRLE

07T ¥ Of v
ALFHA-MUMER D

19109 ERRE(7) =
19110 ERRF(8) = SLAREL
19117 ERRE(ID) = "BRANCH OUT OF RANGE"
19117 ERRE(LL) = "UNDEFINED LABELY

19114 ERRECLZ) = "ONLY SINGLE CHR. EXPEC
TED"

i
it

58

Chapter 4 Mastercode Assembler

If you have been taking note of what you have entered so far you will
immediately realise that what you are about to enter here is not a module
that stands alone in its own right but an addition to an existing module,
namely the initialisation module for the tables of opcodes and operand
types upon which the Disassembler works. In the case of the Assembler the
same tables will be used, but in the reverse direction. Instead of finding a
value in the memory and then looking up an appropriate opcode mnemo-
nic and addressing mode, the assembler will scan the files entered through
the File Editor and try to construct the machine-code equivalent of each
line — either that or reject the line as an invalid instruction.

If you think about it, this requires some more information for, instead
of being able to read a value and then choose a format based upon that
opcode, the Assembler must, on finding an instruction like ‘load’ at the
beginning of a line like ‘LDA SAAAA.X’, be able to scan through all the
possible formats for a ‘load’ instruction to see whether or not the present
instruction is a permissible one. In order to achieve this, two more tables
are added to those already stored in the program. Between 19047 and 19050
is stored a table of two-character hex numbers corresponding to each of the
possible opcodes stored in TA$(2) for the Disassembler. These show, for
each opcode, the first operand type which may be used. Lines 19052-19067
consist of further operand types for each particular group of opcodes.

Later in the program we shall see how each possible operand type is
compared with what is actually in the assembler instruction contained
within a line in FI$. For the moment you will do well to simply understand
that on detecting an instruction beginning with ADC (the first three cha-
racter opcode in TA$(2), the Assembler will go to TA$(3). It will then
discover that this may possibly be an instruction involving opcode 61 (hex)
and will examine the format of the assembler instruction to see whether it
fits the format required by opcode 61 hex (eg ADC (850,X). If the format
of the line being entered does not conform to that needed by opcode 61 hex,
then the value of 61 hex (97 decimal), will be used to find the next possible
opcode in TA$(4). This will be found in the 98th character pair of TA$(4)
(numbering always starts from zero) and the opcode there is 6D signifying
another instruction involving ADC, but this time taking a format such as
ADC $AAA. The value 6D is then used to find the next opcode in the table
which would produce an instruction beginning with ADC.

59

Machine Code Master

In the case of ADC there are eight possible opcodes and if after examin-
ing each one against the actual format of the instruction in the line in FI$
none of them fit, the last possible opcode will contain the value FF, indi-
cating that the end of the chain of possible ADC instructions has been
reached and that no permissible opcode conforms to what is actually in the
line. If you care to work through the tables with any three letter opcode
type you care to choose, first of all finding its positionin TAS$, then finding
the start of the corresponding chain of opcode values in TA$(3) and
following the chain through TA$(4) you should quickly be able to see what
is happening. The one real addition to the tables set up already by the
disassembler is that made by line 19046. This apparently adds seven new
opcode types to the list which the Disassembler worked upon. These are the
assembler directives, seven instructions which are not actually assembly
language instructions but rather instructions to the Assembler to behave in
a certain way while it is processing on the assembly language program. The
seven directives, BYT, WRD, DBY, END, ORG, PRT and S¥M will be
explained fully later in the program.

From 19100to 19120 you will find the various error messages the Assem-
bler is capable of generating when it comes across invalid instructions or
omissions from the program. These too will be explained more fully in due
course.

CHECKSUM TABLE

19044 193 128047 171 17@4ag 1aw
12849 252 17838 178 12051 244
19058 251 19@5% 248 12054 187

19055 1 19056 187 19057 8

1985 238

19@5Y 245

19068 79

19841 198 1994 1906T 216
19064 38 19065 13 19D8s &8
19067 23 19068 91 1908y 197
19078 20 19988 27 19101 109
19193 52 19194 47 19195 7Y
19ipe 91 19107 193 19108 1
19109 1= 1viim pLs 1911y pEE
1911 19114 184 19116 44
19117 i91ee 37 19980 191
19997

MODULE 4.2

FTARDE REFIE R SRR R W R R R
20081 REM GENERATE ASSEMBLY LISTING
ZERDALE REME R %56 5% 5 5 % 5 3056 K 350 56 R R

60

Chapter 4 Mastercode Assembler

SRBRS SE = @ 1 FMAX = LEN(FTR%) @ 8Y = F

: TMFUT " ERROR ONLY LISTING (Y/N)
1ty TEF

2R EQ = LEFTH(TE, L)="Y"

DPRREE CINFUT Y ASSEMBLE TO MEMORY Y/N
sty TH

FHREY aM o= LEFTE(TE, L)="Y"

D = B @ REM SET BTART ADDRESS

TRR4ARD FOR G = 1 TO FMAX

DERAEA INE = FILES{(ABSCMIDE(PTRE, O, 133

1t

B GOSUBR 26400

: IF EXIT THEN G=FRax+l

2OUE0 NEXT ©

rEeEs T o= FRE (X

SRRSR AD = B : EC = @ @ FRINT "ADD. DAT
S SOURCE CODE™

ZRLIB0 FOR @ = 1 TD FMAX

S@1iY INE = FILE® (ABC(MIDE (PTRE. 0L 1))
OfF = "v

SRLED G1 = AD

2P1IEE GDSUR 27600

S@140 IF ERR THEN 20250

2014% IF ED THEN ZB222

2P15@ H = 01 : GOSUBR 11000

IPLED DF = HE

SRLEE 0P = 3 o: IF LEN(D$)<0Z THEN 02 = L
EN (0#)
2@IES GlF =" : IF OF="" THEN 20221
SRige FOR 0% = 1 TO @2

DE2O0 H = ASCIMIDE(0£.03,1)) @ GOSUR 110
2o

SRE1L@ IF LEN(HE)=1 THEN HE = "@"+H¥
SRRED O1F = OLE+HE @ NEXT @3

=p2E1 PRINT 0F SPEC(6-LEN(GE)) D1f SFCI(8-
LEN(GL$)) 3 : GOSUR 28100

spmEe IF NOT AM OR OfF="" THEN 20250
SERes FOR X = 1 TO LEN(OF) @ POKE (1+X—1
LAGC (MIDE (D%, X100 @ NEXT

SpeEG IF EXIT THEN G = FMAX+1 : REM LEAY
E LOOF

20260 NEXT @

ApE7R PRINT @0 PRINT " TOTAL ERRORS IN FI

61

Machine Code Master

g T T
iHLH ﬁL,j?

EHTEE
THERN FRINTEDE @ O

THEN

@ RETURN
FREfDY .

EXAMPLE ERRORS: Error only listing

ADD. DATA SOURCE CODE
17 lELWwB LDGE £ABHO
LABEL DEFINED TWICE ERROR
&G JER (FIOG)
ARDRESSING MODE NOT AVAILBLE WITH THI
S5 OFPCODE ERROR
7@ LDA #LBL@@@/H
DIVISTION BY ZERO ERROR
80 LDX #lL.EBLODE-LELOBAA/EZ54

@5
INVAL ID UPEHH]UH ERROR
BERANCH OUT OF RANGE ERROR
150 JMP LELOOI

FL ERROR
5@ JMF LbL@wi

EHRUR
BLB@Q RTS

LARBEL DEFINED TWICE EF{RDF-:
TATAL ERRORS IN FILE ——— 8

H @

LBLOAG caan
TOTAL NMUMBER OF SYMBOLS ——— 2

62

Chapter 4 Mastercode Assembler

EXAMPLE ERRORS: Full listing

AbD. DATA SOURCE CODE
") 19 FRT

) 20 SYM

@ I0 OREG $CBO0
CHOD A0 H = @

5@ LEBELEO LDG ¥,A000

LABEL DEFINED TWICE ERROR
=LY 53 LEBELODD LDE #0000

ADDRESSING MODE NOT AVAILBLE WITH THI
& (FCODE ERROR

DIVISION BY ZERDO ERROR
80 LDX #LBLODO-LRBL.OBD/ 256

INVALID OFERATOR ERROR

cgsd 8545 20 STA 183
C806 8642 108 87X %2102
cgag @ 11®@ RTS

cane 120 ORG *CABO
CARY 18 1Z@ CLC

150 JMPF LEBLOG1

ot smoo simee sy sovn same o acan s e oo some s 2ozt o e oo e i s s e i S S IR I

e s stoe e e e sy gere e tevn wrws 22 tem e sevr o et e T T T T

LABEL DEFINED TWICE ERROR
CADG 168 LBLOOA RTS

TOTAL ERRORS IN FILE --- 8

H]
LEL OO@ c8ao
TOTAL NUMBER OF SYMEROLS ——— 2
63

Machine Code Master

In previous sections of the overall program we have adopted the
approach of first explaining all the modules which are necessary to make a
control module work before entering the control module itself. To do that
in the case of the Assembler would result in scores of pages of explanations
before any picture could be built up of what the program is setting out to
do. The sheer complexity of the Assembler dictates that we adopt a ‘top
down’ approach and attempt to work our way from a simple explanation
of the working of the program to a detailed examination of the full listing,
filling in details all the time. It is for that reason that we begin our commen-
tary on the main part of the Assembler with this main control module. The
module on its own is totally helpless, it does almost no work itself but
simply allocates work between various other sections of the program. Nev-
ertheless, commenting on it at this early stage will help to give us a much
needed overview of the Assembler’s functioning.

Commentary

20010-20029: The Assembler is capable of compiling a machine code pro-
gram in four different ways. It can provide a full listing of the assembly
language instructions, together with a notification of any errors present or
it can skip the listing and provide only the errors. An example of both of
these was provided at the end of this module. It can also be directed to place
the machine code program resulting from the assembly into memory or it
can be told to run through the program but leave the memory untouched.
If, for instance, you wish to place a machine code routine in a specific area
of memory between a specified start point and a specified finish point,
without corrupting any of the memory outside those points, you would do
well to ask first for a full listing without the program being placed into
memory. This will show exactly where the assembled machine code would
have been placed in memory before anything irrevocable is done.

20030-20085: Before starting work on the assembly language program the
variable AD is set to zero, signifying that the address at which the eventual
machine code program will start is zero. During the course of the assembly
language program this start point will in almost every case be reset to some
other point in the memory using the assembler directive ‘ORG’ (origin).
The assembler will now work through the program twice in what are called
‘passes’. This loop calls up the section of the program which performs
‘Pass 1’. During Pass 1 any variables (including a special kind of variable
called a ‘label’, which defines the correct destination in the memory for a
jump instruction) are examined and placed, together with their associated
values, into a table known as the ‘symbol table’ which will be used in the
later assembly of the program.

64

Chapter 4 Mastercode Assembler

Each line of the assembly language program is obtained in IN$ before
Pass 1 is executed upon it. On returning from the execution of Pass 1
on any particular line, a test is made of the variable EXIT, which is set to
TRUE if the assembler directive END is met with during the examination
of the program. At this point the assembly will cease, even if the end of the
file in FI$ has not been reached. At the conclusion of the loop the FRE
function is called, thus ensuring that garbage collection is done and there
are no dangers of running out of memory.

20090-20300: This is the loop which controls the second pass through the
program to be assembled. The routine for the second pass is called up at
line 20130. During the second pass the program will actually be assembled,
with each valid instruction being translated into the bytes necessary to rep-
resent the opcode and operand in machine code, including the translation
of variables into values and the assignment of values to labels used for
jumps. On returning from the routine a test is made of the variable ERR
which records whether an error has been detected. If so, no further
processing is done on the instruction. If an error only listing has been spe-
cified (EO is set to TRUE) the print routine is omitted. Inlines 20150-20221
the information returned from the second pass is printed out in a formatted
layout. It includes the address at which an instruction will be placed in the
memory if the program is in fact assembled to memory, the hex represen-
tation of the 1,2 or 3 bytes that will be placed there and the original assem-
bly language instruction. The bytes of the necessary machine code instruc-
tion are contained in O$ and in lines 20222-20225. Provided that AM is
TRUE, these bytes are placed into memory beginning at the appropriate
location. A test is made that the END directive has not been found and the
next line of the program is picked up if not. Finally, if the assembler
directive SYM has been encountered during the course of the program the
variable SY will be set to TRUE and the symbol table will be printed out at
the end of the listing of the assembled program

CHECKSUM TABLE

65

Machine Code Master

SECTION 2: Pass One Routines

MODULE 4.3

DEARD P R R BB R R N W S KM
26401 REM DO FASS 1 ASSEMBLY ON INF
FEADD REMR S R RN W R H NN BN NN
P64 PRINT "LHOMEILZ22#CDIL4Q GRPACES]
26406 PRINT ¢

FHAQT PRINT "[HOMEILZZ#CDI" 3@ BOBUR 281
%]

FA410 FABS = 1 @1 EXIT = FALSBE @ PTR = I
2642@ GOSUR 20850

Z64EM IF NOT ERR THEN 26540

2644p IF T=58 AND LEN(H$)=0 THEN 264320
Z6H4E0 IF T=5% OR T=-1 THEN RETURN

26468 GOSUR 28700

264880 GOSUE 28858

26490 IF NOT ERR THEN 26540

R6SHA IF T=58 AND LENM(HE)=0 THEN 26420
26520 RETURN

26540 IF FOX5E5 THEN GUOSUR 26600 : GOTO 2
HE56

26550 GOSUB 26100

26552 GOSUR 26300 @ IF ERR AND OF:Z AND

OF<7 THEN OF = OF+6& @ GOTO 2653502

é’uﬁl [

od vf
2656
26420
26557

Having examined the overall control module for the two passes we now
turn to the control module for Pass 1. Once again we shall leave until
later an explanation of how the specific tasks necessary are actually
accomplished and concentrate on achieving an overview of what the pass

GOSUR 26560
IF LENC(INS) »FTR AND NOT EXIT THEN

RETLURN

actually does.

66

Chapter 4 Mastercode Assembler

Commentary

26400-26407: These lines clear the bottom two lines on the screen and print
there the assembly language instruction currently being processed, purely
to guide the user as to how far the pass has progressed.

26410: The variable PTR indicates where the examination of the current
line will begin. It is set to 2 in order to skip over the two bytes containing the
line number.

26420: The routine which identifies the mnemonic using the table in
TAS$(2) is called. The routine will scan IN$ from the character after that
indicated by PTR until it finds a character which is not a letter or a digit,
then return.

26430-26520: On return from the previous GOSUB, H$ will contain a
string of characters which were terminated by a space, colon or any other
character which is not a letter or digit. If, on return from the previous
GOSUB a valid mnemonic for an opcode has not been found and placed
into HS, line 26440 tests whether any characters at all were found before
the colon separator between instructions on the same line (or any other
character which is not a letter or digit). If not, the colon is ignored and the
subroutine to find a menomonic is called again, starting after the colon.

In 26540 a test is made to see whether a semi-colon or the end of line has
been reached. If so no further action is taken in respect of the current line.
Comments may thus be entered in a program without confusion, provided
that they commence with a semi-colon. If H$ does contain characters then,
since they have not been identified as a mnemonic they are assumed to be a
label of some kind and the name is entered into the symbol table by the
subroutine at 28700. On return from placing the assumed label into the
symbol table the program goes back to searching for the opcode mnemonic
which should follow the label.

26540: At this point in the program a valid mnemonic must have been
detected. If its position in the tables, as indicated by the variable PO, is
greater than 55 then it is an assembler directive and the subroutine at 26600
is called up to evaluate it.

26550: Having found a valid opcode mnemonic at this point, the subrou-
tine which evaluates the operand type is called.

26552: We now have a valid mnemonic and, hopefully, a valid operand
type. However there is no guarantee that the particular operand type is
appropriate to the particular opcode. This line calls the subroutine which
established whether they do in fact make a valid pair. The subroutine, if it
comes across an address which could accessed by a zero page addressing
mode, will assume that zero page addressing mode is being used, even
though this may result in an error being flagged because the particular

67

Machine Code Master

opcode cannot use zero page addressing. On return from the subroutine, if
the addressing mode selected is zero page and a mismatch is indicated, the
operand type represented by the variable OP is incremented by 6 to trans-
form it into an absolute addressing mode.

26555: In assessing the assembly language instruction there is always a need
to keep a count of how many bytes the assembled instruction will require so
that the next instruction will commence at the correct place in memory.
This is accomplished by the subroutine at 26560.

26556: If the line is not exhausted by what has so far been analysed and
END has not been detected, the rest of the line is processed in the same way.

CHECKSUM TABLE

26408 123 2641 E 2HA40E2 125
26405 223 264086 56 264@7 227
26418 255 26420 180 26470 &Y
26440 84 26450 102 264560 174
26480 180 26490 68 26500 B4
F652O 142 26540 T4 26550 166
26552 198 2HEBE 176 26556 247

265T7 142

MODULE 4.4

DELOD REFR 5 53R W KNI H K F W W NN W NN

28181 REM FRINT IN$ TO THE SCREEN

DEIA2 REMEEE K KSR E W W R IR IR W R RN

PR1Z20 PRINT 25&%ASC(MIDE (IN£,2, 1)) +ASC M
IDFCINF,1,1)) MIDFIINF, D)

28148 RETURN

This module simply prints out the current line of the assembly language
program, including its line number. This is printed to the bottom of the
screen on the first pass. In the second pass the assembler directive PRT can
be included in the program to send the output to a printer.

68

Chapter 4 Mastercode Assembler

CHECKSUM TABLE

S281ae 123 =31a1 187 2810 123
o128 889 28148 14%

MODULE 4.5

FRES M 3 0 2 26 S 0 3 e 0 T

REM SYMBOL TO MON-LETTER/DIGIT

T2 0 36 6 0 26000 30 B30 B 3 T 0 O

HE = "V ¢ T = -

FTR = FTR+1

IF PTR>ILENCINE) THEN 28210
AECIMIDECINE FPTR, 1)}

e AND LEM(HE) =8 THEN 78166

ZRI1I9E IF 7948 OR Tx9@0 OR O T:57 AND T4&5

POTHEN Z83218

AW HE = HECUHREFOT) ¢ BODTD 28165

218 RETURN

This simple module scans the line in IN$ from the point indicated by the
variable PTR, making up a string, H$, from which any leading spaces are
stripped and which ends whenever a character which is not a letter or digit is
encountered. The module is used by the following module to return a string
which may contain an opcode mnemonic or a label.

CHECKSUM TABLE

L8158 R 28151 Z4@ SO1sE 133
28168 62

28165 189 DE1TE 5
28185 79 28190 179
2E21D 1432

69

Machine Code Master

20 IF HEsMIDE (Vo
2R :

B4
28YED PO
28760 ERR = OF ERF
2870 IF FD:S6 THEN FO = PO-1

28988 RETURN

(FO-1) /3

FEADY .

Having obtained a string of characters which may or may not contain a
valid opcode or label we now begin the process of actually evaluating what
we have found. The rough method of searching for the correct opcode was
described under Module 1 and the process begins with this module.

Commentary

28890: If the string returned in H$ is not three characters long then it
cannot be a valid opcode and there is no point in searching the tables.

28895: PTR is reset to point to the last character of H$ in the line from
which it was drawn.

28900-28940: This is aloop which scans TA$(2) — which contains the valid
three letter mnemonics — to compare each set of characters with what has
been picked up in H$. The pointer for this purpose is first set to -2 in order
that on the first iteration of the loop, when 3 is added, the search starts at
one. If the whole loop is executed and line 28940 reached, it can only be
because the three characters do not conform to any of the mnemonics for
opcodes specified in the table.

28950: The address in TA$(2), which was incremented in steps of three, is
now adjusted so that, for instance, the three characters at position 19-21
are now identified in PO as mnemonic 7.

28960: This strange looking line is here to take account of the fact that the
Disassembler tables on which the Assembler works contain the three cha-
racters ‘7?7’ to cope with times when the Disassembler cannot provide a
valid opcode for what is in the memory. Without this check you would be
ableto enter ‘???’ into an assembly language program and throw the whole
thing into confusion when it was found as a valid menomonic. The line
flags an error if H$ consists of ‘777,

28970: This line is also there to take account of the ‘???” in the table. The
assembler directives fall affer the question marks and so, when numbering
them for the purposes of the assembler, their position is reduced by one.

70

Chapter 4 Mastercode Assembler

CHECKSUM TABLE

i L
MODULE 4.7
LT T S R LT TR R

-

" GOSUER
= T GBOTO 28840

2 FEET e

LR

This is the control module for evaluating variables and labels and plac-
ing them into the symbol table if they have not already been defined. Ear-

71

Machine Code Master

lier, under Module 2, a label was described as a kind of variable for the
sake of simplicity. In fact a label is a constant which identifies a pointina
machine code program to which a jump may be made. By using labels it
becomes possible to assemble a machine code program to a different place
in the memory without having to recalculate the addresses to which jumps
will be made. The Assembler will automatically identify the position in
memory of a labelled instruction and replace a jump to the label with a
jump to that address.

Commentary

28710: If there are more symbols than the symbol table is set up for (50),
then assembly of the program ceases immediately and the appropriate
error is flagged.

28720: The label in H$ is now sent to the next module, which examines the
symbol table (ST$) to see whether it is already present. If it is present then
ERR is returned as false, and an error ‘label defined twice’ will be flagged.
This reverse use of error may seem confusing but is necessary since a later
use of the module at 28250 will require an error to be flagged if a label is
not in the symbol table.

28740: H$ is padded out to six characters if it is shorter than that. Six cha-
racters is the maximum for any label.

28745-28760: The content of H$, if it is valid at all, may be either a varia-
ble or a label. If it is a label then all the Assembler will need to know is the
address of the instruction so labelled. If it is a variable it will be followed
by an ‘=" to set its value. The scanning module at 28150 is called up to get
the next character. If the next character after the variable (ignoring
spaces) is not an equals sign then it must be a label and RE (REsult) is used
to store the current address of the instruction. PTR is backed up to the
end of the label again using the temporary variable TB.

28870: If the contents of H$ do contain a variable then the ‘expression
evaluator’ section of the program is now called up. No attempt will be
made to explain the working of the expression evaluator until the end of
the program since it would interrupt our attempt to follow through the
main workings of the Assembler. For the moment all that you need to
accept is that a call to the expression evaluator for a line like
VAR =256*BYTE1 + 15 would return in the variable RE the result of the
right hand part of the equation. All will ultimately be made clear!

72

Chapter 4 Mastercode Assembler

28790: If RE is less than zero or greater than 65535 (the maximum value
which can be dealt with by the CPU in one instruction) then to the variable
name or label in the symbol table are added two characters which represent
a result of 0 and another which flags an error ‘double byte out of range’.

28800: If RE is a valid number then the number is added in two byte form to
the end of the variable or label name in ST$. Since the name has been set to
6 characters in every case it will be simple to recover the value of RE for any
variable or label.

28830: This line is only accessed if the current name is already in the symbol
table. Provided that an error code is not already attached to the name, it
has error code 8 added to it, indicating ‘label defined twice’.

28835-28837: This module is also used by the second pass through the pro-
gram. On pass 2 the name will already be in the symbol table (placed there
by pass one) and so the first part of the module will not be carried out. On
pass 2, having obtained the name in H$, if the next character is an equals,
then the result of the expression has already been obtained and the module
at 26000, which finds the end of an expression or line, is called to skip over
the rest of the expression.

28840: Error messages are only printed on pass 2 and, fairly obviously,
only if there is an error code attached to the end of a name in the symbol
table.

CHECKSUM TABLE

REM FIND LABREL IN ST#

FLE Pt e 3 36 3 0 36 3 06 06 36 6 B 9 3 9 O S
ERR = FALSE @+ H =@ @ T1 = @

IF LEN{HE)CS6 THEN HE = HE+" ¥ = G0
E70

IF Ti=5%E THEN ERR = TRUE @ RETURN
3 IF MIDE(STETL) (1,60 HF THEN T1 =
Ti+1 @ GOTO Z8ER6

73

Machine Code Master

28295 H = AGCMIDE(STEA(TL) 8,11) »256+A8C
(MIDF(BTH(T1),7,1)) : RETURN

This a straightforward module which is called by the previous one to
determine whether a variable or label name is already in the symbol table.
The module returns an error flag of 1 or 0 to indicate the presence or
absence of the variable or label. Also returned, if present is the result con-
tained in characters 7 and 8.

CHECKSUM TABLE
28RS0 127 IEES1 242 IBISE 123
28260 7S IBETO 249 ZHZE0 132
28290 219 IBEOS 9w

MODULE 4.9

ZEOABE REM® %% 5% % % 5% 96 25 W 536 33 3% 0 R X W E %
28081 REM ASSEMBLER ERROR ROUTINE

ZEADE REM® %% 5% 5 3 5% % 5 3 R X 8 ¥ 558 39 98 R R
28005 IF PTR>=Z0Q O0R FASS >2 THEN 28050
: REM SUFRESS SECONDARY ERRORS IN LINE
28010 PRINT SFC14) 3 @ GOSUER 28108
28015 EC = EC+1

28020 FOR X = —13 TO FTR 1 PRINT "=" j:
NEXT X : PRINT “CCUI"
2B@Z0 FRINT " " ERR$(EN) " ERROR"

28048 PTR = 200 : ERR = TRUE
28050 RETURN

This module, which is called by line 28840 in Module 4.7, prints out an
error message where an error is flagged.

Commentary

28005: If an error has already been notified for the current line, the varia-
ble PTR is set to the impossible value of 300 (maximum length of a string is
255) and no subsequent error messages are printed for that line. Errors are
not printed on pass 1.

28010: On the second pass, the memory address and byte data take 14
spaces on the line. When a line is printed and an error is to be flagged the
address and data are not printed.

28020-28030: The error is not only flagged by an error message in the
output, a pointer is printed at the approximate position in the line where
the error has been detected, as indicated by the value of PTR.

74

Chapter 4 Mastercode Assembler

CHECKSUM TABLE

28000 123 28081 61 28002 123
2pans 92 28010 126 28015 22
28020 12 28030 1324 28040 16
28058 142

MODULE 4.10

TEDDD FE I XN KT IR I
268@1 REM SYMBOL UF TO COLON ETC.

TEDDD FE M R 55 %5 2353 30363296 0N I R
26QLG HE = """ 2 T1 = LENCINE)

26020 PTR = FTR+1

Z26UE0 IF TIOPTR THEN 26069

26040 T = ASCMIDE(INE,FTR,1))

26HQ4S IF T=32 THEN 2602@

THEASH IF T4 B8 AND T« -39 THEN HE = HE+CH
RE(T) = GATO 26020

26060 RETURN

This module is similar to the module at 28150 (Module 5), its purpose
being to determine the end point of an assembler instruction. It is different
from Module 5 in that it does not return on finding a non-letter/non-digit
character but only on finding a delimiter such as a colon, semi-colon or the
end of line, dropping any spaces which are present in the original line.

CHECKSUM TABLE

Segan 123 26001 218 262 123
26010 28 26028 185 2HBIB 196
2HB4Q 178 2645 247 2HOEH 201
THD6B 142

MODULE 4.11

TN T Rl TR EUE R R R TR LR R Y R]
2HADT REM CALCULATE DIRECTIVE LENGTH

Dl GRT RE MR S5 % R W 535202 NN RN
PHLH1O TL = LENCINE

ThEXM IF PD=%4& THEN 2&720 @ REM BYT DIRE
CTIVE

THADE IF PO=60 THEN GOSUR 286080 : Al = R
ESULT @ REM DEAL WITH ORG DIRECTIVE

75

Machine Code Master

x4
£

IF PO=5% THEN EXIT = TRUE
L6630 IF FOXSE THEN RETURN @ REM END & O
RGE DIRECTIVES
Lobdd REM FIND LEN. OF WRD & DRY
265G AD = AD+R
2666 FTR = PTR+1
26678 IF PTR>TL THEN RETURN
Z266BO T = ASCMIDE (INE,PTR, 1))
26670 IF T=58 0OR T=5% THEN RETURN
SETAD IF T x46 THEN 26460
26718 GOTOD 26650

2@ REM LENGTH FOR BRYT.
Al = AD+1
FTR = FTR+1
2 IF PTR:>TI THEN RETURN
LG76@ T = ASCI(MIDFE (INE,FTR, 1))
26770 IF T=58 0OR T=59 THEN RETURN
26780 IF T<:xd4b4& THEM 246740
26798 GUTO 26730

This module is used exclusively by Pass 1 and acts upon those assembler
directives which are relevant to that part of the program execution, these
being BYT, WRD, DBY, END, ORG. The module is called from Module 3
whenever an assembler directive is detected.

Commentary
26620: This deals with the BYT directive and will be discussed under 26720.

26625: 60 is the code for the ORG directive, which is used to set the address
in memory on which subsequent assembly will be based. ORG will be
followed on the line by an expression and the ‘expression evaluator’ (not
explained yet) is called to get the desired address from the expression. AD,
the address at which the next machine code byte will be placed is then set
equal to the result of the expression.

26627: If the END directive is encountered the variable EXIT is set to
TRUE.

26630: Other than ORG and END, none of the directives with a code
greater than 58 (SYM, PRT) affect program execution on the first pass.

26640-26710: At this point in the program execution, what has been
encountered must be one of the two directives WRD and DBY. These take
the form in the assembly language program:

WRD (or DBY) SAAAA . .$BBBB.$CCCC ie the directive followed by a
series of two byte values which will be placed directly into memory — thus

76

Chapter 4 Mastercode Assembler

allowing a table to be defined.

The difference between the two directives is that WRD will take the two
bytes specified by, for instance $ABCD and store them in the memory in
the order CD, AB while DBY will store them in the order AB, CD. The
CPU chip normally works upon two byte numbers where the least
significant byte (CD in our example) comes first. The problem with these
two directives on the first pass is that, as we have previously noted, a
record must be kept of the length in bytes of each instruction in order that
labels may be given their correct addresses in the memory when they are
defined on the first pass. BYT and WRD can have any number of two byte
values after them up to the maximum string length of 255. This loop there-
fore scans the line, counting the number of two byte values and
incrementing the address counter AD by two for each value found.

26720-26790: The BYT instruction specifies single byte values to be placed
into memory. This loop performs the same function as the previous one
but only increments the address counter by one for each value specified.

CHECKSUM TABLE

18% 26601 266D 122
2éH1B 78 26620 266E5 4@
BHAET 189 26638 2&464@ 4

26678 Té
&7 184

2e6HEB 216

26680 178 26

267180 172 EHET2H 181 2ETEA Z15
AAT4B 195 2ETHG T 267&D 178
26TTA E47 EAT8E 183 2679B 171
MODULE 4.12

P T R PR EE XS 2 S
TYRE 17O =1k

M
h

AU 26BEE

ym@ THEN OF = 1
YA THEMN OF = 2 @ RETLRN

LEFTE (HE, Ly=" " T = O
= LEN(HE)
i, T 100

c ARND TETL THEM T o= T4+1 1

77

Machine Code Master

2HZ2D IF TZ24x44 THEN 26275
ZEITA T = T+l 1 IF T:HTL THEN 26270

26240 T2 = ASC(MIDE (HE,T,1)

26230 IF T2=89 THEN OF = 0OF-1 : GOTD 262
75

L626@ IF TZ=88 THEM OF = OF-2 : GOTO 265
73

26270 REM NOT A VALID INDEX
REE7E EN = 5 @ BOTO 28000

26275 IF (OF=12) AND ((FO>2ANDFOL6) OR (FO>6A
NDFO< 1@) ORFO=120RFO=11) THEN OF = 3
26281 REM ZERD FAGE OFRANDS

26282 IF OF<10 THEN RETURN

T7 = FTR @ FTR = Té

G0SUR 28400

IF ERR OR RESULT>255 THEN 263972
OF = OF-&

FTR = T7

RETURN

Following on the development of Pass 1, as laid down by the control
module, we now come to the two routines which determine the type of
operand to be used and whether that operand type actually fits the opcode
type, remembering that not every addressing mode can be used by every
opcode type. The purpose of the present module is to determine the
operand type which fits the format laid down in the instruction.

Commentary

26110: At this point PTR is indicating the character after the opcode
mnemonic and the subroutine at 26000 is called to obtain the operand part
of the instruction, stripped of its spaces.

26130: If the operand has zero length then the addressing mode must be
implied, and the value of OP is zero.

26140: If the operand is ‘A’ then the addressing mode is accumulator
addressing, OP=1.

78

Chapter 4 Mastercode Assembler

26145: If the first character of the operand is ¢ #’ then the addressing mode
is immediate, OP =2,

26170-26260: These lines are a mirror image of the lines in the Disassembler
which work out the format of the operand from the value of the operand
byte in a machine code instruction. In this case we work out the operand
type from examining the format.

26270-26280: If a full stop is detected and the format does conform to that
for indexed addressing, error 5 is flagged — ‘index is not X or Y’.

26282-26294: These lines test whether it is possible to perform the instruc-
tion with a zero page addressing mode — the format for absolute
addressing and zero-page addressing is the same and the assumption has
been made up to this point that operands which could be either are in fact
absolute addresses. This is only possible with operand types of 10 and
above, representing the absolute addressing modes. The PTR isreset to the
end of the opcode and the operand re-evaluated by the Expression Evalua-
tor. If the result falls in the range 0-255 then it is possible to use the faster
zero page addressing mode and the operand type OP is reduced by 6 to
transform the addressing mode into zero page addressing of some kind.

CHECKSUM TABLE

26108 123 26101 213 26102 123
26113 145 261G 7@ 261730 190
26140 254 26145 250 26178 244
26180 160 261960 2 26208 243
Z6EZLG 243 2HZ2EG 23 2H2ETD 12

FH240 2473 26258 112 26260 112
26270 41 2ORT72 215 2627H 213
26281 Y 26E8Z 211 26284 95

2HEBL 173 26288 156 26290 17

2AEPE 1L 2694 144

79

Machine Code Master

MODULE 4.13

ZOEAE REME R F R0 R BB 25X W R
26EQ1 REM EVALUATE OFCODE

2EHZDE REMM SR 5596555350 H 35969559996 5930696 K
2HI1B TL = 3 3 T = P

OIEA T = ABCIMIDE(TAE(TL) ,T+1,10)

EOEIO IF T=25% THEN ERR = TRUE : RETURN
2OHIAB TL = 4 @ TR = ASC(MIDF (TAH (1), INT(
T/241) ,1) 3

2635@ IF (1 AND T)=0 THEN T2 = INT(TZ/1é
)

2EIHS TR = TF AND 15

POEEO IF TR 0P THEN 26300

DEITO OF = OF+CHRE (T)

F6HEIBO ERR = FALSE

26EFD RETURN

At this point we again make full use of the new tables which were added
to TAS in the first module of the Assembler. The purpose of the module is
to match the opcode that has been obtained with the operand type and see
whether they are in fact compatible. If not an error must be flagged.

Commentary

26320: T has been set equal to PO, the position of the opcode mnemonic in
TAS$(2) and thus the string equation in this line points to a pair of bytes in
TAS$(3). TA$(3) contains, for each of the possible opcodes types, the first
of the possible byte forms that the opcode can take. The value is also the
first link in the chain of possible byte forms of the opcode.

26330: If, on subsequent iterations, the value found in the table (TA$(4)
subsequently) is FF hex, then there are no more forms of the opcode availa-
ble and an error is flagged.

26340-26355: Having found the possible opcode, it is now compared with
the necessary addressing mode in TA$(1). The addressing modes for each
opcode are stored in TA$(1), two to a character. A single character can be
used to store two numbers in the range 0-15, simply by multiplying one of
the numbers by 16 and then adding them together. Thus the addressing
mode for opcode one in the table of opcodes will be found in the first cha-
racter of TA$(1), as will the addressing mode for opcode two. Lines 26350
and 26355 extract the necessary half of the character value (0-15 and
16-255). If the opcode position (PO) in the table is odd, then the high half
of the byte is used (T2/16) and if PO is even the low half of the byte is used
(T2 AND 15).

80

Chapter 4 Mastercode Assembler

26360: If the resulting addressing mode is not the same as that obtained by
examining the operand of the instruction in assembly language, then the
subroutine returns to 26320 and picks up the next possible form of the
opcode, together with its associated addressing mode and so on until there
are no further forms of that opcode mnemonic.

26370: If program execution has reached this point it is because an
addressing mode has been found in the tables which conforms to the
format of the operand picked up from the assembly language instruction.
The correct opcode for the operand and the opcode type is added to O$,
which is being used to store what will eventually be placed into memory,
though this is only relevant on Pass 2.

CHECKSUM TABLE

26IDB 123 26301 224

263510 9 26528 1921 :

26Z4@ 167 26356 81 H6EBE g3
266G 24 25X7H 238 26380 70
2EEFG 142

MODULE 4.14

ZEEAD RENME KR I KR T I H KKK H R

26561 REM RBRYTE LENGTH
DETET RENME %85 %5 55 036522 35330 e e N
26565 AD = AD+]
26T7G IF OF>x1 THEN AD
26586 1IF OF-8 THEN 4D
26598 RETURN

We finish following through the work of the Assembler on Pass 1 with
this short module. It simply uses the opcode type to determine how many
bytes the assembled instruction will require when it is finally placed into
memory on Pass 2. This is in order that the variable AD may be correctly
updated for the purpose of defining labels.

AD+1
AD+1

HoH

CHECKSUM TABLE
26E6D 123 26561 197 26562 1273
26565 215 26STO 2E4 26580 241

26590 142
SECTION 3: Pass Two Routines
MODULE 4.15

el Ny T R = U E R R RS R SRR T)
27601 REM DO PASS 2 ASSEMBLY

81

Machine Code Master

Z27EAE REM® 5 W 559055 355 W3 H 33590 5N
276D PASE = 2

27610 0F = v

27620 EXIT = FALSE @ ERF = FALSE

7625 FTR = 2

27630 GOSUR 28856

2764@ IF NOT ERR THEN 27720

276EB IF T=58 AND LEN(HE)=0 THEN 27430

L7668 IF T=59 0OR T=-1 THEN ERR = FALSE
RETLIRM

276463 GOSUR 28700

276760 GOSUB 2852

27680 IF NOT ERR THEN 277720

27690 IF T=58 AND LEN(H#)=0 THEN 27630
27695 IF T=59 0OR T=-1 THEN ERR = FALSE :
RETURN

27708 EN = 3 GOTO 28000

27720 IF POXSS THEN GOSUBR 27200 @ GOTO 2

7745

27723 TS = PTR : GOSUB 26100 : T8 = FTR
: FTR = T5

27725 GOSUB 26300 : IF NOT ERR THEN 2773

@

27727 IF OF<7 AND OF>3 THEN OF = OF+é

PTR = TS5 : GOTO 27728

27728 EN = 18 : GOTO 26000

27729 REM THIS BIT ATTEMFS TO MATCH ARSL

OUTE ADD MUDE TO OFCODE IF ZF HAS FAILED

27730 GOSUE 26560

27740 IF NOT ERR AND LEN(D#) *@ THEN GUSL

B 27000 : FTR = T8

27745 IF LENCIN®) *PTR AND NOT EXIT THEN

27670

27750 RETURN

Having worked through Pass 1, we now turn our attention to Pass 2. As
with Module 4.3, this is the control module of the Pass.and we shall follow

through the Pass in outline before examining it in detail.

Commentary

27605-27700: Apart from setting the output string (O$) to empty and PASS
equal to 2, these lines are similar to the first part of the Pass 1 module in
their effect. A test is made for an opcode, if this fails it is assumed that the
first part of the line is a label or variable. Following this another search is

82

Chapter 4 Mastercode Assembler

made for an opcode and if the line is not setting a variable equal to
something and there is no opcode present, error 3 ‘invalid operand or
opcode’ is flagged.

27720: If the opcode type is greater than 55 then an assembler directive has
been encountered and the relevant module is called up to evaluate it.

27723: The subroutine at 26100 is now called to evaluate the operand.

27725-27728: The subroutine at 26300 examines the match between the
opcode and addressing mode so far obtained, then attempts to match them
in absolute mode, flagging error 18, ‘addressing mode not available with
this opcode’ if the match is not correct.

27730: The byte counter AD is incremented by this call.

27740: If no error has been found and there is something in O$ then the
operand part of the instruction is actually evaluated. T8 is a variable used
to move the pointer past an index such as *.X’ at the end of the operand,
since the operand evaluator will not scan past these. T8 was set in line
27723, when returning from the routine which evaluates the operand type,
which scans to the very end of the operand, including any index attached.

27745: This line allows multiple statements on the same line to be evalu-
ated.

CHECKSUM TABLE

2760 123 276@1 1@7 B76BE 123
27605 F1 27618 169 L7620 87

2TF62H 26 E7630 18O 27640 69

276580 8Y E7H6E E8 27665 174
274670 160 27680 69 27690 89

2THIE EY 27708 213 27720 32

2FTRE 138 27735 194 BFI2T 178
27728 11 27T2R 244 2T77ED 174
277480 46 274G 251 27750 142
MODULE 4.16

DFIDE FE MW W0 B W B e B Fe U I BN AN
2RI OREM DIRECTIVE OFPERAND EVALUATOR
TR RE M KRR KK NI NN H K
27205 ERR = FALSE

27210 IF FO=60 THEN GOSUR 28600 : AD =RE
SULT

27214 IF PO=62 THEM SY = TRUE

83

Machine Code Master

27215 IF PO=61 THEN OFEN 2,4 @ CHD 2 @ F

RINT "LCDIADRD. DATA SOURCE CODELCDI

27220 IF PO=89 THEN EXIT = TRUE

2720 IF FPOXS8 THEN RETURN

27248 IF PO=5& THEN 273230

E725¢ REM DRY & WRD DIRECTIVES

27268 GOSUR 28400

Z7270 IF REGULTCS@ OR RESULT>&553Y THEN B

Moo= d @ GOTO 28000

27280 IF FO=58 THEN RESULT = IMT{(RESULT/

206) +256% (RESULT-INT (RESULT /256 #356)

27281 REM 27288 REVERSES HI. % L0O. BYTES
IF DIRECTIVE 1S DRY

2FEF@ TL =T @ GOSUER 27102 @ ab = AD+3

27380 IF Ti=32 THEN GOSUER 782158

27318 IF Ti=46 THEN 27260

27328 RETURN

REM BYT DIRECTIVE

GOsUR 28408

IF RESLLTS® OR RESULT>255 THEN EN

GOTO 28000

GOSUR 27146 : AD = AD+1

¥ IF T=322 THEN GOSUR 28150

273288 IF T=46 THEN 27346

27E9@ RETURN

In Pass 1 we examined a module which determined any actions
necessary when an assembler directive was encountered and also the
length of the directive if it was BYT, WRD or DBY. This module is
similar except that it performs such actions as opening a channel to
the printer for output, flags SY to print out the symbol table or places
the data from a BYT, WRD or DBY directive into the output string,
(O}

Commentary

27210: If an ORG directive is encountered, its operand is evaluated
and the byte counter AD set equal to the result.

27214: Entering SYM in the program flags SY to print the symbol
table at the end of the listing of source code.

27215: Entering PRT in the program opens an output channel to the
printer for the listing of source code, otherwise output is to the screen.

84

Chapter 4 Mastercode Assembler

27220: END results in the pass finishing at this point.

27250-27320: The value of a two byte directive (DBY, WRD) is obtained
using the Expression Evaluator and the two bytes reversed if the directiveis
DBY. This is because the routine at 27100, which is now called, places the
two bytes into the string O$ in LO/HI order. AD is incremented by 2. Line
27300 scans past any leading spaces and the subroutine loops back to pick
up another double byte if a full stop is encountered.

27340-27380: The same routine as above, but for the single byte directive
BYT.

CHECKSUM TABLE

27208 123 272@1 74 27202 12E

2705 70 27218 1466 27214 41

2715 154 27228 189 27238 221

27240 77 272360 24% 2726B 173
176 27280 156 =1
"1} 27E00 219 52

750 142 A7EIO B3 17%

L27I5HG 67 2736B 252 170

A7I8e 2 27E90 142

MODULE 4.17

DTDDE RE MR K KRN T T H KT TR KK AN N KRN
27801 REM EVALUATE OFERAND

DTROZ REME SRR R I H W W 33K I K KWWK H K
27018 ERR = FALSE

27820 IF OF<Z THEN RETURN

2783@ IF OP=3 THEN 27500

27848 IF OP=2 THEN 27400

27050 GOSUR 28600

27864 IF ERR OR LEN(OF)=0 THEN RETURN
770 IF (RESULT<® UOR RESULT>255) AND OF
9 THEN EN = 1 : GOTO ZBO0O

27880 IF RESULTSE® OR RESULT>6E33S THEMN E
M= 3 1 GUTO Z2B2GA

E7@99 IF OF<9 THEN 27140

2718060 T = INT(RESULT/25&)

27110 RESULT = REBULT-T#256

27138 GOSUR 27140

27138 RESULT = T

27146 0F = OF+CHRF(RESULT)

27158 RETURN

85

Machine Code Master

This module evaluates an operand whose type has already been
determined, placing the result in one or two byte form into OS$.

Commentary
27020: If OP is less than two then there will be no operand.

27030: If the OP is 3 then relative addressing mode is required and the
routine at 27500 is called up.

27040: If OP is two then the addressing mode is immediate and the routine
at 27400 is called up.

27050-27080: For all other values of OP, the Expression Evaluator is used
to obtain a result and this is tested against the requirements of the
addressing mode for 1 or 2 bytes.

27090-27140: These are the two routines that place the result obtained
through the Expression evaluator into byte form in O$. Note that two byte
numbers are placed into O$ with the high byte second.

CHECKSUM TABLE

27008 123 27081 47 27002 123
27e1a 7@ 27@20 164 2T7AED 2@
27340 18 27858 173 278068 98
27878 14 27080 144 27898 27
27108 117 2711@ 248 27138 171
E71E@ Z7 27148 121 27150 142
MODULE 4.18

27500 REM¥E %R 5055200 W e WK 3 KX
27501 REM EVALUATE RELATIVE EXFRESSTON
27EQE REMIHR R R R 55T ¥ 9 35 35359652
27510 GOSUR 28400

27320 IF LEN(DF) = 0OR ERR THEN RETURN
L2750 RESULT = RESULT-AD

27340 IF RESBULTYO THEN RESULT = RESULT+
S

27368 IF RESULTY25& AND RESULT =0 THEN
714@

27378 EN = 1@

27580 GOTO Zgoea

This module evaluates the operand of an instruction using relative
addressing, ie where a jump is specified from the current address up to 127
positions positively in the memory or 128 negatively.

86

Chapter 4 Mastercode Assembler

Commentary

27530: Because we are talking about a relative address, a jump is specified
first of all as being to an address and then the relative jump is calculated by
subtracting the current address, recorded in AD.

27540: Negative jumps cannot be placed straight into the machine code
program, they must be transformed into what is known as ‘two’s comple-
ment’ form, where any negative value has 256 added to it, so that it ends up
as a positive number in the range 128-255. Thus jumps with a value above
128 are in fact negative jumps and their value can be obtained by subtrac-
ting 256.

CHECKSUM TABLE

27508 123 27501 178 27502 125
27518 173 27320 98 27530 22
27544 75 27568 2 27578 23

27E8G 163

MODULE 4.19

DFARD RE PR 850 530 5232 68 36 2 3 9990
27401 REM EVALUATE IMMEDIATE EXFRESSION
rT4RG FRE 1913 9 96 9% 3 6 e e 3 3 K I 3 3 I 96 I e K 06 W W K B e N K
274180 TS = PTR @ GUSUR 26000

RTAR2B IF ABC(HE)) X35 THEN 27480

P74EA IF MIDE(HE,Z2,1y=""" THEN 27458
27440 FPTR = TS

274472 IF PTRALENM(INE) THEN 27446

27444 IF ASCMIDF(INF,FTR,1))< 235 THEN F
TR = PTR+1 : GOTO 27442

27444 OF = 8 : GBUOSUR 27058 : OF = 2
27448 RETURN

27450 REM SINGLE CHR. EXFECTED

D746 IF LENHE) >3 THEN 27488

274760 0f = O+MIDF(H#%,2,1) ¢+ RETURN
27488 EN = 12

27499 cGOTO 24000

This module obtains the value of an operand for an instruction involving
immediate addressing, ie where a register is loaded directly with a value in
the range 0-255.

87

Machine Code Master

Commentary

27410-27420: The operand is obtained in H$ by the use of the routine at
26000. If it does not begin with a “ #° then an error will be flagged.

27430: If the second character of the operand is a single quotation mark,
then the routine will expect a single character following quote, whose
ASCIl value will be the value of the operand. A second quote should not be
used.

27442-27444: These two lines skip over any spaces in IN$ to the hash sign.

27446: Since immediate addressing always involves a single byte, the
routine at 27050 is used to evaluate the operand as if it were addressing
mode 8 (indirect Y) and to place the byte into O$. This is simply a short-cut.

27460-27470: These two lines deal with single characters in quotes. If the
length of H$ is not 3 then the format is invalid and an error is flagged. If H$
is three characters long then the middle character is taken as the one whose
ASCII value is to be the operand.

CHECKSUM TABLE

Z74BE 12%

MODULE 4.20

2EHFEQ RE M. % 558355 He T 3 3B H B e 5 BT
26901 REM DUMP SYMBOL TABLE T SCREERM
ZEPUE REMSR TR K5 W3 25 3653593300 5 3
26710 IF SE4CL THEN 26979

26915 PRINT

26928 FOR X = @ 70 SE-i

L6 PRINT LEFT£(STH(X) , &6 TABRIM H
26940 H = ABCMIDE(ETE(XNY ,8)) #0558 +A8C (M
DFEBTEXY 7))

2E6TEE GOSUER 11000

Z2HI6D FRINT HE

26HGTA NEXT X

S26F7EH FRINT "LCDI TOTAL NUMBER OF SYMBOL
T 1

26788 RETURN

88

Chapter 4 Mastercode Assembler

This module is not truly part of Pass 2: it simply outputs the symbol
table at the end of Pass 2 if the SYM directive was present in the assembly
language program.

CHECKSUM TABLE

26908 123 26901 & 26908 123
26918 27 26915 153 2A9E0 115
26938 B@ 26540 &4 26906 139
2eEReB ET7 26EFTY L8 SH69T75 248

26900 142

SECTION 4: The Expression Evaluator

Up to now we have had several references to the shadowy beast known as
the Expression Evaluator, taking it on trust that there was such an animal
and, more importantly, that it does the necessary job. It would, of course
be quite possible to write an assembler which required all values to be
spelled out in either decimal or hexadecimal but a great deal of time and
effort is saved if the user can enter variables, jump to a position six bytes
after a particular label or calculate bytes by entering something like LDA
#VAL/256. The Expression Evaluator makes all of this possible, as you
will discover when you move on to enter our machine code routines.

MODULE 4.21

TETEEG RE MR R R BRI RN H W I NI W AN NN

ZBEA1 REM EVALUATE LABREL OR NUMBER

DEZAD REM R X535 53 03K KN RN

28320 GOSUER 8150

28E2Y IF T=40 AND LEN(H#)=0 THEN GOSUR 2

81350

2832G T1 = LEN(H#)

28E35 IF (T=-1 OR T=32 OR T=38 OR T=39 0

R T=41 OR T=4&) AND T1 = B THEN RETURN

28340 IF Ti=0 THEN Z2B3%0

2350 IF ASBCHE) <=57 THEN H = VAL (H¥)

GOTO 28492

286D GOSUR 282590 : REM FIND LABEL IN BY

MEOL. TABLE

28370 IF ERR THEN EN = 11 : H = @ : B0OTO
28000

28380 GOTO 28492

FEI9O REM HEX,0CTAL OR BINARY NUMBERS EV
ALUATE

89

Machine Code Master

28400 T2 = T @ BOSUR Z815@

28410 IF LEN(H#)=0 THEN 28450

28420 IF TE=3E& THEN 28470

28430 IF T2=37 THEN BASE = 2 : GOTO 2847

@
28440 IF T2=78 THEN BASE = 8 : GUTD 2847
@

28450 REM INVALID LAREL

28460 H = B @ EN = & @ GBOTO 28000

28470 REM TEST IF VALID NUMBER

28475 GOSUER 11950

28480 BASE = 16 : REM DEFAULT BASE

28490 IF ERFR THEN H = @ @ EN = 7 @ GOTO
28008

28492 FTR = PTR-1 @ GOSUER 28150 : REM BE
T NEXT OFERATOR

28495 RETURN

CHECKSUM TABLE
23 28301 48 28502 123
173 28325 Y50 28330 247
178 28240 255 28250 208
173 28370 99 28386 178
146 28400 2473 28414 247
28420 56 28470 183 #8449 1462
28450 54 28460 188 28470 2%
28475 173 28480 221 28498 56
28492 213 28495 142

This module is the core of the Expression Evaluator, its job being to
extract the value of number or label, numbers being permitted in decimal,
hexadecimal, octal (base 8) or binary (base 2) form. The subroutine returns
a value in the variable H and the permissible range of values is integers
from 0 to 65535.

Commentary
28320: the number or label is obtained in HS$.

28325: If the first character encountered is an open bracket ‘(‘, then the
routine is called again to obtain the actual number.

28835: On entering the routine at 28150, the variable T is set to minus one.
If it remains at that value then no characters of any significance have been
found. The other values for T indicate that a space, colon, semi-colon,

90

Chapter 4 Mastercode Assembler

close bracket or full stop have been found. If any of these is combined with
an H$ of length zero then there is no number or label in the instruction and
the program returns from the subroutine.

28340: If none of the delimiters tested for in the previous line is present it is
assumed that the number has a ‘$’, ‘%’ or ‘&’ in front of it, indicating
hexadecimal, octal or binary and execution goes to the routine which
extracts a decimal number from these.

28350: If the first character is a digit then the VAL of H$ is taken — varia-
bles must therefore not begin with a number, since the value of the number
will be picked up and the rest of the variable name ignored.

28360-28380: If the first character is not a digit then what has been picked
up is assumed to be a label and it is sent to the routine at 28250 in order to
obtain its value.

28390-28490: The pointer represented by T has now passed a character
which is assumed at this point to indicate a different number base. This
assumption is now tested. If a different base is specified, the variable
BASE is altered to take account of it and the routine in the Monitor which
converts non-decimal numbers to decimal is called up. If the character
indicated by T2 is not one of the base changing indicators then it is invalid
and the ‘label is not alphanumeric’ error is flagged. If a different base has
been specified but the representation is incorrect (eg binary 101012) then
an error ‘incorrect number base’ will be flagged after the return from the
routine at 11950.

28492: The main pointer, PTR, which is indicating the character after the
end of the current operator, is now backed up one in order that the
procedure may be re-executed on the rest of the line.

MODULE 4.22

DEEDE RENM R %% % 55505 KRR KN NN
28581 REM EVALUATE TERM WITH * OR /
TERSDD FRE MR R RN WKW I KK W N WKW
28%10 GOSUR 287300 @ TERM = H

20520 IF PTRLEN(INE) THEN RETURN

205I@ IF T=42 THEN GOSUR 28300 : TERM =
INT(TERM*H) @ GOTD 28528

20550 IF T<-47 THEN RETURN

28560 GOSUER 28300

28570 IF H=0 THEM TERM = @ 3 EN = 15 : G
a7T0 28000

28580 TERM = INT(TERM/H)

28500 GOTO 28520

91

Machine Code Master

One of the problems of evaluating an expression is that of precedence, ie
which part of an expression such as A*B/C + D/E*F must be evaluated
first. The Expression Evaluator can deal with the precedence between ¢ +° R
7, “*” and ‘/’ but not with precedence forced by the use of brackets.
Brackets would anyway make it more difficult to assess the operand type.
This particular module deals with the two high precedence operations,
multiply and divide.

Commentary

28510: A value is picked up using the previous module and stored in the
variable TERM.

28530: If the character pointed to by T is a multiply sign then the next value
is immediately picked up and multiplied by TERM.

28550-28580: If the character indicated by Tisa /’, representing a division
sign, then a test is made that the divisor is not zero — if it is the ‘division by
zero’ is flagged. TERM is now divided by the value just obtained in H.

CHECKSUM TABLE

2EEan 123 g5l @ 2858E 123
2a831@ 150 28520 150 28530 142
28556 &7 28568 170 28578 152
8588 w3 285948 179

MODULE 4.23

s

This module evaluates the lower precedence operations add and
subtract.

92

Chapter 4 Mastercode Assembler

Commentary

28610: The module does not directly call the main module at 28300, but
rather it calls the high precedence operator module. This ensures that
before any values are returned they have been tested to see whether they
should first have been divided or multiplied by something else. Thus if the
expression being evaluated were A*B + C, A*B would be evaluated before
the result was returned to this module.

28620: If one of the delineators is encountered after the operand then there
is nothing more to evaluate.

28630-28640: If a plus or minus sign is indicated by T as following the value
obtained so far then the appropriate calculation is made.

28650: If the character indicated by T is neither a plus nor a minus sign
(multiply or divide would have been dealt with by the previous module)
then the ‘invalid operator’ error is flagged.

CHECKSUM TABLE

133 28601 54 28602 123
T 28&1@ 47 2E6Z20 5
: 286480 £ET 28658 81

Summary

It’s finished! Or at least it’s entered. Whether you have the heart to go on
and develop the Mastercode program further depends on your own
stamina — it is one of the largest single programs ever published in book
form for a popular micro. In the rest of the book we examine a series of
machine code routines which can be entered using the Assembler. If you
have other books on 6502 programming then you may find in them useful
subroutines which you can enter. It is not a bad idea to enter one or two
small routines before you go on to extending the 64’s BASIC with the rest
of this book, if only to familiarise yourself with the working of the
program. The usual word of caution applies, however: do make sure that
the program is saved before you try to do anything with machine code.
Anyone can make a mistake — and regret it if the program is lost.

93

Part 2

CHAPTER 5
The BASIC Extender

In order to achieve our aim of practical machine code routines to extend
the BASIC language on the 64 it is first of all necessary to understand a
little how BASIC actually works. How is a normal BASIC command
picked up and acted upon, let alone the commands we wish to add to the
language.

Consider first a straightforward BASIC command such as a line reading
1GOTO 10. When you press RETURN to enter the line, it is scanned by the
BASIC interpreter and the fact that it contains a BASIC keyword is
detected. This keyword is then ‘crunched’, that is to say shrunk downtoa
single byte in the program file. All the BASIC keywords have such bytes, or
‘tokens’, with values in the range 128-202 (plus 255 for PI). In the case of
GOTO the token is 137.

When the program containing this line is RUN the BASIC interpreter
scans the line, skipping the line number and finds the token, which it recog-
nises as such since it is above 128 and not contained within quotes. The
token indicates a position in a table and at that position is the address of a
machine code routine which will execute the command you see as GOTO
10. The interpreter now executes this machine code routine which first
scans the line following the GOTO token for a line number. Having
obtained this from the BASIC line the rest of the machine code routine for
this particular command is devoted to finding the particular line number
referred to and altering a number of system variables so that program exe-
cution jumps to that point. If no line number is found alongside the GOTO
then a syntax error is indicated. If the line number is found but is not in the
program then an undefined line error is given. Assuming that everything
has gone according to plan, control of the program now returns to that part
of the BASIC interpreter whose job is to seek out the next token in the
 program.

From all this we learn that a number of actions are necessary for the
execution of a BASIC keyword:

1) The interpreter must recognise it as a keyword and be able to crunch it
down to the form of a token.

2) The interpreter must be able to recognise the token once the program is
run.

3) There must be a table in the memory somewhere from which the inter-

97

Machine Code Master

preter can draw the start address of a machine code routine to perform the
command.

4) The machine code routine may have to be able to pick up further infor-
mation for the command (eg the ‘10’ for GOTO 10).

5) There must be provision to recognise and notify errors which prevent the
execution of the routine.

Having RUN the program one more requirement is discovered when it is
LISTed. It is no use trying to print out the token for the keyword. The
interpreter must also have a table which allows it to look up the word which
corresponds to the token so that it may be printed in a listing of the pro-
gram.

In order to enter new keywords we must take account of all these
requirements. Our keywords must be placed into the interpreter, tokens
must be specified for them, routines to execute them must be provided and,
most important of all, the interpeter must be persuaded to recognise and
act upon the information given. All this will clearly involve alfering the
BASIC interpreter and that itself presents the first problem since, as youno
doubt already know, the interpreter is not in a part of memory that we can
choose to alter (RAM) but rather in custom-built chips whose contents are
fixed at the time of their manufacture. All that is true but fortunately it is
not the whole of the truth.

When you switch the 64 on its 64K of memory is taken up (roughly} by
8K of memory for what is known as the Kernal (a set of useful machine
code routines common to most Commodore machines), 8K for the BASIC
interpreter, IK for system variables (locations which the 64 uses to store
important values and addresses for its operation), 4K of RAM which
cannot be used by BASIC and 4K for running other devices such as the VIC
chip, discs, tape, printers etc. However it is.possible to switch certain
sections of this memory over to user control (RAM) — in fact there is a
complete 64K of RAM available, provided that you are willing to switch
everything else in the machine off, meaning no BASIC, no communication
with the outside world and so on.

The BASIC interpreter, appears to occupy the 8K of memory from
40960 onwards. In fact the 64 cheats by fooling the CPU into thinking that
the entirely separate BASIC interpreter chip occupies that position. The
actual 8K of RAM at that point is totally unused for the simple reason the
6502/6510 chip can only see 64K of memory at one time, so that if it isto see
the BASIC interpreter it must cease to see 8K of the actual user memory.
The importance of this for our purposes is that there is 8K of memory going
unused, exactly the right amount of space to hold the BASIC interpreter if
it were to be held in RAM and not in ROM, and in exactly the place where
the CPU would expect to find the BASIC interpreter.

Our first step in altering BASIC, therefore, is to copy the contents of the
BASIC interpreter into that area of RAM. This has its drawbacks — the

98

Chapter 5 The BASIC Extender

BASIC interpreter can now be altered (ie corrupted) accidentally in a way
that could not happen if were to be held in ROM. But it can also be altered
to good effect if we know what we are doing (and we do).

Given below is a short program which places three machine code
routines into memory whose effect, when they are run, is to move the
BASIC interpreter into RAM. Later, brief additions will be made to the
program permitting us to add new keywords and make other necessary
changes. For the moment shifting the interpreter will suffice.

BASIC Extender Listing I

D1 2TAS

188 REM BAL xl[EzMTiT'HUF' FOLIT T NE

118 FEM MOVE BASIC ROM O INTO RAM AT 24006
- FREFEE

1 ""fl Dy fﬁ 1 &

PRGN I | *!‘ifﬂ 1

A DaTa @ l?ﬁu L 1 ()

Wb 8,34, 162,255

DATA 75

~%

B T IV B

“
gy g
2R,1583,1.,1
Lo

2 1 6@ 255,208, 185
Z@,185,1581,8,48,01,%6,

]db,i LRB, 144, 238
@
= PS4
150 READ A 1 IF A<D THEN FOKE ADLA 1 AD
= aD+l 3 GOTO 158
B REM DO ACTUAL MOVE

i
1465 FOEE Z2848.80 @ POEF

E@TL .9
178 FOR X = 160
L%, X LR I

199 FOEE

o FOFE ZETFS, 1

READY.

99

Machine Code Master

Commentary

0-150: The purpose of the REM statements is to provide a clear area of
memory. Into this area, which begins at 2054 (PEEK 2053 and you will
find the token for the first REM, or 143) the line at 150 now POKEs
the values contained in the data statements.The data statements
represent, as you have no doubt guessed, machine code instructions.

Machine Code Routines
S0, DATH

@ “F]
4] 2@ 8YM
& 20 ORG 2054
Bédb ASEN1 S LBLAOBE LDA 1
aas SPFE @ AND #2254
B g5 JE 5Ta
sac HB g RT3
Bah ABFF 29 LDY #2855
G 8 lag InyY
@i Zhzand 1@ LELODL JSR LBLGEZ
81735 BE@1@G1 128 DX E57.Y
g8lé nlntaate] 148 JER LRBL.ODG
a19 8 188 TXA
314 DEO1a1 el 5Ta Z57.Y
g 178 INY
D@r@ 1H@ BNE LEBLDA@IL
ASA1 19@ LBLOGZ LDA 1
Bl 208 ORa #1
gEE1 218 87T/ 1
&G 20 RTE

Commentary on machine code routines

Given above is a listing of the machine code routines using, for the sake
of clarity, the Mastercode Assembler. DO NOT ENTER THE
ROUTINES USING THE ASSEMBLER OR YOU WILL CRASH IT,
USE THE PROGRAM GIVEN ABOVE.

10-30: Assembler directives which send the output to the printer, print
the symbol table and origin the program at 2054 in the memory.

50-80: These instructions load the accumulator with the contents of
byte 1 in the memory, AND this value with 254 (thus setting bit zero to
zero, then store the result back into address one. This has the effect of
switching out the ROM and switching in the equivalent RAM. The
routine is self contained. The same effect could be obtained by the

100

Chapter 5 The BASIC Extender

BASIC instruction POKE 1,PEEK(1) AND 254 but this would crash the
system since there would no longer be a BASIC interpreter to work on.

90-180: This routine begins with a jump to the third section of the pro-
gram which switches the ROM in and the RAM out. At this point in the
program, line 130 is nonsense. Later the address from which the X register
will be loaded will be POKEd into the machine code program. The ultimate
effect of the routine is to load the X register with a byte of the interpreter,
to switch out the ROM, to transfer the contents of X to the accumulator
and to store this byte from the ROM into the same address, but now with
RAM switched in. When this has been done, Y is incremented. When Y
reaches 255 (ie 256 bytes have been transferred) the BNE instruction will
fail and the next routine will be executed.

190-220: The mirror image of 50-80, these lines switch the ROM back in
finally before returning control to BASIC.

You might like to note that this listing does not include all of the
machine code you have entered — what remains will be explained later, it is
not used at the moment.

Returning to the BASIC program itself:

165: Our machine code programs will require the use of two zeros, since the
addresses on which our moves of 256 bytes will be based will all be ones
with zero in the low byte eg 40960, which is 160 and zero when represented
by two bytes. Placing the zeros into the REM statements permanently
would create major problems if lines were entered or edited. On encoun-
tering the zeros when entering new lines the BASIC ‘rechain lines’ routine
would corrupt the REM statements, seeking to break them up where the
zeros occurred. For that reason the zeros are POKEd in temporarily for the
purposes of the machine code routines and then replaced again with ones at
line 220.

165-200: The POKEs give the machine code instructions at lines 130 and
160 in the assembly listing the start addresses of 32 blocks of 256 bytes (8K
in all) which will be moved from ROM to RAM. When the address of each
block has been POKEd into the machine code program the program is exe-
cuted by the SYS call at line 200, which starts the machine code routine at
line 120 in the assembly listing. 256 bytes are moved and then the address of
the next block is POKEd in.

If you have entered the program and checked it, then SAVE it before it is
too late. Now enter SYS 2054 in direct mode. If you have made a mistake
you will almost certainly find that the machine has crashed. If not then
nothing will appear to have happened. Now try this:

101

Machine Code Master

300 END (RETURN)....still nothing

POKE 41118,72 (RETURN)....still nothing

LIST (RETURN)....have a look at the last line. It should now read 300
HND — if not you have made an error and should switch off and start
again with the BASIC program you have saved. If the procedure has
worked, then entering END (RETURN) will result in the ‘SYNTAX
ERROR’ message, while entering HND as a direct command will not.
What you have done is to alter the table which stores the BASIC keywords.
If you want to have real fun, type RUN/RESTORE to switch the ROM
back in, load the Monitor and examine the memory from 41118 (AO9E hex)
onwards. There you will find the locations of the keywords, each keyword
having the last character apparently missing. Take a note of the locations
(or a printout) and then reload this program and relocate the interpreter.
Provided that you do not alter the last character of any keywords or their
Iength, you can make them read anything you wish. Try it and then list the
program or even print it out. It will still run but its odd appearance will
show that you have begun to demonstrate your power over BASIC.

102

CHAPTER 6
The BASIC/Machine Code Patch

Assembly Language Listing

i@ FRT
2@ ORG #C000

@ S5YHM
I.}. m BT T s st i e st v ot rms e et St S s 125 v s SR8 o 50 251 et e e

=50 KEYWRD
o0 ;o NEW FUNCTION KEYWORDS

7R ; DEEK

£ BYT &68.69.69. 75+108

PP : YPOS

100 BYT 89.80.79.83+128

110 5 VARFTRH

170 BYT B&.65.82.80.84,582+178

NEW ACTION EEYWORDS

DOKE

YT 68, 7. 75, 65+128
REILL

YT B2.75.73.76. 76+128
DELETE

YT &8.69.76.69.84, 69+128

: MOVE

BYT 77.79.8b.69+178

i FAST

BYT 70.65.83.84+178

: SLOW

BYT B3.76.79.87+128

: FLOT

BYT 80.76.79.84+178

: UNDEAD

3 es aa

LI 5 R

103

Machine Code Master

PO BYT 65, 78. 488, 69, 65, 68+128
T s SUREX

AL EYT 873,85, 64, 49.B8+1728

TR : BLOAD

54 BYT &b.7b.79. 65, 65+1 28

TEQ s BYERIFY

T60 BYT &&.86.69.82,75%, 70.85+128
70 : BSAVE

80 BYT 66.83.65.86.65+128

390 s FILL

490 BYT 70.7%.76. 76+128

41 WRD @

4320 i THIS IS THE END OF EEYWORD
TABLE CHR.

4 :"@ : 4bent smtma cteen 3ses Srest weeer ek SesmR RibvR Peavw SRk eren SAMGD beben SLeSE Arbas esbe Sebes erus setes JoLee Seees AHOL SHeNe bis adeee seeme WS
44@ i NEW ACTION VECTORS

450 ACTVED

460 WRD $AE50

470 WRD $AE30

480 WRD #4830

499 WRD $AB3I0

=500 WRD $A830

510 WRD 48730

=20 WRD #8750

= WRD #A830

540 WRD $ABI@

=50 WRD #AB30

540 WRD $AB3E

570 WRD $A830

580 WRD £6830

5{?@ B coter ceen sese s s a1 21100 s s 21 et e e P Sk S Ve s S e e Sk o2 S s S s

HAWY 3 NORMAL IS5 THE NORMAL NUMBER
OF BASIC KEYWORDS

618 NORMAL. = 75

&E20 i NEWACT I8 THE NUMBER OF NEW
ACTION EEYWORDS

65a NEWACT = 13

H48 i NMEWFUN IS5 THE NUMBER OF NEW
FUNCTION FEYWORDS

HE0 MEWFUN = 3

bHED 3 USE BY POEEING A7EL WITH ' Jd
MR EXECUTE S

104

ORDS
780
7@
BO?
G510
Ejetn
B
G40
B
=TT
87
Etalr
STy
@

FOKE

P1@

20

F40)
FEQ
60
97
280
G
1000
1010
1020
1070
1040

1068
187

774 %

Chapter 6 The BASIC/Machine Code Patch

EXECUT JSR #7732

JERC DOEX

JMEP FATAE

DOEX BECG LABEL

S5RC #¥80

BCO DOLET

CHMF #RNORMALANEWFUN+]

BLC RETURN

CMP #NORMAL +NEWFLUN+NEWAC T+ 1
BLS RETURKN

i EXECUTE THE NEWM ACTION EEYW

SEC #NORMAL+NEWFLN
ASL. A

TAY

LDA ACTVEC+1.Y
FHA

LDA ACTVED. Y

FHA

JME E 7

LABEL RTS

DOLET JMF #4965
RETURN JMF £A7FX

b

s FRINT TOREN ROUTINE TO USE
F7E WITH FRTTOE ADDRESS

FRTTOE JSR FUTREG

CHMF #NORMAL+129

HCD PRTNOR

3 FRINT THE NEW TOKENS

LA AEAVE

SBOC #NORMAL A+

8TA ASAVE

LDA HEEYWRD S 256

LDX #HEEYWRD-EEYWRD/ 256% 356
JEF LBLG3BE

5 PRINT NORMAL TOKENS
FPRTMOR LD& #5060

LDX #HE9E

LELogaa
STX #£A7
8TA ®A4T73A
STX FATES

105

Machine Code Master

1080 ISR GETREG
1090 JMF FAT7 1A
1120 §

i1i@ 1 CRUNCH TOKENS ROUTINE EXTR
A CODE

1122 1 USE BY ALTERING #0604 TO
JMP CRUNCH

1150 CRUNCH J8R FPUTREG

1140 LDA #ASFC

1156 CMF #¥A0

1168 EBNE STAND

1178 LDA #FCO

118 LDX #$0@

1192 JER TORSTR

1zZaa J5R GETREGR

1210 LDY #0

1229 JMFP £ASERE

12738 SETAND LDA H#FAD

124@ LDX #E9E

13250 JER TOKSTR

1260 JER GETREG

14710 LDA #20@. X

1240 JMF ESL@T

12908 et cove wrtne o sars s Seaes e S 0 e e s apa s S1400 ats BAR Ses oa Lnn P St Shb s St e

1Z80 GETREG LDA FSAVE

1310 FHA

1328 L.DA ASAVE

13358 LDX XSAVE

1249 LDY YSAVE

1556 FiL.F

1Z0 RTE

1 n7D T e ne cevee o rse s ot e s an 44400 S0000 tes 0% S Teve SA1e S otee oo Sven sheb S e TS s e

13280 FUTREG PHF

1390 5TA ASAVE

1400 5TX X8AVE

141@ STY YS5AVE

1420 FLA

14738 5TA FSAVE

1440 LDA ASAVE

1458 RTS

1460 § o o s o e e e e e e e

Chapter 6 The BASIC/Machine Code Patch

1470 TOKSTR STA #ASEE
1480 CLD

1490 STX FASED

1500 5TA #4601

1510 aTX #A600

1520 DEX

1530 CFX #$FF

1548 ENE LELOOZ

1550 SEC

1560 SBEC #1

1578 LELORE STA #ASFC

1580 STX #ASFE

1550 RTS

1 é)mm ; e sttt omats S s s nses S oo ot <rers e s Saaes S0000 o beees reess poee Seare S04 RS 1 S revee S s
1619 FSAVE

1620 ASAVE = FSAVE+1

1670 XSAVE = ASAVE+]

1649 YSAVE = XBAVE+]

END

Note: this listing is repeated in fully assembled form at the end of the
commentary but is included here in unassembled form for the sake of
clarity.

Now we know that we can change BASIC. Making a few keywords look
odd is not, however, what we are setting out to do. We want to extend
BASIC, and to do that we have to make far more extensive changes than
can be accomplished by a few POKES here and there. So we turn now to
consider the biggest piece of machine code which you will enter during the
course of this book — unfortunately it has to be at this point or none of the
rest would work!

You will remember that in the last chapter we said that in order to
process a command, the BASIC interpreter needs to be able to recognise
the keyword involved, to be able to recognise the token that it is crunched
down to in the program listing and also to know where the machine code
routine is that will perform the action that the keyword specifies. This is
done by means of a table in memory from AO9E to A19D (41118 - 41373).
When the BASIC interpreter encounters a keyword on input it scans
through that table until it finds one that matches, if there is no match thena
syntax error is flagged. If the keyword isin the table then its position (in the

107

Machine Code Master

table, not in memory eg keyword no. 0 is END) then the correct token for
that keyword is its position in the table plus 128, thus the token for END is
128. When a program is executed the value of the token (-128) is multiplied
by two and this is interpreted as a position in another table, the table of
vectors. This table tells the BASIC interpreter where to find the machine
code routine for that particular instruction.

The problems to be solved by anyone wishing to extend BASIC with a
number of new keywords are, therefore:

1) Space must be found for the new keyword in the table of keywords.

2) The table of vectors must be extended to provide indicators of where the
new machine code routines are to be found.

3) Last but not least, the routines to execute the new commands must be
entered.

These problems would be almost trivial if there were any room in the
tables of keywords or of vectors. In fact, the keyword table is scanned
under the control of a single register in the CPU (the Y register). The reg-
ister is only one byte, and can therefore only be made to cope with an area
of memory 256 bytes long. The existing keywords in 64 BASIC exactly fill
those 256 bytes (including a mysterious command ‘GO’ which is not men-
tioned in the manual but allows GO and TO be separate and still assessed as
GOTO). In other words the table cannot be added to. Even if it could be,
there is no room in the table of vectors for the addresses of new routines.
Admittedly, there is plenty of room in memory for the new routines them-
selves but how is the BASIC interpreter to be made to recognise the key-
words that will run them?

So what is the answer? Well, like all other tinkerings with an existing
program that you don’t wish to change too much (in this case the BASIC
interpreter) the answer is that it is necessary to cheat. When crunching a
keyword down to a token, the interpreter scans through the keyword table
until it finds a zero (the last byte of the table). If this point is reached then
the keyword has not been found and a syntax error will be indicated. Our
method of extending the keyword table is to replace the machine code
instruction following the one which detects the zero with a jump to a new
subroutine which starts the search again at a new address, thus providing a
clear table of 256 more bytes in which to store the names of keywords. That
little trick solves the problem of crunching the keyword, all that remains is
to persuade the interpreter to recognise the new tokens that will be
generated when a keyword is discovered in the second table.

Execution of individual BASIC commands is controlled by a section of
the interpreter whose purpose is to look up the table of vectors and, on the
basis of the information contained there, to call up the appropriate subrou-
tine for the particular token. The RUN routine, which controls the overall
execution of the program, calls up this ‘single command’ routine whenever
a token is found in a program. Luckily for us, the RUN routine does not

108

Chapter 6 The BASIC/Machine Code Patch

have the address of the single command routine built into it but has to look
up its address in a memory location in RAM (308-309 hex).

To ensure that our new tokens are recognised and acted upon, what we
dois to alter the address indicated by 308-309 hex so that it points to a new
single command execution routine of our own design. The new routine first
tests whether the token encountered is that of one of our new keywords
(they can be recognised because their value is CC hex (204) or greater). If it
is not one of the new tokens then execution is sent to the normal single
command routine. If it is a new token then our own routine takes over,
indicating a completely new address for the table of vectors. Thus we can
add a new vector table to the interpreter as well as a new keyword table.

If you can roughly follow that explanation, then you are ready to go on
and take alook at the central machine code routine which is essential to the
changes that must be made.

Module 10-30: These three lines represent instructions to the assembler
which you should recognise from the commentary on the assembler
section of the Mastercode program. PRT indicates that the listing should
be sent to the printer, (from the PRT command onwards), ORG instructs
the assembler to begin placing the program into memory from address
C000 onwards and SYM ensures that the symbol table is printed out at the
end of the listing. This machine code routine and those which follow will
occupy the area of spare RAM which is located between C000 and CFFF
(49152-53247). This memory area is unavailable in BASIC and so makes
an ideal location for the storage of machine code.

Module 40-120: This section of the program extends the keyword table
with three new function keywords, DEEK, YPOS and VARPTR — what
they are will be explained later. At this point, all that needs to be
understood is the difference between functions and actions in BASIC. A
function is a mathematical operation which must occur after an ‘=" or an
IF for example, as compared to an action, which can stand alone and
cannot be entered into a mathematical expression. The reason it is
important to note the distinction is that functions are dealt with in a
different way than actions when they are encountered in a program — a
special routine is called whenever an equals sign is encountered, for
instance. Because of this special treatment the interpreter keeps a close
track of the position of the function keywords in the keyword table,
remembering where they begin and where they end. Keywords outside this
range will not be treated as functions and a syntax error will be flagged if
they are encountered inside an expression eg LET A =POKE 123,123. In
the normal keyword table, the function keywords fall at the end, so the
easiest position in which to locate new function keywords is at the

109

Machine Code Master

beginning of the second table, since this will mean that the only pointer to
the end of the function keywords will have to be changed (in this case it will
have to be increased by three).

In this module the only operative lines, that is lines which will be
assembled into memory, are those with the byt instructions. These define
the characters of the new keywords in ASCII, with the last character
having 128 added to its value to mark the end of the keyword (ie bit 7 of the
last character is set).

Module 130-420: In this module are entered the new action keywords with
which we shall extend BASIC. The format of the table is exactly thesame as
explained in the previous module with exception that the list of keywords
ends with an instruction which will ensure that the table ends with a zero.
This will allow the interpreter to detect the end of the table.

Module 430-580: This is the new table of vectors. At this moment you have
not entered any of the routines which will allow the new action keywords to
do anything — entering this listing will merely ensure that the keywords
can be placed into a program, crunched and relisted. If they are encoun-
tered during a program after this section of the machine code routines is
entered, all that will happen is that the program will END since their vec-
tors are all set to point to the END routine in normal BASIC. Note that
there are no vectors included for the function keywords: they will be
dealt with by a separate function evaluator routine which will be given
later.

Module 590-650: This module sets up three labels with the number of
normal basic keywords, the number of new action keywords and the
number of new function keywords. These will be used to make the rest of
this section of code more readable and simpler to change if you wish to add
new keywords of your own.

Module 660-880: This module handles the execution of the new BASIC key-
words.

Commentary

660-690: You will remember that we have already explained that in order
to ensure that our tokens are not rejected by the interpreter, we change
the address in 308-309 hex which the RUN routine uses to call the single
command execution routine (SCER). In fact 308-309 direct program exe-
cution straight back to a jump command in the RUN routine and it is this
jump which calls the SCER. The reference to 308-309 hex, which is of
course in RAM, is a thoughtful provision by Commodore to allow
machine code programmers to do exactly what we are doing, namely
replace the standard SCER. These three lines replace three lines which

110

Chapter 6 The BASIC/Machine Code Patch

will be missed from the RUN routine, including a call to the routine which
picks up the next character in the line, a jump to the SCER (our own) and a
jump back to the beginning of the RUN routine.

700-760: These lines determine whether the end of the line has been
reached, (ic a zero was picked up by the jump to $73), test for a variable
(value less than $80) and finally examines the value of what must now bea
token to reach this point, to see whether it falls into the range of the new
action keyword table. If it does not, execution is returned to the normal
interpreter.

770-850: The value of the end of the new function table (ie the number of
original keywords plus the number of new functions) is subtracted from
the token value, thus obtaining its place in the new table of action key-
words. The Y register is used to obtain the corresponding action vector in
the table of vectors. This address is pushed onto the stack. We now make a
jump to the routine at $73 which picks up the next character in the line (this
is because all the interpreter routines work on the convention that the next
character has been placed into the accumulator, evenif they donot actually
require that character for their own operation). At the end of the subrou-
tine called at $73 there is an RTS instruction which takes the action vector
from the stack and assumes that this is the address to which a return should
be made. Note that the actual return is made to an address one after the
value held on the stack in order that the return is not made to the same
instruction that called the subroutine in the first place. This means that the
action vectors in the table all point to the byte before the routine they are
intended to call.

860-880: These labelled lines make the various calls if tests have been
‘failed’ during the program — they are called by the four branch instruc-
tions earlier.

Module 890-1090: This uncrunches the tokens when the program is listed
and will be called by the normal listing routine once a few adjustments have
been made.

Commentary

910-930: Since this section is called in the middle of the execution of
another routine (LIST), the registers are saved first in order that they may
be restored on return. The token which has been picked up into the accu-
mulator by LIST is compared with the maximum possible value for one of
the normal tokens. If it is less than this value, the normal uncrunch routine
is executed.

111

Machine Code Master

950-1000: The value of the token in the accumulator is now altered by
subtracting the number of normal tokens. The accumulator will now indi-
catea position in the new table and this value is stored in ASAVE. Registers
A and X areloaded with the start address of the new keyword table and this
address is then placed into the normal uncrunch tokens routine by a call to
LBL000.

1010-1090: If a normal keyword is to be printed, then the address of the
normal keyword table is put into the ‘uncrunch tokens’ routine, which may
previously have been working on the new table.

Module 1100-1280: We have already said that on detecting the end of the
normal keyword table, the crunch token routine is made to jump to an
extra routine of our own, this is it. The purpose of the module is to crunch
the new tokens.

Commentary

1140-1160: SASFC contains the high byte of the address of the current key-
word table, which may be the normal one or our new table. If the value
there is $A0 then the end of table that has been detected is that of the
normal table then the next section is executed.

1170-1220: The address of the new keyword table is placed into the crunch
tokens routine (JSR TOKSTR) and the routine is re-executed, loading the
Y register with zero to ensure that it starts at the beginning of the new table.
At the end of the second search, CRUNCH (line 1130) will be called again
but this time the BNE STAND instruction will be executed.

1230-1280: The normal keyword table address is placed back into the
crunch tokens routine, the registers are restored (JSR GETREG) and then
the instruction in crunch tokens which was be overwritten in order to call
up this routine, is reinstated. Execution finally returns to the crunch token
routine to finish the job.

Module 1290-1360: This module restores the values of registers which have
been saved by the next module. The only complication is restoring the
processor status register, which cannot be loaded directly from memory.
The operation is accomplished by taking the value into the accumulator,
pushing it onto the stack and then pulling it off into the processor register.

Module 13700-1450: The opposite of the previous module, the contents of
the registers are saved. Note again the use of the stack and accumulator to
save the contents of the processor status register.

112

Chapter 6 The BASIC/Machine Code Patch

Module 1460-1590: The address of the keyword table is held at three
distinct locations in the crunch tokens routine. This module places the
required address (new or normal table) into those locations with the slight
complication that the final location requires the byte beforethetableso 1 is
subtracted from the address in lines 1520-1560 before it is stored.

Module 1600-1640: These lines will not affect memory when the program
is assembled. They are there to tell the accumulator to set up the variables
specified for use by the program.

Summary

At this point you may be sad to hear that if you entered the program
into the assembler and assembled it, all you can do is save it for a while.
Before the changes that this code effects can be successfully carried out,
one or two modifications have to be made to the BASIC Extender program
given previously. Given below is a listing of the code as it should look when
it has been assembled. Do check your own assembled program against this,
comparing byte values and addresses — machine code programs which do
not work are seldom inspiring.

MACHINE CODE PATCH: Fully Assembled Listing

ADD. DATA SOURCE CODE

2 18 FRT

@ 20 ORG $Co00

Cooo 38 sYM

caooa G g oo s
Cooa S8 KEYWRD

coae 6@ : NEW FUNCTION KEYWORD
8

Coeo 7@ 3 DEEK

CoOaB 444545 8@ BYT 68.69.69.75+128
cona @0 3 YFOS

Co04 B9504F 120 BYT 89.80.7%.83+128
coog 11@ 3 VARPTR

coms S64152 120 BYT B6.65.82.80.84.82

CORE 130§ e e e e e
COoE 14@ ;3 NEW ACTION KEYWORDS
CORE 150 3 DOKE

CORE 444F4E 160 BYT 68.79.75.69+128
ce12 17@ 3 RKILL

113

Machine Code Master

180

190
200

210
220
230
240
250
260
272
280
290
sl

310
320

330
340

350
360
370
380
590
400

410
420

430

CR12Z S24B49
8

cai17

CO17 444540
+128

caip

CO1D 4D4FS6
Co21

CO21 46415%=
Co25

CO25 S34C4F
coze

CR29 S04C4AF
cazb

CO2D S54E44
+128

Coxz

CO3IIT 535542
8

coxe

CO38 424C4F
8

Cazp

CAZD 425645
. 89+128

ca44

CRa4 425341
8

Co49

CO49 46494C
Co4D OO0
CoaF

KEYWORD TABLE CHR.
Co4F

CoarF

CO4F

CO4F 30A8
CoS1 3I0as8
CO53 30A8
Co5S 30A8
cas7 I0AB
Ca59 3J0A8

BYT B2.75.73.76.76+12

: DELETE
BYT 68.69.76.69.84.69

5 MOVE

BYT 77.79.8&.69+128

3 FAST

BYT 70.465.835.684+128

5 SLOW

BYT 83.76.79.87+128

s PLOT

BYT 80.76.79.84+128

;3 UNDEAD

BYT 85.78.68.69.45.68

1 SUBEX
BYT B83.85.66.69.88+12

i BLOAD
BYT 66.76.79.65.68+12

i BVERIFY
BYT 66.86.69.82.73.70

; EBSAVE
BYT 66.83.65.86.69+12

i FILL

BYT 70.72.76.76+128
WRD @

;i THIS IS THE END OF

i NEW ACTION VECTORS
ACTVEC

WRD #*AB30

WRD #AB30O

WRD *AB30

WRD #ABZ0

WRD *AB30

WRD #ABE0

Chapter 6 The BASIC/Machine Code Patch

CoSE 30A8 528 WRD #AB3Q

CasSDh Zoas 930 WRD #AB30

CaSF 30a8 Y40 WRD #¥A830

Casl I0A8 S50 WRD $#AB30

Cases 30A8 460 WRD #AB30

CR6S 30A8 570 WRD #A830

Cas7 20A8 S80 WRD #ABZ0

Cas9 TPQ g o o e e
Casee 608 ; NORMAL IS THE NORMA
L NUMBER OF BASIC KEYWORDS

CRas9 612 NORMAL = 75

Cas? 620 3 NEWACT IS THE NUMEBE

R OF NEW ACTION KEYWORDS

Cos9 630 NEWACT = 13

Cas9 640 3 NEWFUN IS THE NUMBE
R OF NEW FUNCTION KEYWORDS

Cas6? L5 NEWFUN = 3

CRa&? 660 3 USE BY POKEING A7EIL
WITH ‘JMF EXECUTE-

CRse? 207300 670 EXECUT JSR #$73

CR6C 2072C0 680 JSR DOEX

CRsF 4CAEAT 690 JMF $A7AE

Cca72 FO1R 700 DOEX BER LABEL

Ca74 E980 710 SBC #%80

ca76 9018 720 RCC DOLET

coa78 C94F 730 CMP #NORMAL+NEWFUN+1

Ca7a 9017 740 BCC RETURN

Ca7C C9sC 75@ CMP #NORMAL+NEWFUN+NE

WACT+1

Ca7e BOLZ 760 BCS RETURN

cosa 770 3 EXECUTE THE NEW ACT
10N KEYWORDS

CaBd E94E 780 SBC #NORMAL+NEWFUN
casz2 oA 798 ASL A

cosx A8 808 TAY

cos4 BISOCA 810 LDA ACTVEC+1.Y

ces7 48 820 PHA

Cos8 R94FCO 830 LDA ACTVEC.Y

Case 48 8480 FHA

CesC 4C7300 850 JMP %73

CasrF 60 B60 LABEL RTS

Ca9a 4CASA9 870 DOLET JMF $A9AS

Ca93 A4CFIA7

880

RETURN JMP #®A7F3

115

Machine Code Master

00

TO USE POKE 774 &

215

CO96 20FACO 910

ce9? C9cc 920

CO9r 9S00F 930

Caep 40

8

CO9D AD2%C1 5@

CoAD E4C P60

CoA2 BD2%9C1 70

COAS A9CH 780

COA7 A200 990

H#256

COA? 4CBOCO 1000
COAC i01@
8

COAC A9AL 1020
COAE AZ9E 1030
COB@ 8Da24a7 1040
CORI 8E31A7 10%0
COBé6 8DIAART 1860
COR9 BEIA7 107@
COBC 20EBCO lee0
COBRF 4C1AA7 1090
cacz 1100
coc2 1112
INE EXTRA CODE

coc2 1120
&84 TO JIMF CRUNCH’
cCacz2 20FACD 1130
COCS ADFCAS 1140
cacs C9A0 1150
CoCA DOaoF 1160
cacc A9Ca 1178
COCE A200 1180
CODd 200CCi 1190
CODE 20EEBCO 1200
CoDé ADOD 1210

116

SN $UH9 U THOTE OMP SOMND SO0 Sy 1S20 SO Mot SALeR BHAGE SN SeAe Vo NG Dot Seeee samss

-
L

PRINT TOKEN ROUTINE

775 WITH PRTTOK ADDRE

FRTTOK JSR PUTREG

CMFP #NORMAL+129

BCC PRTNOR

FRINT THE NEW TOKEN

[
L

LDA ABAVE

SBC #NORMAL+1

STA ABAVE

LDA #KEYWRD/2%56

LDX H#HKEYWRD-KEYWRD/2%5

JMFP LBLOGO
FPRINT NORMAL TOKEN

.
L4

FRTNOR LDA #%00
LDX #$9E

LELO2D 8TA #A732
8TX ¥A731

8TA #A73A

8TX #A73Z9

JSR GETREG

JMP $A71A

i L puamp——.

CRUNCH TOKENS ROUT

i USE BY ALTERING #$A
CRUNCH JSR PUTREG
LDA #AS5FC

CMF #$40

BNE STAND

LDA #%C0O

LDX ##Q00

JBR TOKSTR

JER GETREG

L.DY #@

CaDg 4CBBAS
CODE A9AD

CoDD A29E

CODF 2008CC1
CREZ 20ERCO
CRES BRDOOOZ2
COE8 4C074A6

YO s est ase bhven Vmen boota sorda et Sense ne soses Hines Sy

COER AD2BCIH
COEE 48

CREF AD29CH
COF2 AE2ACT
CarFs ACZRBC1

Corg 28
COF? &0
CoFA

CoFa o8

COFE 8D29CI
CaFE BERACH
Cigl 8C2BCIH
Ci1a4 &8

C1e5 8b28sCi
Clo8 AD2RYICH
Ciop 60

0 segws Tanee Suuse 80030 S0SIE sades PSS oReBE FRRO Mmsdt DAvve BerRe bense

C1aC B8DEEAS
CloF D8

C11@ BEBDAS
Cl13 8DO1A6
Cilé BEQDAL

Cl19 CA
CllA EBFF
C11C DOO=
CliE 38
ClIF E901

C121 BDFCAS
Cl124 BEFBAS
Ci27 6B

1220
1230
1240
1250
1260
1270
1280
1290

1300
131@
1320
1330
1340
1350
1360
1370

1380
1390
1400
1410
1420
1430
1440
1450
14460

1470
1480
1490
1500
1510
1520
1570
1540
1550
1560
1570
15680
1590
1600

Chapter 6 The BASIC/Machine Code Patch

JMF #A5SE8
STAND LDA ##00
LDX #%9E

JBR TOKSTR

JSR GETREG

LDA $200.X

JMP #4607

GETREG LDA FSAVE
FHA

L.DA ABAVE

LDX XSAVE

LDY YSAVE

FL.F

RTS

FPUTREG PHP
8TA ASAVE
8TX XSAVE
B8TY YSAVE
FPLA

8TA PBAVE
LDA ABSAVE
RTS8

TOKSTR STA #ASEE
CL.D

B8TX FASRD

STA #A601

8TX FA600Q

DEX

CFX #3FF

BNE LBLOQZ

8EC

SBC #1

LELOBE 8TA #ASFC
8TX #ASFB

RTS8

»

[IRl T U R iy S prpr—

117

Machine Code Master

ci128
cizse
ci128
cize

1610 PSAVE
1620 ASAVE
1638 XSAVE
1640 YSAVE

TOTAL ERRORS IN FILE ===

KEYWRD
ACTVEC
NORMAL.
NEWACT
NEWFUN
EXECUT
DOEX
LABEL
DOLET
RETURN
FRTTOK
FRTNOR
LELOOO
CRUNCH
STAND
GETREG
FUTREB
TOKBTR
LELOAZ
FSAVE
ASAVE
XSAVE

YSAVE

Coor
Co4aF
4

D

3
Cas9
ca72
CasF
Cav0
Ca93
Casé
canc
Copo
cecz
CODE
CoOER
CaFa
ciac
C121
cizs
C129
Cl12a

Cl2R

FSAVE+1
ASAVE+1
XBAVE+1]

TOTAL NUMBER OF SYMBOLS ——— 23

118

CHAPTER 7
BASIC Extender Program II

Wehave already entered a short program which moves the interpreter from
ROM to RAM, thus allowing changes to be made. Now that some of the
necessary machine code additions have been discussed we are in a position
to update that BASIC program in such a way that the extensions to BASIC
can begin. The full listing of this expanded program is given, even though
most of the lines are shared with the version you have already entered —

only the changes will be commented upon.

BASIC Extender II Listing

@ REM1234567890123456789012345678901 2345

L789D12345678901 234567890123

1 REM12345678901234567890123456789012345

6789012345678901 2345678901 234567890

2 REM12345678901234567890123456789012345

678901 2345678901 2345678901 234567890

3 REM123456789012345678901 2345678901 2345

6789012345678901 2345678901 234567890

20 DEV = 1

100 REM BASIC EXTENDER ROUTINE

110 REM MOVE BASIC ROM INTO RAM AT $A000
~ $BFFF

120 DATA 16%5,1,41,254,133,1,96,160,25%,2

00,32,32,8,190,1,1,32,6,8,138,153,1,1

130 DATA 200,208,240,165,1,9,1,13%,1,96,

32,6,8,24,162,255,232, 160,255, 200, 185

135 DATA 75,8,133,20,185,151,8,48,01,96,

133,21,185,227,8,129,20, 144,235

139 DATA @

140 AD = 2054

15@ READ A : IF A<>@ THEN POKE AD,A : AD
= AD+1 : GOTO 150

155 REM LOAD MACHINE CODE FROM TAPE/DISC

156 INPUT " FILE NAME "3 IN$ 1 IF DEV=8

119

Machine Code Master

THEN IN% = IN#+",8,R"

157 OPEN 2,DEV,0,IN$: INFPUTH# 2,5A,EA 1
FOR X = 8A TO EA 1 INFUT# 2,7 : POKE X,T
138 NEXT X : CLOSBE 2

160 REM DO ACTUAL MOVE

165 FOKE. 2068,0 1 FOKE 207%,0

178 FOR X = 160 TO 191

190 POKE 2069,X : POKE 2076,X

200 SYS 2061

210 NEXT

220 POKE 2068,1 : FOKE 2075,1

221 REM DATA FOR ROM EXCUTE ALTERATION
223 X = @ : DATA 225,167,76,226,167,105,
227,167,192

227 DATA @

228 READ T1 : IF Ti=0 THEN 230

229 READ T2,T3 : POKE 2123+X,T1:FOKE 219
F+X, T21FOKE 2275+X, T3 X=X+1:60TO 228

230 S5YS 2087 : REM ALTER ROM

231 REM ALTER CRUNCH TOKENS ROUTINE

232 POKE 42500,76 : POKE 42501,194 : FOK
E 42302,192

248 REM ALTER FRINT TOKEN ROUTINE

241 POKE 774,150 : FOKE 77%,192

300 END

READY.

Commentary

1-3: The data statements in the original program provide for a third
machine code routine which was not explained. These REM statements

provide room for the data on which this third routine will work.

20: With this expanded program we shall be loading a file of machine code.
The device specified is the cassette recorder, so if you are working with a

disc you will need to change this to 8.

155-158: These lines load a machine code file from the specified device —
the machine code extender we have just discussed. The lines are equivalent

to the machine code loader in the Monitor.

120

Chapter 7 BASIC Extender Program 11

223-227: Data for the third machine code routine which begins at item ten
of the data line 130. The third routine will be used to POKE into the inter-
preter’s execution routine a new address which will cause a jump to the
modified execution routine in the machine code extender. This must be
done in machine code because two bytes have to be altered. Altering one
byte of the jump with a BASIC POKE would result in a nonsense jump
when the interpreter tried to execute the next POKE. The data in line 223
specifies three addresses with values for low byte, high byte and the
number to be POKEd there. The assembler listing for the third routine is as
follows:

EXECUTION ROUTINE MODIFIER: Assembly Language Listing

2PRsA8 J5R F0806

18 CLO

ALFE LDX #¥FF

E8 INX

SYAFF LDY #&FF

e INY

EF4EA8 LDA 084B,Y
89514 5T/ #£14
BE2708 LDhA £0897.,Y
Ipgl BMI 830

& RTS

5515 STA #15
BREZO8 LDA FEBEI,Y
#2114 8T F14,X)
FOER BOCC $8350

CONTIMUE Y/N) 3

Commentary on Machine Code

This routine takes three two-byte addresses from the data in the REM
statements and stores new information (again taken from the REM
statements) in them. Instructions at addresses 827-82E switch in RAM and
initialise the carry flag and the X and Y registers. 830-83Cload the low and
high bytes of the address from the REM statement at line 1 of the BASIC
program, with a test made of the high byte to see that it is in the right range
to be an address in the interpreter. 83E-843 pick up and place the new data,
branching back for the next address.

Returning to the BASIC program:

228-229: This new data is now POKEd into lines 1,2 and 3 to be picked up
by the third machine code routine in line 0.

121

Machine Code Master

230: This now becomes SYS 2087 rather than SYS 2054. The machine code
routine at 2054 is still called but this is done from within the third machine
code routine on line 0. The necessary changes to the execution routine will
be completed by this call.

231-232: The new address is POKEd into the ‘crunch tokens’ routine —
this can be done from BASIC since the crunch tokens routine is not used
when a program is being executed (it could not be done in direct mode since
the tokens have to be crunched during execution).

240-241: The ‘print token’ vector is altered to point to our modified
routine.

Having modified your first BASIC Extender program, or entered this
version afresh, the best procedure if you are using tape for storage will be to
save this program at the beginning of the tape, leave a gap for further
extensions to the program and then to save the assembled version of the
BASIC/Machine Code Patch on the same tape. When the program is RUN
you will be asked to specify the file name and you should respond with
whatever name you have given to the BASIC/Machine Code Patch on
saving. Simply press play and it will load, thus saving a great deal of
cassette swapping.

Having assembled the BASIC/Machine Code Patch and loaded it into
memory using this program you should now be able to enter any of the new
action keywords (not functions yet) specified in the keyword table. As men-
tioned, none of them will do anything but execute END at this stage, but
that will soon change.

122

CHAPTER 8
Simple BASIC Action Keywords

SECTION 1: Keyword UNDEAD

Now that the machine code and BASIC routines have been given for
extending BASIC it is time to enter the routines which allow the new key-
words to do something. In this section of the book we shall discuss three
action keywords which are simpler than others in that they require no
parameters to be entered before they can be executed. In normal BASIC,
for instance, the command GOTO 10 requires not only a routine to execute
the GOTO but also one to pick up the ‘parameter’ 10, without which the
GOTO would be meaningless; STOP, on the other hand, requires no
parameter, only the keyword itself. Later on we shall show how keywords
which require parameters can be added.

The keyword we shall be adding here is called UNDEAD —other people
tend to call it ‘OLD’ but there had been a vampire film on television the
night before the routine was written. The effect of the command is to over-
come that annoying problem which crops up for everyone from time to
time — NEW is entered to clear a program from memory and it is suddenly
remembered that the program was not saved. UNDEAD will restore the
program as good as new, except that any variables will be lost.

UNDEAD: Assembly Language Listing

i@ PRT

20 8YM

@ ORG ¥COSD
49 WRD URNDEAD-1
50 ODRGE #¥CLED

6@ UNDEAD LDA #¥FF
7@ LDY #1

8 STA (2R .Y
@ JER #ASEE
108 LDA £22

110 CLC

120 CLD

130 ADC #2

123

Machine Code Master

14@ 8TA #2D
156 LDA 23
16@ ADC #@
17@ 8Tha £2E
180 JMFP EL65E
1@ END

END

30-40: You will remember from entering the machine code extender that all
the action vectors for the new keywords currently point to END. These two
lines place the address of the label UNDEAD into the appropriate action
vector in the new table.

50: The machine code routines for the new keywords will occupy, together
with the machine code extender, an area of memory between C000-C4B5
hex. They will not be entered in order but this will have no effect on their
execution.

60-90: When NEW is executed, one of the changes it makes is to place three
bytes containing zero at the beginning of the program area (800-802 hex)
though one of these (800 hex) is always zero anyway. Three zeros is the
indicator used by the interpreter to show the end of the program so that
after NEW, any attempt to execute or LIST the program ends before it
begins, despite the fact that the program is intact in the memory. These
lines place the value FF hex into the third byte of the program area, this
being the high byte of the two link bytes of the first line of the BASIC pro-
gram — the value in the two link bytes is now nonsense but that is unim-
portant. The interpreter’s ‘rechain lines’ routine is now called at A533 hex,
and this scans through the program restoring all the link bytes which begin
each BASIC line and point to the beginning of the next.

100-170: The rechain lines routine uses the two bytes of memory at 22-23
hex as a variable indicating progress through the program and, when the
process is finished these bytes point to the end of the last line of the BASIC
program. This value is picked up and placed into the main pointer which
records the end of the BASIC program, with the 2 being added to take
account of the two extra zeros which mark the genuine end of the pro-
gram,

180: There are various other pointers which must be restored before the
program can be successfully retrieved but these can be dealt with byacallto
the CLR routine in the normal interpreter.

190: Note the use of the END directive here. It is useful in that not only
does it indicate the end of the assembler listing to the Mastercode Assem-
bler, its address is also the first free byte after the end of the routine that it

124

Chapter 8 Simple BASIC Action Keywords

concludes, so that any routine to be added after this one could be started at
the address specified for END in the assembled listing.

UNDEAD: Fully Assembled Listing

ADD. DATA SOURCE CODE

8 10 FRT

Vi 2@ 5YM

a IO ORG #COSD
cosD EZCH 4@ WRD UNDEAD—1
CAsF 50 ORG #CILEX
CIEX A9FF 6@ UNDEAD LDA #FFF
C1ES ABO1L 70 LLDY #1

CilE7 912R 80 STA (£ZR).Y
ClE? 2033A5 0 JIER F#ASEE
CIEC AD2Y 100 LDA ®22
CiEE 18 11 CLC

CiEF D8 128 CLD

CiFa 6902 1320 ADC #Z
CiF2 852D 140 STa 2D
CiF4 AS23 150 LDA F23
CiFée 4700 160 ADC #0
CiFg 8352E 170 STA *ZE
CiFa 4C5EAS 18@ JMF #A6LSE
CiFD 19@ END

TOTAL ERRORS IN FILE —— @
UNDEAD ClEZ

TOTAL NMUMBER OF SYMBOLS -—— 1

The procedure to follow in entering this routine is as follows:
1) Load the Mastercode program and first recall the extender machine
code file that you have previously entered. The reason that this is necessary
is that in assembling UNDEAD one of the action vectors in the new table is
overlaid — this will not achieve much if the program is not there.
2) Enter the assembler listing for UNDEAD using the File Editor.
3) Call up the Assembler and assemble UNDEAD.
4) Save the whole of the memory area from C000 to C1FC as a machine
code file or, better still, save C000 to C4B5, which is the whole of the area
that will eventually be used by the new routines. Using this second method
every time a new routine is entered will ensure that you do not inadvertently
chop off any routines which fall later in the area but were entered before
the current one.

125

Machine Code Masier

5) Load BASIC Extender I and run it, giving it the name of the file con-
taining the extender and UNDEAD.

6) If everything has worked as it should you can now NEW the BASIC
Extender and then try to LIST it — there will be nothing there, as you
would expect.

7) Enter, in direct mode UNDEAD and press RETURN. LIST again and
you should see the program fully restored to life.

UNDEAD: Notes On Use

UNDEAD can only restore a program which has not been overlaid in the
memory with something else. If, after entering NEW you enter a line of
BASIC or declare a variable, there is no way that UNDEAD can help since
the program is no longer intact in the memory.

SECTION 2: Keyword Subex

Enter the following program on your 64:
10 GOSUB 20
20 GOTO 10

Now run it, and you will find that in an instant you have run out memory
— how? Well, each time you call a subroutine the address to which exe-
cution should be sent when RETURN is encountered in the program is
stored in an area of memory called the ‘return stack’. Each RETURN takes
the last address off the stack and jumps to it, each GOSUB adds another
address on top of what is already there. Leaving a subroutine by any other
means than a RETURN leaves the return address on the stack. Do it often
and the stack runs out of space and an ‘out of memory’ error is generated.

Admittedly, jumping out of subroutines without a RETURN is not a
practice to be encouraged too often, after all, why use a GOSUB at all if
you don’t want to return? But there are circumstances where it can be
extremely useful to leave a subroutine without cluttering up the memory. If
you look at the assembler, for instance, you will find that there are many
cases of subroutines which call subroutines which call subroutines. ...
There is nothing wrong with that, indeed it’s good programming practice
to put as much into subroutines as possible. But what happens if, four or
five subroutines removed from the control routine you encounter a condi-
tion which means that this chain of subroutines is not actually to be exe-
cuted — an error in the data input for example. What you really want to do
is to flag the error and return immediately to the control routine so that it
can take the appropriate action but you can’t in standard BASIC. You
have to return through the subroutines, each time setting up a line to detect
the error flag and RETURN again until the control routine is reached. In a
complex program this can mean many extra lines and a considerable cost in
terms of time.

126

Chapter 8 Simple BASIC Action Keywords

The answer to the problem is the command SUBEX. All that it does is to
remove the last return address from the stack so that you can leave the last
subroutine without cluttering up the stack. Of course, if you want to jump
straight from the fifth in a chain of subroutines back to the beginning, then
SUBEX will have to executed five times first but the saving in time and
program complexity can often be considerable. With a SUBEX a program
such as:

10 GOSUB 20

20 SUBEX

30 GOTO 10

will run indefinitely.

SUBEX: Assembly Language Listing

1@ FRT
20 EYM
0 ORG FCHSF
4@ WRD SUBEX-1
5@ ORrE #CIFD
&8 SUREX LDA #3FFF
7@ 5TA #4A
2@ JER FAE8A
@ TRE
laa CMF #¥8D
lia BRNE RETERR
12@ FLA
130 Fl.A
14@ LA
156 FL.A
168 FLA
17@ RT&
188 RETERR JMF #ABES
198 END
ERND

60-80: When a RETURN is executed in normal BASIC the routine at A38A
hex is called to find on the stack the first return address, this being necess-
ary since there may also be data for FOR loops on the stack. The routine at
that address also manipulates the stack so that the first return address is
placed at the top of the stack. These lines set the memory address at 4A hex,
which initialises the search routine, then the routine is called.

127

Machine Code Master

90-110: On return from the stack search routine the last value to be placed
on the stack will,hopefully, be a pointer to the position of the return
address on the stack and this is stored in the X register. This is confirmed by
placing the value 8D into the accumulator. If a return address has not been
found then the accumulator will not contain 8D and a jump will be made to
RETERR, which specifies a jump to the ‘RETURN WITHOUT GOSUB
ERROR’ message.

120-170: The five bytes of the return address are pulled off the stack and
discarded. The SUBEX routine is complete and it returns.

SUBEX: Fully Assembled Listing

DD DATA SOURCE CODE
] 18 PRT

i 28 5YM
i) 20 ORG #CASF
CasF FCCi 4@ WRD SUBEX-1
Casl 2@ ORG #CIFD
CIFD A9FF 60 SUBEX LDA #:FF
CiFF 8%54nA 78 S5TA #44

201 2@8AAG 80 JSR #A3Z8A
c2@4 94 0 TXS

C225 C98D 1060 CHMF #¥8D
287 DB 11@ BNE RETERR
289 &8 120 FLA
C20A &8 128 FLA
C2aR 68 148 PFLA
CLBC &8 158 FLA
C200L 68 168 FLA
C20E &40 178 RTH
CZ20F 4CEQARS 180 RETERR JMF £ABED
C212 170 END

TOTAL ERRDRS IN FILE ——— B
SUREX CIFD
RETERR CRaF

TOTAL NUMBER OF SYMEROLS ~—— 2

As with UNDEAD, the procedure to load SUBEX into memory is to call
up the last machine code file you saved (Extender and UNDEAD), load it
into memory and then assemble SUBEX. Save the whole memory area and
then load BASIC Extender II, giving it the name of your new file. You

128

Chapter 8 Simple BASIC Action Keywords

should now be able to run the second BASIC program given above in the
introduction to SUBEX without running out of memory.

SUBEX: Notes On Use

SUBEX is a powerful command but some care is needed in its use. If you
are in the middle of a chain of subroutines then it is essential that you count
exactly how many RETURNS you wish to default through or you will end
up either returning to the wrong subroutine or being given a RETURN
WITHOUT GOSUB error.

SECTION 3: Keyword RKILL

When you are developing a program it is good practice to include as
many REM statements as will be necessary to ensure that you understand
the program the next time you come to work on it; readability is also
improved by spacing out commands well on the lines. When the program is
finished, however, the extra REMs and spaces are simply so much wasted
memory which could be put to better use. RKILL solves this problem by
removing all REM statements which fall at the end of lines and all spaces
outside quotes. Note that RKILL does not remove REM statements which
stand alone on a line since they may be, if you are writing your programs
properly, the headings to sections of the program. GOTOs and GOSUBs
will point at them, thus allowing new first lines to be added to sections
without having to go through the program and change several GOTOs and
GOSUBs.

RKILL: Assembly Language Listing

1@ FRT

20 SYM

0 GFLAG = ¥F

43 REMTOE = *8F

5@ ASAVE = 0165
&0 XSAVE = $C106
78 ORG ¥CB51

8@ WRD RKEILL-1

@ ORG #C160

10 REILL LDA #H¥FF
lig 8Ta #14

120 STA #195

130 i SAVE FRESENT BASIC WARM STA
RT L INK

140 LDA #3@2

129

Machine Code Master

150
16@
170
180
190
200
214

220

Lt 4
wlnat

TED
240
250
260
278

OF LINE IN

280
290

IT

08

10

Z20

330
¥15

4@

50

60

7@

80

90

400

&

LDX #Z@3Z

8§TA TEMF

8TX TEMP+1

i PUT NEW WARM START LINE
LDA #LEBLAGE-LBLAOZ/256%256
LDX #LBLOBZ/256

SThA #2302

8TX #3032

s GET NEXT LINE NO TO BE

IN

TREA

LELOBE INC *#14
BNE L ELOB4
INC #15

: USE ROM ROUTINE

$5F

TO GET ADD
L F60

LELDB4 JSR #AbLLE

3 IF HI LINEK

LDY
L.DA
BEQR

3 GET THIS

INY
LDA
5TA
ITNY
LA
5TA

BYTE = @ THEN EX
#1

(£5F) .Y
L.BLAGO?

LINE NO. INTG #14

(¥5F) .Y

¥14

(FSF) .Y
¥15

: COPY LINE TO INFUT BUFFER D
ELETING SFACES-EXCERT IN GUOTES

41@ LDX #4

420 8TX OFLAG

470 LELOAS INY

44@ LDA (#5F).Y

458 : IF BYTE = @ THIS IS THE END
OF THE LINE S0 INFUT IT

468 BEQ LELOGAT

47@ ;IF ITS A QUOTE THEN TOGGLE
HE QUOTES FLAG

480 CHMF #ZX4

49@ BNE LELOGO

500 LDA GFLAG

510 EOR #¥FF

130

Chapter 8 Simple BASIC Action Keywords

520 STA OFLAG
53 LDA #34

540 1 IF THE QUOTELAG IS SET DONT
DELETE ANYTHING

550 LELORS BIT OFLAG

560 EMI LELO2S

570 : TEST FOR SFACE & DELETE IT
IF FOUND

580 CMF #£20

590 BEG LELOOS

600 ; TRANSFER FIRST NON-SFACE EVE
N IF ITS A REM

610 CMP $#REMTOK

620 ENE |.ELOOS

630 CPX #4

6540 ENE LELO2D

650 INX

660 STA $1FE. X

670 IINX

680 LELD®2 DEX

690 LELOR7 LDA #0

700 INX

710 STA $1FB. X

720 STX #HR

730 JIMFP £4464

740 LELODS INX

750 STA #£1FR. X

760 JMF LELOOS

770 LELO®Y LDA TEMP

780 LDX TEMP+1

790 STA 302

800 STX $303

810 IMF $0474

820 TEMF WRD @

830 END
END

100-120: 14-15 hex are locations used by the BASIC file editor when
working through a program for any purpose. They are loaded with 255
each so that when the main routine begins, the addition of 1 will set them to

ZE10.

130-170: During this instruction we shall be calling up the line input
routine, which processes a line placed into the input buffer from the key-
board. When this process is finished the routine normally returns to a state

131

Machine Code Master

of waiting for a keyboard input. What we want it to do is to return to the
RKILL routine so we save the existing link address at 302-303 hex so that
we can place a link to this routine in it.

180-220: A new link address pointing to this routine is installed.
230-260: The line number being worked on is incremented by one.

270-280: A ROM routine is used to find the address of that line in memory.
If there is no such line, the routine will return the address of the line with
the closest number after it.

200-320: If the high byte of the link byte at the address indicated by the
ROM routine is zero then what has been found is the end of file and the
routine ends.

330-390: The actual number of the line found is picked up and stored into
14-15 hex.

410-420: These lines initialise the routine. X will be the start of the text of
the line in the input buffer (after the link bytes and line number), the quotes
flag, which records whether a character being input is inside quotes is ini-
tialised.

430-440: The next byte of the line is placed into the accumulator.

450-460: If the byte is zero then the end of line has been reached and a jump
is made to the ROM routine which actually inputs a line.

470-530: If the character picked up is a quotation mark then the quote flag
is either set or reset according to whether this is the first or second of a pair.

550-560: If the quote flag is now set the main part of the routine is omitted
since we do not wish to tamper with the contents of lines within quotes.

570-590: If the character picked up from the lineis a space then it is ignored
and another character is picked up.

610-620: A test is made for a REM token, if the character is not REM then
it is placed into the input buffer.

630-680: If a REM token has been picked up then a test is made to see if it
falls at the beginning of aline (X reg. is 4). If so then itis placed into the file
by 650-660. If it is not the first character then the X register is decremented
to point to the colon which will precede it in the input buffer. The pointer
contained in the X register. will now point to the colon before the REM if
the REM did not fall at the beginning of the line and to the position after
the REM if it did (all these are in the input buffer, remember, not intheline
itself).

132

Chapter 8 Simple BASIC Action Keywords

690-730: A zero is now stored in the input buffer thus marking the end of
the line. The length of the line is placed into B hex and the input routine is
then executed, thus placing the stripped down line into the program in
place of the original.

740-760: At this point all the previous tests have failed so the character is
not one to be deleted and we need to store the character in the input buffer,
then repeat the loop to pick up the next character.

770-810: This is the exit routine from RKILL so the link to the normal
keyboard input is restored and a jump made to the direct mode routine,
bringing up the ‘READY’ message.

820: TEMP sets up the storage location for the original warmstart link
which is saved at the beginning of RKILL.

RKILL: Fully Assembled Listing

ADD. DATA SOURCE CODE

@ 1 FRT

Vi) 20 SYHM

4 3@ QFLAG = ¥FF

il 40 REMTOK = *BF

@ 580 ASAVE = $C105
i) 60 XSAVE = ®C186
@ 70 ORG #CaS1

Cca51 5FC1 80 WRD REILL-1
cass @ ORG *¥C160

Ci6B A9FF 1080 REILL LDA #FFF
Ci6ed 8514 119 8TA *®14

Cie4 8515 120 8T #1595

Cléb 120 ; S5AVE FRESENT BASIC

WARM START L INE

Cl66 ADB2GE 140 LDA #3202
Ci169 AEQ3IDE 15@ LDX #3383
CisC 8DEILICH 168 8TA TEMP
CloF BEERZCH 178 STX TEMR+1

ci172 18@ 3 FUT NEW WARM STORT
LINE IN

Ci72 a97c 190 LDA #LBLOBI-LBLBBZE/ZS
EX2546

Ci74 A2C1 200 LDX #LBLOBZ/ 256

Ci76 8DBZ2O3Z 218 8TA *3@2

C179 BE@Z0Z 220 8TX *Z@=

C17C 230 3 GET NEXT LINE NO TO
BE TREATED

133

Machine Code Master

Ci7C Eé14 240 LELOBI INC #14

C17E D@OZ 250 EBNE LEBILOO4

Cigd E615 260 INC #1050

c182 270 3 USE ROM ROUTINE TO

GET ADD OF LINE IN #5F 2 %60

C182 2013AR6 780 LELOD4 ISR $A6LE

185 29@ 3 IF HI LINKE BYTE = @
THEN EXIT

Cci8s Aol 0@ LDY #1

Cci187 BRI1SF 310 LDA (FIF).Y

Cige Fe47 320 REQ LEBLODT

cige IZE@ 3 GET THIS LINE NO. I

NTO #14 & ¥135

ci18g C8 T40 INY

cisC RISF 350 LDA (F5F) .Y

CIB8E 8514 T6B STA #14

cie@ C8 I70 INY

191 BISF 380 LDA ($5F).Y

C193% 8518 390 STA #195

C193 40 ; COFY LINE TO INFUT

BUFFER DELETING SPACES-EXCEFT IN QUOTES

C195 AZ04 41@ L.DX #4

C197 860F 420 STX GFLAG

c199 C8 430 LBLOBS INY

C19A BIGF 449 LDA (FSF) .Y

cigC 45@ 3 IF BYTE = @ THIS IS

THE END OF THE LINE 80 INFUT IT

C19C FO22 4468 BEQ LBLOA7

C19E 470 IF ITS A. QUOTE THEN
TOGGLE THE GQUOTES FLAG

Ci9E C922 480 CMF #34

CiA@ DOBg 4938 BNE LBLOOS

CilAZ ASOF S00 LDA GFLAG

CiA4 49FF 510 EOR #EFF

Cins BOOF 52@ 8TA OFLAG

CiAg A92: S3@ LDA #3534

CiAA S54@ 3 IF THE QUOTFLAG IS S

ET DONT DELETE ANYTHING

CinA 240F 558 LBLOGS RIT QFLAG
CiAC ZO1D 560 BMI LBLOOS

ClAE 570 ;3 TEST FOR SFACE % DE

LETE IT IF FOUND

Cl1AE C920 580 CHMF #$20

Cip@d F@OE7 590 BEE LBLOOS

134

Chapter 8 Simple BASIC Action Keywords

: TRANSFER FIRST NON-S

#0

TEMF

Cip2 &0
FACE EVEN IF ITS A REM
Cip2 C98F 610 CHMF #REMTOR
C1e4 D@LSsS 620 BNE LBLOOS
Cipsé EQR4 30 CPX #4
Cip8 DBBS 640 EBNE LEBLOB2
CiBA EB8 650 TNX

C1BB 9DFRO1 66@ STA ¥1FB.X
CiRE E9 670 INX

CiBF CA 680 LBLOBZ DEX
CiCcd A0 6990 LBLOB7 LDA
Cic2 E8 70@ INX

C1C% 9DFRO1 71@ STA #1FHE.X
CiCeé B&OR 728 8TX ¥EB
Ci1C8 4CA4AQ4 738 IMF x04/4
C1CR ES 740 LBLO@B INX
CiCC 9DFRGI 758 STA *#1FER. X
C1CF 4C99C1 76@ JMF LEBLOAS
Cib2 ADEICH 770 LLBLBOY LDA
C1D5 AEEZCL 783 L.DX TEMF+1
CipDg8 8DZ2ex 790 STA 302
CiDE BEQIQA3 800 STX *3@%
C1DE 4C74AQ4 818 JMF *¥A474
CilE1 Qoo 828 TEMF WRD @
C1EZ 830 END

TOTAL ERRORS IN FILE -—— @
GFLAG F
REMTOK 8F
ASAVE C1e5

XSAVE C1@as
RETLL Clse0
LELOAS C17C
LELBA4 182
LBLOGS Ci9g
LELOBS C1AA
LELBOZ C1BF
LELOA7 Cica
LELZQZ CiCe
LELOO? CiD2

TEMF ClgEl

TOTAL NUMBER OF SYMBOLS ———

14

135

Machine Code Master

As with the previous routines, to enter RKILL it must be assembled into
your overall file which, by now, should consist of the extender, UNDEAD
and SUBEX. The file should be saved and then placed into memory by
BASIC Extender II. When the file has been loaded, entering RKILL in
direct mode should strip the BASIC Extender of spaces and REMs.

RKILL: Notes On Use

RKILL is a direct mode command — it cannot be usefully placed in a
program line. The reason for this is that, as it shortens the program, it
alters the pointers used by the interpeter. Doing this as a program is
running is a sure recipe for disaster so RKILL terminates program exe-
cution once it has been completed (like LIST).

136

CHAPTER9
The Problem Of Parameters

SECTION 1: GETWRD

We have already noted that some action keywords require further infor-
mation, or ‘parameters’, to be picked up from the program line before they
can be executed. This insignificant — looking routine performs that fun-
ction for our new keywords and must be entered into the overall machine
code file before we can add new keywords with parameters. Its name is
GETWRD.

GETWRD: Assembly Language Listing

S—-GET*

i@ FRT

2@ SYM

gAY ORG #C120

4@ : ROUTINE TO GET 16 BIT UNSIGH
ED INTEGER FROM BASIC INTO 14 & #1535

50 GETWRD JS5R #ADEA

& JMF EBR7F7

7@ END
EMD

50: The routine called here is in the standard interpreter and simply picks
up a floating point number from the BASIC line which is currently being
processed. Invalidly entered numbers will generate a syntax error as for a
normal BASIC keyword.

60: This routine converts the number picked up into an integer in the range
0-65535. Numbers outside this range return an ILLEGAL QUANTITY
error.

GETWRD: Fully Assembled Listing

abn. DATA SOURCE CODE
@ 18 FPRT

137

Machine Code Master

éa 28 5YM
@ 30 ORG *¥C12C
Ci2c 40 3 ROUTINE TO GET 16 EI

T UNSIGNED INTEGER FROM BASIC INTO #14 %
¥15

Ciz2C Z208AAD 5@ GETWRD J5R FADBRA

C12F ACF7R7 &0 JMF $B7F7

132 7@ END

TOTAL ERRORS IN FILE -——— @

GETWRD Ci1z2C
TOTAL NUMBER OF SYyMBOLS ——— 1

Yes that is all there is to it. You cannot yet do anything with the routine
but the commands to come will use it to the full to return parameters for
our new keywords. Like the previous routines it must be entered into the
overall machine code file before going on to the next section.

SECTION 2: Keyword DOKE

Now that we can pick up parameters for a keyword all kinds of new possi-
bilities are opened up. The first of them is DOKE, which simply POKES a
number in the range 0-65535 into a two byte location in memory. This saves
all the fuss of entering expressions like VAR-256*INT(VAR/256) every
time 2 byte numbers have to be put into memory.

DOKE: Assembly Language Listing

i FRT

20 GETWRD = $C12C

0 8YM

4@ ORG $CB4F

1] WRD DOKE-1

60 ORG #C212

70 DOKE JS5R GETWRD

80 3 CHECE FOR A COMMA
7@ JGR FAEFD

188 ; PUT ADDRESS ON STACK WHILE
GETTING THE DATA

110 LDA #14

120 FHA

138

Chapter 9 The Problem Of Parameters

130 LDA #15

14@ FHA

150 : GET VALUE TO BE DOKED
168 JSR GETWRD

170 3 FUT ADDRESS INTOD TEMFORARY
FOINTER

180 LDX #1535

196 LDY #14

200 FL.A

210 5TH #15

220 FLA

23 STA #14

240 TYA

250 : USE ROM ROUTINE TO SET Y TO
ZERD & FUT FIRST BYTE IN MEMORY
260 JSR FBEZ8

278 INY

280 TXA

290 STA (¥14).Y

200 RTS

E10 END
END
Commentary

70: This obtains the number representing the address to which the number
is to be DOKEd, by use of GETWRD.

80-90: If there is no comma after the first parameter then a syntax error is
flagged.

100-140: The first parameter is saved on the stack after being picked up
from 14-15 hex where it is stored by GETWRD.

160: GETWRD is called again to find the value to be DOKEd.

180-230: The value is put into X and Y and the address is placed back into
14-15 hex.

240-260: The low byte of the data to be DOKEd is placed into the accumu-
lator then a tiny section of ROM is called which sets the Y register to zero,
and loads the contents of the accumulator into the location indicated by the
contents of the two bytes at 14 hex. It could have been done with four bytes
in this routine itself but since the two instructions were there in the ROM
with a return instruction after them, why not use that.

270-300; The value in Y is increased to 1 and the high byte of the value to be
DOKEGd is stored in the byte above that where the low byte was placed.

139

Machine Code Master

DOKE: Fully Assembled Listing

ADD. DATA 50U
o 10
o el
o 30
@ 40
Co4F 1102 50
cesi 60
Cziz ZOZCCL 70
C215 80
CZ15 Z20FDAE 90
C218 100
K WHILE GETTING TH
C218 AS14 110
czia 48 120
C21E AS1S 130
C21D 48 140
C21E 15
ED

C21E 202CC1 160
cazl 170
MFORARY FOINTER
C2Z1 A6LS 180
22T A414 190
£225 68 200
Czzé BS1S 210
C228 68 220
C229 BS14 230
CZZE 98 240
C22C 250
SET Y TO ZERO & FU
C22C 2028E8 260
C2EF C8 278
C2Im 8A 280
Cz3l 9114 290
23T 60 300
C234 310
TOTAL ERRORS IN F
GETWRD c1
DOKE C2

TOTAL NUMBER OF &

140

RCE CODE

FRT

GETWRD = #CI1ZC
S5YM
ORG #004F

WRD DOFE-1

OREG #0212

DOKE JSR GETWRD

 CHECE FOR A COMMA
JER ¥AEFD

3 PUT ADDRESS ON 5TAC
E DATA

LD& 14

FHA

LDA& #135

FHA

: GET VALUE TO BE DOK
JER GETWRD

» FUT ADDRESS INTO TE
LDX #15

LDY ¥14

FL.A

8ThA #195

Fl.f

85T *£14

TYA

g USE ROM ROUTINE TO
T FIRST BYTE IN MEMORY
JBR #¥R828

INY

TXA

8Tha (£14).Y

RTS

END

InE - @

20

YMEROLS ——— 2

Chapter 9 The Problem Of Parameters

DOKE: Notes On Use

DOKE can be used to replace any double POKE command but de
remember that DOKEing a value below 256 will set the byte above the one
specified in the first parameter to zero — DOKE < 255 cannot beused asa
substitute for POKE.

The correct syntax for DOKE is:

DOKE < address> ,< value>

SECTION 3: Keyword Plot

There is no doubt that the Commodore cursor control characters give a
great deal of flexibility when it comes to outputting material to the screen.
Nevertheless there are times when it would be nice to be able to print
something to the middle of the screen without specifying a long list of
cursor controls or printing a section of some previously defined string of
such characters. The new command PLOT will allow you to move the
cursor position to any position on the screen with a single command.

PLOT: Assembly Language Listing

1@ FRT

2@ SYM

i) GETWRD = *C12C
4% ORG #COSR
50 WRD FLOT-1
217 ORG *#CEDA
7@a FLOT JSR GETWRD
830 JER OFAEFD
2" LDA ¥15

108 BNE IQERR
110 LDA ¥14
120 CHMF #25
138 BCS IGQERR
14@ FHA

15@ JER GETWRD
160 FL.A

178 TAX

18@ L.DA $£135
190 BNME IGERR
20a LDY #14
21@ CRY #49
220 BCS IQERK
230 JMF #FFF@

141

Machine Code Master

240 IGERR JMF #BR:Z48
250 END

END

Commentary

70-130: These lines obtain the parameter for the line number (position
down the screen). Check that a comma follows and that the number falls in
the range 0-24.

140-220: The line number is stored on the stack then the column number
obtained and checked to see that it is in the range 0-39. The X register will
be loaded with the row number and the Y register with the column number.

230: This calls the KERNAL routine which sets the cursor position. The
KERNAL routine uses the X and Y registers to obtain the correct position.

240: IQERR is the address to print the ILLEGAL QUANTITY error mess-
age.

PLOT: Fully Assembled Listing

ADD. DATA SOURCE CODE

2 i@ FRT

174 2@ SYM

@ 2@ GETWRD = #C12C
i) 4@ ORG #CASH

Case DICE 5@ WRD PLOT-1
Casp &@ ORG #C3IDA

CZDA 202CC1 7@ FLOT J5R GETWRD
C3DD Z@FDAE 80 JSR $FAEFD

CIED AS1S @ LDA #1535
CIEZ D@19 1@3@ BNE IGQERR
CIE4 A514 110 LDA #14
C3Es €919 120 CHP #25
C3E8 BOL1XE 12720 RCS IQERR
CIEA 4" 148 FPHA

CIER 202CC1 150 JBR GETWRD
CIEE &Y 160 FLA

CIZEF AA 1780 TAX

C3IF@ ABL1S 180 LDA *#13
C3IFZ DoAY 190 BHNE IBERR
CIF4 A414 200 LDY %14
CEF6 CB2E8 218 CFRY #40
CIF8 BOAZ 229 BCS IGERR

C3IFA 4ACFOFF 2IQ JMF XFFFO
C3IFD 4C48RE 24@ IOERR JMF #R248

142

Chapter 9 The Problem Of Parameters

400 250 END
TOTAL ERRORS IN FILE ——— @
GETWRD C120
FLOT CZDA
IRERR CEFD
TOTAL NUMBER OF SYMBOLS -—-— 3

PLOT: Notes On Use

PLOT can be used to replace most instructions using strings of cursor con-
trol characters, though these still remain useful for moves to positions rela-
tive to the current position of the cursor. PLOT can work upon expressions
as well as straight values, such as PLOT X +3, Y/2.

The correct syntax for PLOT is:
PLOT < row down> ,< column across>

SECTION 4: Keyword Delete

Deleting lines one by one can be tiresome, especially when the DELETE
command can be entered to remove a block of lines in an instant.

DELETE: Assembly Language Listing

1@ FRT

=0 : BLOCE DELETE OF L.INES
@ SYM

4@ ORGE ¥CO5E

5@ WRD DEL-1

Y ORG *¥C400

70 GETWRD = ¥C12C

8@ DEL J8R GETWRD

4] : CONVERT TO ADDRESS

1@@ JER ¥A613E

110 BCC ULERR

120 ; SAVE FOINTER ON STACK
1Z@ LDA £5F

149 FHA

159 LDA 6@

160 FHA

i7@ : CHECEK THAT A — SIGN FOL.LOWS

143

Machine Code Master

180
190
200
210
220
230
240
L INE
250
260
270
280
290
00
310

T BE

LDA #4585

JSR E#AEFF

i GET LASBT NO. TO BE DELETED
JBR GETWRD

JER £A61E

BCC ULERR

3 GET ADDRESS OF END OF LAST
DELETED

L.DY #1

LDA (F5F) .Y

TAX

DEY

LDA (FBF).Y

TAY

1 NOW STORE THESE RBYTES IN F

ST LINE TO BE DELETEED

k]

330
%40
350
60
70
380
290
400
410
420
40
440
450
460
470
480
49Q

FLA

8TA %60

FL.Aa

5ThA $5F

TYA

LDY #@

STA (£5F).Y

Iny

TXA

STA (£5F).Y

: GET LINE NO. TO BE DELETED
INY

LDA (¥5F).Y

S5TA Fi4

INY

LDA (%£5F).Y

STA #195

i PUT ZERO INTO BASIC INFUT

UFFER — TELL FILE ED. 70 DELETE LINE

S0
510
520
S50
540
550
INE
S0
=570

144

LDA #@

5ThA $200

1 TIDY UF RETURN STACK

FL.A

Fi.A

3 USE ROM ROUTINE TO DELETE

JHF Q404
ULERR JMF $ABES

I

E

-

Chapter 9 The Problem Of Parameters

580 END
END

100-110: The routine at A613 hex converts the first line number picked up
by GETWRD to an address in program memory. If the line number is not
found then the carry flag will be clear on return and the UNDEFINED
LINE error message will be called.

130-160: The line address discovered by the routine at A613 hex has been
placed by that routine into SF-60 hex. The two bytes there are now stored
on the stack, since we are about to get another line address and do not wish
to lose the first.

170-190: A check is made that a - follows the first line number, using the
same routine that elsewhere checks for a comma but first defining the cha-
racter we are searching for and jumping into the routine two bytes later
than previously.

200-230: The last line number to be deleted is obtained and its address
determined.

240-300: The start address of the line following the last line to be deleted is
obtained from the link bytes of the last line and placed into the X and Y
registers.

310-410: The address of the start of the line after the last line is now placed
into the link bytes of the first line to be deleted.

420-480: The block of lines now constitutes, in the eyes of the interpreter, a
single line, since its link bytes point past the end of the block. The actual
line number to be deleted is now obtained from the two bytes following the
link bytes.

490-510: Zero is stored in the input buffer — this indicates to the BASIC
file editor that a line is to be deleted.

520-540: Having removed lines from the program we cannot return to the
address from which DELETE was called, since it may now have changed,
so the return address is taken from the stack and discarded.

550-560: A jump is made to the ROM routine which deletes lines — the
correct line number being stored in 14 and 15 hex for the use of this routine.

570: The jump to the UNDEFINED LINE error routine.

145

Machine Code Master

DELETE: Fully Assembled Listing

146

ADD. DATA SOURCE CODE

@ 18 FRT

@ 20 3 BLOCK DELETE OF LINE

5

@ 0 SYM

] 4@ ORG $CO53

COm3 FFOE 5@ WRD DEL~1

Coss &0 ORG $C400

Ca40@ 70 BETWRD = *C12C

C400 Z02CC1 80 DEL JSK GETWRD

C40% 9@ ;3 CONVERT TOD ADDRESS
C40% 2O13A6 103 JSR $#A613

C406 903F 11@ BCC ULERR

Ca08 120 : SAVE POINTER ON STA
Ck

C408 ASSF 130 LDA #5F

C40a 48 140 FHA

C40R AS60 150 LDA %60

C4@D 48 160 FHA

C40E 170 ; CHECE THAT A - SIGN
FOLLOWS

C4QE A92D 180 LDA #45

Ca1@d ZOFFAE 190 JSR $AEFF

C413 200 3 GET LAST NO. TO BE
DELETED

C413 282001 210 JSR GETWRD

C41é6 2013A6 220 ISR FALLE

C419 902C 230 BCC ULERR

C41E 240 ; GET ADDRESS OF END

OF LAST LINE TO RE DELETED

C41BR ALO1 250 LDY #1

C41D BISF 260 LDA ($5F).Y

C41F AA 270 TAX

C420 88 280 DEY

C421 BISF 290 LDA ($5F).Y

C423% A8 300 TAY

C424 1@ : NOW STORE THESE BYT

ES IN FIRST LINE TO BE DELETEED

C424 &8 E20 FLA

Cars 8560 IE0 STA $60

C432 &8 340 PLA

C428 BI5F IS0 STA #5F

Chapter 9 The Problem Of Parameters

£4z2a 98 360 TYA

C42B ALDO E70 LDY #©

C4zDh FL1EF T80 STA ($5F) .Y

C4Z2F C8 90 INY

C4%0 8A 480 TXA

cazi 9L5F 410 STA ($5F) .Y

C4z3 42@ 3 GET LINE NO. TO BE

DEL.ETED

C433E €8 3@ OINY

C43%4 BI1SF 44@ L.DA (£3F) .Y

C4%6 8514 458 STA #14

c4z8 Cd 468 INY

49 RISF 478 LDA (FSF) .Y

C4axzp B8B919 480 STA *£15

C43ED 49@ 3 FUT ZERO INTO BASIC
INFUT BUFFER - TELL FILE ED. TO DELETE

L INE

C472D A28 500 LDA #0

C472F 8DOBBRL 510 8TA 200

C442 520 3 TIDY UFP RETURN STAC

Y

C442 68 530 FLA

C44% 68 S4@ FLA

:444 550 3 USE ROM ROUTINE TO

DELETE LINE
Cad44 4CA4AR4 560 IMF FA4R4
447 4CEZAB 570 ULERR JMF #ABED

C44A 580 END
TOTAL ERRORS IN FILE —-—-— @
GETWRD cizC
DEL Ca0o
ULERR a4z
TOTAL NUMBER OF SYMBOLS --— 3

DELETE: Notes On Use

Like any command which alters the structure of a program, using
DELETE during program execution can create problems, so the program
terminates when DELETE is executed. Delete will normally be used in
direct mode but can be used as a security device in programs, for instance to
remove lines which you do not wish to have examined, if the STOP key is
pressed. In fact, DELETE is more effective in protecting a program in this
way than NEW now that UNDEAD is available. UNDEAD cannot restore
lines which have been DELETED since they are already overwritten.

147

Machine Code Master

The correct syntax for DELETE is:
DELETE < first line to be deleted> -< last line to be deleted>

SECTION 5: Keyword BSAVE

Now that you are, hopefully, getting alittle addicted to the wonders that
can be achieved with machine code, you will soon find yourself wanting to
be able to save blocks of memory without having to do it through the Moni-
tor in the Mastercode program. In this section and the next we present three
new commands which will allow any area of memory to be saved, to be
verified and then to be reloaded at a later date. Apart from anything else
this is the easy way of loading machine code routines into memory.

BSAVE: Assembly Language Listing

1@ FRT

20 GETWRD = ¥C12C
Y% SYM

4@ ORG #C@6S5
5@ WRD BSAVE-1
& ORG #0234
7@ BSAVE JSR E1D4
80 JBR FAEFD
2@ JSR GETWRD
100 LDA ¥14
118 FHA

120 LDA #15
1382 FHA

140 JGR $AEFD
15a JBR GETWRD
16@ LDX 14
170 LDY #15
180 FLA

150 5Th #15
200 FL.A

210 5Th $14
220 LbAa #Ei4
230 JMF FEL1SF
241 END
END

70: A KERNAL routine is used to pick up all the parameters of a normal
file command ie name, device and secondary address.

148

Chapter 9 The Problem Of Parameters

100-140: The start of the memory area to be saved, which was picked up by
GETWRD is placed onto the stack.

150-210: The finish address of the area is loaded into the X and Y registers,
the start address is retrieved from the stack and placed back into 14-15 hex.

220-230: 14 hex is loaded into the accumulator to specify the address which
contains the start address of the block of memory to be saved. The save
itself is performed by the same KERNAL routine which performs all
BASIC saving.

BSAVE: Fully Assembled Listing

ADD. DATA SOURCE CODE

a i@ FRT

] 20 GETWRD = $C120

] @ S5YM

i) 4@ ORG #CA&LS

cass EFECE 50 WRD EBSAVE-]

CAs7 68 ORG ¥C23

C2n4 Z@DAEL 70 BSAVE JS8R #¥E1D4
ZOFDAE 80 JSR FAEFD
202Ci1 9@ JBR GETWRD
AS14 i2a LDA #14

2EF 48 118 FPHA

s24B ASLS 120 L.DA 15

Cz42 48 1358 PHA

C24% 20FDAE 14@ J8R #AEFD

C24e Z202CC1 150 JSR GETWRD

Ce49 ALLE 168 LDX $14

Czap A415 i7@ LDY 15

C24D 64 188 FLA

C24E 8515 190 STA £15

crae o4 200 FLA

251 BS14 218 57Th %14

CREE A914 220 LDA #¥14

CEES 4CE5FEL 2B JIMF FELSF

2254 24@ END

TOTAL ERRORS IN FILE -—— @

GETWRD C120

BSAVE 2334

TOTAL MUMBER OF SYMBOLS ——— 2

149

Machine Code Master

BSAVE: Notes On Use

BSAVE always requires a secondary address, normally this will be 2.
Omitting the secondary address will result in a SYNTAX ERROR mess-
age. Note also that no check is made that the end address of the block to be
saved is actually after the start address.

The correct syntax for BSAVE is:

BSAVE < "filename”> ,< device> ,< secondary address> ,<start of
memory area> ,< end of memory area>

SECTION 6: Keywords BLOAD and BVERIFY

Having saved an area of memory to tape or disc it would be nice to think
that it could be retrieved again. This is accomplished by the command
BLOAD. Almost the same routine which executes BLOAD can also be
used to perform BVERIFY, which checks if an area of memory is saved
correctly by comparing what has been saved with the contents of the area
that it was saved from.

BLOAD/BVERIFY: Assembly Language Listing

1@ FRT
20 SYM
25 GETWRD = #{12C
0 ORG ¥C061
40 WRD BLOAD-1.BVER-1
5@ ORG #C2F2
60 BVER LDA #1i
7@ BYT #2C
80 BLOAD LDA #B
2@ STHA #A
100 JER *E1D4
118 JSR $AEFD
120 JER GETWRD
130 LDA #A
140 LDX *i4
150 LDY #15
168 JMP FELT7S
170 END
END

100-160: This is the core of the routine, though two previous sections must
be explained after this one is understood. What the lines do is to jump to
the KERNAL routine which gets file parameters, and calls GETWRD to

150

Chapter 9 The Problem Of Parameters

obtain the start address of the area of memory into which the saved
machine code is to be loaded. The original contents of the accumulator,
which indicate whether a BLOAD or a BVERIFY is to be performed, are
restored, X and Y are loaded with the result of GETWRD and the
KERNAL load routine is called.

60-90: These lines determine the value in the accumulator when the load
routine is called — 1 will indicate a verify and 0 will mean load. If BLOAD
is called then all that happens is that the accumulator is loaded with zero. If
BVERIFY is called however, the accumulator is loaded with one and the
next byte of the program (placed there by a BYT directive to assembler) is
actually interpreted as the opcode of a three byte instruction with the two
bytes of the LDA #0 instruction as its operand. This is, of course, total
nonsense but the instruction that is recognised is a bit test operation which
makes no change except to one or two flags in the CPU which we are not
using. What this means is that the instruction at line 60 is skipped over far
more quickly and economically thanif a jump were made — theinstruction
simply disappears when approached from this direction.

BLOAD/BVERIFY: Fully Assembled Listing

ADD. DATA S0URCE CODE

il i@ PRT

@ 28 SYM

@2 25 GETWRD = #C12C
] 0 ORG #CA61

Cos6l FA4CEF1 40 WRD BLOAD-1.BVER-1
CO65 5@ ORG $C2F2

C2F2 A901 6@ BVER LDA #1
ca2rF4 2C 7@ BYT %2C

CEFS A900 8@ BLOAD LDA #0
C2F7 850A 9@ STA ¥A

CEF9 Z20@DAEL 100 JSR ¥E1D4
CRFC 20FDAE 11@ ISR #REFD
C2FF 202CC1 120 ISR GETWRD

CI02 ASDA 130 LDA #A
C3D4 Ab6L4 143 LDX #14
CI@6 A415 156 LDY #15
Cza8 4C7SEL 160 JMF $¥EL175
CIap 17@ END

TOTAL ERRORS IN FILE -—— @
GETWRD Ci1zC
EVER C2F2

151

Machine Code Master

BLOAD C2FS
TOTAL MUMBER OF SYMBOLS ——— 3

BLOAD/BVERIFY: Notes On Use

Once again, a secondary address must be used and this should be zero.
BLOAD will load back to the address in memory which you specify.
BVERIFY will verify the correct area of memory no matter what is entered
as an address — a dummy address must, however, be included.

The correct syntax for BLOAD is:

BLOAD < "filename”> ,< device> ,(secondary address=0>,< start of
area to which load is to be made>

The correct syntax for BVERIFY is:

BVERIFY < "filename”>, < device>, < secondary address=0>,
< dummy value>

SECTION 7: Keyword Move

What you are about to enter, although it may seem a little dry at first, is
one of the most flexible commands that can be added to BASIC. MOVE
allows you specify an area of memory and then to shift that block to
another starting point. Note that the areas are not swapped, what you end
up with is two copies of the source block. The command can be useful to
machine code programmers who wish to relocate a routine without having
to save and reload it. It can even be used for manipulating the screen by
copying areas of screen from one place to another. The routine is longer
than most you have entered so far but it is really very simple in execution.

MOVE: Assembly Language Listing

19 FRT

20 GETWRD = #C12C

@ S5YM

4@ ORG #CB5S

@ WRD MOVE-1

& DRG #CZOR

7@ : BLOCKE MOVE OF MEMORY - NO FR
OTECTION AGAINST MOVING VITAL SECTIONS
80 ; BYNTAX OF COMMAND "MOVE AL.A
2.l

"] 3 WHERE Al = ORBINAL ADDRESS
100 5 AZ = FIANL ADDRESS
11@ 3 L = LENGTH OF BLOCEK
120 7 ALS0O NOTE 32K BLOCES MAX

152

Chapter 9 The Problem Of Parameters

130 NEWADD = #61
140 OLDADD = NEWADD+2
150 LENGTH = #14

160 : SUBROUTINE TO DECREMENT 2% T
EST LENGTH

170 DECLEN LDA LENGTH
160 ENE LELODO

150 DEC LENGTH+1

200 LELOR® DEC LENGTH
210 LDA LENGTH

220 ORA LENGTH+1

270 RTS

240 i MAIN ROUTINE
250 MOVE JSR GETWRD
260 LDA %14

270 FHA

260 LDA #15

290 FHA

00 JSR #AEFD

53V JSR GETWRD

%2 LDA #14

330 FHA

%40 LDA %15

Z50 FHA

360 JSR $AEFD

370 JSR GETWRD

380 : DECIDE WHICH DIRECTION TO M
OVE IN

Z90 LDY #3

400 LELOAL FLA

410 STA NEWADD.Y

420 DEY

4730 BFL LELO®1

440 LDA LENGTH

450 ORA LENGTH+1

460 BEQ LEBLOO2

470 LDA NEWADD+1

480 CMP OLDADD+1

490 BECC MVEDWN

500 ENE MVEUF

510 LDA NEWADD

520 CMF OLDADD

530 BCC MVEDWN

540 ; MOVE BLOCK UPWARDS IN MEMOR

153

Machine Code Master

Y
558
560
570
580
590
&0
&H10
620
&30
649
650
6460
&70
680
690
70a
718
720
738
740
750
760
770
7806
790
BR@
810
820
810
840
850
2360
870
840
870
@
710

END

Commentary

MVEUF CLD

CLe

L.DA NEWADD

ADC LENGTH

5TA NEWADD

LDA NEWADD+1

ADC LENGTH+1

STA NEWADD+1

cLe

LDA OLDADD

ADC LENGTH

STA OLDADD

LDA OLDADD+1

ADC LENGTH+1

STA OLDADD+1

LDY #@

LBLOE LDA (OLDADD) .Y
STA (NEWADD) .Y
TYA

BENE LEBLOG4

DEC OLDADD+1

DEC NEWADD+1
LBL@B4 DEY

JSR DECL.EN

BNE LEBLOG3I

LBLBBZ RTS

;i MOVE RLOCE DOWN THE MEMORY
MVEDWN LDY #@
LELABS LDA (OLDADD) .Y
8TA (NEWADD).Y
INY

BNE LBLAGS

ING OLDADD+1

INC NEWADD+1
LELO@6 ISR DECLEN
EBNE LB Q@S

RTS

160-230: When you specify an area of memory to be MOVEd it will, self-
evidently, have alength. The purpose of these lines is to decrement a varia-

154

Chapter 9 The Problem Of Parameters

ble called LENGTH to record how much of the block has been MOVEd so
far. LENGTH is in fact a two byte variable and the lines whether the low
byte is zero in order to decide whether to decrement thelow byte only, or to
decrement both bytes — both bytes are only decremented if the low byte is
zero, to represent a ‘carry’.

240-370: The three parameters for start, finish and new address are
obtained by use of GETWRD.

380-530: Before making a MOVE we must know whether the destination is
up the memory or down. If it is down (ie negative in terms of address) we
shall have to start copying the area from the bottom up so that if the two
areas overlay each other, by the time the destination area begins to
encroach on the source area, we no longer need the data at the beginning of
the source area. The opposite is true when the destination area is up the
memory from the source. Thus, if we wished to move a block of memory
one byte upwards we would start with the last byte in the source area and
MOVE it one place upwards. Starting at the beginning of the source area
would mean that the first byte would be placed into the position of the
second, then the second would be copied to the third — in fact we would
place the same character in the whole of the destination block. Between 470
and 530 the lines perform a 16 bit comparison between the two start
addresses and jump to MVEDWN if the destination address is less than the
source start address, otherwise MOVEUP is executed.

550-690: This is the start of the routine to MOVE a block up the memory.
These lines obtain the addresses of the end of each block and store them in
NEWADD and OLDADD, these having previously held the start
addresses.

700-800: Using the Y register to index the MOVE, these lines begin shifting
bytes from the address specified by OLDADD plus the contents of the Y
register to the address specified by NEWADD plus the Y register. The Y
register is decremented on each transfer and whenever the contents of Y
reach zero the high byte of OLDADD and NEWADD are decremented by
one to access a new block of 256 bytes. After each decrement of the Y reg-
ister a jump is made to the subroutine DECLEN, which decides whether
the full length of the block has been moved. If it has, then on return the
zero flag will be set to zero and line 800 will be reached, ending the routine.

810-910: This is the routine to MOVE a block down the mémory. It is sim-
pler because the contents of NEWADD and OLDADD can be left pointing
to the start of their respective blocks. Other than that, the only real dif-
ference between the two routines is that the Y register is incremented rather
than decremented.

155

Machine Code Master

MOVE: Fully Assembled Listing

ADD. DATA SOURCE CODE

@ 1@ FRT

2 20 GETWRD = $(C12C

@ B SYM

@ 40 DORG #CO53

cass 17CE 58 WRD MOVE-1

cas7 &HD ORG #CE0B

CIoR 7@ ; RBLOCE MOVE OF MEMORY

-~ NO PROTECTION ABAINST MOVING VITAL SE
CTIONS

CI0R 8@ ; SYNTAX OF COMMAND "M
OVE Al.A2.L7
CIon 90 : WHERE Al = ORGINAL A
DDRESS
CIOR 108 ; AZ = FIANL AD
DRESS
CZOR 11@ 3 L = LENGTH OF
BL.OCE
CE0R 120 ;3 ALSO NOTE 322K BLOCK
S MAX

A7) 13@ NEWADD = #61
CIOB 140 OLDADD = NEWADD+Z
C3aE 150 LENGTH = #14

zap 160 ; SUBROUTINE TO DECRE
MENT & TEST LENGTH

ZOR AS14 178 DECLEN LDA LENGTH
CZ@D Dol: 180 ENE LEBLODO
CIAF C615 19@ DEC LENGTH+1
C311 Cée14 200 LBLOAG® DEC LENGTH
C313 AS14 2190 L.DA LENGTH
C215 8515 220 ORA LENGTH+1
C317 68 230 RTS
c318 240 :; MAIN ROUTINE
CI18 202CC1 250 MOVE JSR GETWRD
C31R AS14 260 L.DA ¥14
C31D 48 278 FHA
CI1E AS15 280 LDA #15
cI2 48 298 FPHA

C3x21 20FDAE ZB0 ISR £AEFD
I 202CC1 318 J8R GETWRD
C327 AS514 320 LDA #14
Cz29 48 330 FHA

156

C3EEA
cEai
Cid

C330

10N TO MOVE IN

AS1S
48
2BFDAE
202001

AR
&8
996108
88
18F9
514
515
F@zC
AS62
CS564
FOIT
DB
AS61
Co63
FREF
IN MEMORY
CZ5a D8
35118
CE52 AS61
C354 6514
C356 8061
0388 AD6Z
CESA 6515
C35C 8562
CEsE 18
CESF AD63
361 6514
CE6E BS63
CI&S ASL4
C367 6315
CZé69 8564
CE6E ADBD
CI6D R16:
C36F 9161
CE71 98
Cx72 Doo4s
CE74 Cb64

Z40

5@
260
7@
Z80

390
400
410

20
4za
44Q
450
468
47@
48@
490
580
51@
520
530

540

550
560
570
=580
590
=Y
618
&L20
630
640
650
660
67
&H80
6590
700
71@
720
750
74@
750

L.DA
FHA
JBR
JER

: DECIDE WHICH DIRECT

LDY

Chapter 9 The Problem Of Parameters

¥15

¥AEFD
GETWRD

#3

LRLBBL FLA

STA
DEY
BFL
L.DA
ORA
BEG
L.DA
CHF
BCC
BNE
LDA
CHMF
BRCC

; MOVE

NEWADD. Y

LBL.oal
LENGTH
LENGTH+1
LEBLOOZ
NEWADDA1
OLDADD+1
MVEDWN
MVEUF
NEWADD
OLDADD
MVEDWN
BLOCK

MVEUF CLD

cLC
LDA
ADC
5TA
LDA
ADC
STA
cLe
L.DA
ADC
S5TA
DA
ADC
STA
L.DY

LBLOBZ

STA
TYA
ENE
DEC

NEWADD
LENGTH
NEWADD
NEWADD+1
LENGTH+1
NEWADD+1

OL.DADD
LENGTH
OLDADD
OL.DADD+1
LENGTH+1
OLDADD+1
#@

LDA

UFWARDS

(OLDADD) . Y

(NEWADD) . Y

LBLIAAS
OLDADD+1

157

Machine Code Master

U376 C&62 760 DEC NEWADD+1
£z78 88 776 L.BL.OA4 DEY
C379 20Q0BCE 780 JSR DECLEN
C3Z7C DBEF 790 BNE LEBLOOI
CE7E 6@ 800 LBLROZ RTS
C3E7F 810 3 MOVE BLOCKE DOWN THE
MEMORY
C327F ABDO 20 MVEDWN LDY #0
C381 Bl163 870 LEBLAAS LDA (OLDADD) .Y
Cc38% 9161 84® STA (NEWADD).Y
cE8s C8 850 INY
Cigs DOv4 860 EBNE LEBLOQAS

388 EbL64 878 INC OLDADD+1
£38A Ebéb6Z 880 INC NEWADD+1
C38C 200BC: 890 LBLOOS JSR DECLEN
C28F DOFQ P00 BNE LEBELOAS
Ci91 60 210 RTS

TOTAL ERRORS IN FILE ——— 8
GETWRD ciz2C
NEWADD 61

OLDADD 63

LENGTH 14

DECLEN C3an

LEL2OO C311

MOVE £318
LELOA1 C355
MVEUF Ci50
LELOO3 C36D
LBLO®4 C378
LELOOZ 37E
MVEDWN C37F
LELOOS Ci81
LEBLOAS c3gc

TOTAL NUMBER OF SYMROLS ——— 15

MOVE: Notes On Use

The use of MOVE is quite straightforward but remember that no pro-
tection is provided against you doing something stupid with it, like acciden-
tally overwriting the interpreter (when it is in RAM) or system variables,

158

Chapter 9 The Problem Of Parameters

or the program area Or........ Make sure you know what you are moving
and what is in the place you are sending it to BEFORE you do it.

The correct syntax for MOVE is:

MOVE < address to move to> ,< address to move from> ,< length>

SECTION 8: Keyword FILL

Having designed MOVE, the logical development was FILL, which is
used to fill a specified area of memory with a specified value. It can be used
to clear areas of memory, to clear areas of the screen, to change the colour
characteristics of the screen by filling parts of the attributes file. The real
work is done by a call to the MVEDWN routine in MOVE itself, so there is
little to explain about the working of the command.

FILL: Assembly Language Listing

i@ PRT

20 SYM

=0 ORG #0067

40 WRD FILL~1

=@ GETWRD = $C12C
6@ MVEDWN = $C37F
70 DECLEN = $C30R
80 ORG $C392

9@ FILL JSR GETWRD
100 LDA #14

1io FHA

120 LDA #15

150 FHA

140 JSR #AEFD

150 JER BETWRD
16@ LDA #14

170 FHA

180 LDA #15

190 FHA

200 JSR #AEFD

210 ISR BETWRD
220 LDA #15

230 BNE IQERF

240 LDX %14

250 FlLA

260 5TA $15

270 FLA

159

Machine Code Master

280 STA ¥14
290 FLA

00 STA $62

%10 STA $64

el FLA

0 STA %61

=40 STA $63

50 INC #61

60 ENE LELOBO
70 INC $632

80 LELOO@ LDY #0
390 TXA

400 STA ($63).Y
41@ JSR DECLEN
420 BEG EXIT

430 JMF MVEDWN
44@ IBERR JMF $E248
450 EXIT RTS

460 END
END

Commentary

100-230: These lines obtain the three parameters of start address,
length and the value to be placed into each byte in the block. An ille-
gal quantity error is generated if the value to be loaded is greater than
255.

240: The value to be stored in the block is saved in the X register.

250-280: The length of the block is stored back into 14-15 hex, where
the move routine expects to find it.

290-370: The start address is stored in OLDADD and the start address
plus one in NEWADD.

380-400: The value to be used in filling the block is placed into the
first byte of the block.

410-420: The length is decremented by one and if the length was only
one anyway, the routine is terminated.

430: Calls MVEDWN. If you remember anything of the commentary
on MOVE you will know that moving a block one byte up the memory
means a call to MOVEUP. Calling MOVDWN for the purpose per-
forms the horrendous act of corrupting the very bytes that are to be
transferred, constantly rewriting byte one to byte two, byte two to byte

160

Chapter 9 The Problem Of Paramelers

three and so on, filling the whole area with the same value. In MOVE this
would have been a disaster but it is also exactly what we want for FILL.

FILL: Fully Assembled Listing

ADD. DATA SO0URCE CODE

1] i@ FRT

@ 2@ SYM

@ 0 ORG $¥CA&7

cas7 91c3 40 WRD FILL-1
CR6T 5@ GETWRD = ¥C12C
Ca69 680 MVEDWN = $C3ETF
Ca69 780 DECLEN = $C3I0BR
Cas9 8@ ORE FCIEI2

392 202CC1 7@ FILL JSR GETWRD
C398 AS14 100 LDA #£14

C3I97 48 118 FHA

CIEP8 AS51S 12@ LDA #¥15

C3iza 49 12@ FHA

CE9R Z20FDAE 14@ JSR $AEFD
CI9E 282CC1 158 JSR GETWRD

C3A1 ASL4 160 LDA *1i4
C3IAS 48 178 FHA
C3Aa4 ASLE 180 LDA #1535
C3nps 48 198 FHA

C3A7 ZOFDAE 200 JSR *#AEFD
CrAA 202CC1 218 JSBR GETWRD

C3AD ALLS 220 LDA #1535

C3IAF DO258 3@ BNE IGERR

CEEB1 Ab614 240 LDX #14

C3BRE 68 258 FPLA

CiB4a 8515 260 5TA #1535

C3iR6 68 278 FLA

C3ZR7 8514 280 5TA *14

C3IR9 68 290 FLA

CEZRA BS62 IOl STA %62

C3IpC 8564 I10 STA %64

CIBE 68 320 FLA

C3pF g461 IZ@ STA #61

C3C1 B563 I4B STA #6373
I3 E&61 350 INC 61

C3CS DBz 360 BNE LEBLOOO

C3C7 E&62 I7@ INC 62

CIC9 AODO 380 LBLOOG LDY #@

161

Machine Code Master

CECE 8A IFD TXA

CICC 2163 408 8TA (¥63) .Y
CECE 200BCE 410 JSR DECLEN
CEDL FOBé 420 BER EXIT

CEDE 4C7FCE 430 JIMF MVEDWN
CED& 4C48ER2 440 IQERR JMF #RZ48

CED? 60 450 EXIT RTS
C3DA 468 END
TOTAL ERRORS IN FILE ——— @
GETWRD Ci1zC
MVEDWN C3I7F
DECLERN CiOR
FILL C392
LEBL 223 I
IGQERRK C3D6
EXIT CIDY
TOTAL NUMBER OF SYMBOLS ——— 7

FILL: Notes On Use

Once again this command provides no protection against stupidity.
The correct syntax for FILL is:
FILL< start address> ,< length> ,< byte value>

SECTION 9: Keyword RESTORE

You may think, on seeing the heading of this section that we have
taken leave of our senses. Isn’t there already a RESTORE command in
normal BASIC? The answer, of course, is yes but one of the fascinating
possibilities opened up by moving the interpreter into RAM is that not
only can we add new comands, we can change existing ones.

RESTORE is a prime candidate for such alteration. The normal
RESTORE routine dates from the time when computers were kept in
huge air conditioned vaults, reading their programs and inputting their
data from punched cards. Now the thing about a stack of punched
cards is that you can only really read from the beginning. If you want
to find the 97th card, you have to begin at one and read through 96
cards that you are not at all interested in. There is absolutely no reason
why this should be true on a modern micro, yet somehow the con-
vention seems to have stuck that the only way to deal with DATA

162

Chapter 9 The Problem Of Parameters

statements is to start at the beginning and to work through to the item that
you want.

In this section we shall modify the normal RESTORE command so that
you will be able to RESTORE to a specified line number and pick up the
first item of DATA which follows it (the normal RESTORE command can
still be used when required). In this way you can format your DATA into
separate tables and jump to exactly the table you want, thus saving con-
siderably on the time taken to access individual items of DATA and also
making the functioning of your program more transparent.

RESTORE: Assembly Language Listing

10 FRT

20 SYM

50 ORG #C132

49 ; ALTER TO RESTORE TO LINE NOS
50 ; TO USE TRANSFER ROM TO RAM A
ND ALTER RESTORE VECTOR TO “START-1°
6 : RESTORE VECTOR AT $A022
70 GETWRD = #C12C

80 STAKT LDA #@

90 STA #14

100 STA #15

11@ JSR %73

120 LDA #7A

170 ENE LELOOO

142 DEC #7H

150 LLBLOO® DEC #7A

160 ECS LELOOL

170 JSR GETWRD

180 LELDO1 JSK #A&13

190 LDA 14

200 ORA 15

210 BEG LELOOZ

270 ECC ULERR

230 LEL@OZ LDA #5F

249 LDY #60

250 8EC

260 SEC #1

270 JMF #AB24

280 ULERR JMF #ABET

290 END
END

163

Machine Code Master

Commentary

80-100: Initialise the location in which the interpreter will later store a line
number.

110-150: The subroutine call gets the next character in BASIC and the
remaining lines back up the text pointer which has now moved to the posi-
tion after that character.

160: If the character picked up by the routine at 73 hex is a digit, the carry
flag will be set on return. If it is not set then a jump will be made past
GETWRD since the routine will assume that a normal RESTORE is to be
executed and there is no line number to be obtained. If you wish to use an
expression after RESTORE you will need to precede it with 00+ or 01*in
order to ensure that GETWRD is called.

180: This routine finds the address of the line number obtained by
GETWRD or, if GETWRD has not been called, of the first line in the
BASIC program.

190-210: If the line number storage area contains zero, it is assumed that a
normal RESTORE has been executed and no checks are made for
parameter errors.

220: If, on return from A613, the carry flag is clear then the line number
referred to has not been found and an UNDEFINED LINE error is flag-
ged.

230-270: The address of the line which has been found is picked up from
5F-60 hex, 1 is subtracted from this and execution returns to the normal
RESTORE routine, but with the data pointer now set to the line specified.

RESTORE: Fully Assembled Listing

ADD. DATA SOURCE CODE

] 1@ FRT

@ 20 8YM

@ IO ORG #C132

C132 4@ 3 ALTER TO RESTORE TO
LINE NOS.

Cc132 5@ : TO USE TRANGFER ROM

TO RAM AND ALTER RESTORE VECTOR TO ‘STAR
T-1"

Cci32 &40 3 RESTORE VECTOR AT #A
@22

Ci32 7@ GETWRD = #%C12C

Ci132 A900 80 START LDA #@

Ci34 8514 B STA %14

Ci13x6 8515 100 STA #15

164

Chapter 9 The Problem Of Parameters

C13E8 207300 110 JSR #7232

Ci13B AS74A 120 LDA %¥7A

213D D2 138 BNE LBLGODG
C13F G678 148 DEC ¥7B

C141 C&7A 1580 LELOOB DEC ¥7A
C143% BOAZ 1683 BCS LBLOAG@1L

145 ZQ2CC1 17@ JSR GETWRD
c148 2013A6 1880 LBLOAL JSR £A&613

Cl14p AS14 190 LDA #¥14

ci4n @S135 200 ORA #15

cCi4F F@a: 210 BED LEBELOB2
C1381 983A 228 BCC ULERR

L1523 ASSF 230 LBLOABZ LDA ¥5F
C185 A460 240 LDY *60

cia7 38 2580 SsEC

o158 E901 260 SBC #1

Cisa 4C24A8 270 JMF £AB824
C13D 4CEZAB 280 ULERR JMF #ABETZ

Cl160 290 END
TOTAL ERRORS IN FILE —~—-— @
GETWRD cizc
START C132
LBL OB Cil41
LELOG1 148
LBLOAZ C153
ULERR C15D
TOTAL NUMBER OF SYMBOLS ——— &

RESTORE: Notes On Use

RESTORE can be used normally by not specifying a parameter or by
specifying zero as the parameter. One limitation is that the extended RES-
TORE will only work on parameters with more than one digit. If you wish
to restore to a line number less than 10, you must specify the line number
with a leading zero.

The correct syntax for RESTORE, in its extended form, is:
RESTORE < line number with at least two digits>

Before using the extended RESTORE, one further alteration must be
made to the BASIC Extender II program. The following lines must be
added:

250 REM ALTER RESTORE VECTOR

251 POKE 40996,49: POKE 40997,193

165

Machine Code Master

The machine code routine should be assembled over the existing
machine code file of extender and keyword routines and then loaded into
the memory using the newly modified BASIC Extender II program.

166

CHAPTER 10
BASIC Functions

BASIC functions, you may recall, receive a separate treatment by the
interpreter, being identified when they are encountered in a program by the
fact that they occupy a clearly specified segment of the keyword table. The
main difference between the action keywords and the functions is that fun-
ctions will require that something be evaluated, for which there are a whole
series of special interpreter routines. In fact around half the interpreter is
devoted to the problem of evaluating expressions in one way or another.
When executing a function keyword it is not a simple matter of jumping to
a single machine code routine in the memory.

The machine coderoutine given here, although it is short, uses routines
in the interpreter which are far more complex than those used by the action
keywords. Without those routines already in the interpreter, it would have
been an enormous undertaking to define new functions.

Extend Expression Evaluator: Assembly Language Listing

i@ FRT

20 5YM

0 ORG ¥C44A

49 3 EXTEND EXPRESSION EVALUATOR
S5@ i TO UBE FOKE #AFAA WITH “JMF
FUNEWVL.’

&0 FUNEVL. CFX #¥8F

7@ BCC LBLOBZ

80 CFX #%98

70 BCC LEBLOO1

100 CFX #¥$9F

11@ BCS LEBLOA1

120 JSR ¥AEF1

130 FLA

14@ TAX

150 CFX #%98

160 REG DEEWR

17@ CPX #%9A

180 BE® YFOS

167

Machine Code Master

190
200
210
220
2EQ
240
250
260
270
280
290
A7 17
310
T30
40
350
60
570
=80
390
400
410
470
470
440
450
460
470
480
490
END

60-70: This checks to see whether the token is that of a normal numeric

BNE VARFTR
LELOBL JMF £AFRI1
LBLAGZ JMF $AFDL
VARFPTR LDA 78
Loy 71

LELBAE IS8R FRIT1
LDA %66

BFL LELOG4

LDY HCONST/256
LDA #CONST-CONST/256%E06
JSR #pABC

JGR $BB6A
LELO®4 JMFP #ADSD
YOS SEC

JBR ¥FFFQ

TXA

TAaY

LDA #$@

JMF LBLOGSE

1 FERFORM DEEK
DEEK JBR ¥R7F7
LDY #1

LDAa (¥14) .Y

FHA

DEY

LDA (¥4 .Y

TAY

FiL.A

JMF LBLBAS

CONST EBYT 145.0.0.8.0
END

function. If so the normal function evaluator is called.

80-110: A check is made to see if the function, whose token is in the X reg-
ister, is in the range of our three new functions and if not the string function
evaluator is called.

120: This interpreter routine evaluates an expression within brackets ie the

argument of the function.

130-140: The expression evaluator called in the previous line places the
token onto the stack. It is now retrieved and stored in the X register.

168

Chapter 10 Functions

150-190: At this point the token must be that of one of our new functions,
these lines determine which and jump to the appropriate routine.

220-310: VARPTR: This function returns a pointer to the location in
memory of any variable whose name is placed into brackets as the
argument.

220-230: On return from the routine at AEF1 which evaluated the variable
within the brackets, the address of the variable is contained in 47-48 hex
(71-72 decimal). The two byte value is loaded into the accumulator and Y
register.

240: This address is now sent to the routine which converts this integer
number to floating point. This is necessary because the interpreter will
expect the result of a function to be a floating point number and will deal
with it accordingly.

250-300: Unfortunately, the floating point converter will change the unsig-
ned integer number to a signed floating point one. This will mean that
numbers above 32767 will actually come out as negative eg the FRE fun-
ction in normal BASIC. If you enter FRE(0) when there is no program in
the memory then a negative quantity will be returned, to which 65536 must
be added to get the correct result. These lines test for a minus sign stored in
the sign byte of the floating point accumulator #1 (at 66 hex in zero page
memory). If a minus is found there, (ie bit 7 is set) then the accumulator
and Y register are loaded with the address of the variable CONSTANT
(line 480) which is actually 65536 in floating point format. This value is
now placed into floating point accumulator #2 by a call to the interpreter
routine at BASC hex and added to the value in floating point accumulator
one by a call to the routine at B86A.

310: A return is made to the expression evaluator, which may still be in the
middle of evaluating a larger expression of which VARPTR is only a part.

320-370: YPOS: This new function returns the current position of the
cursor down the screen. It is parallel to the normal BASIC command POS.
which returns the position across the screen.

330: The kernal routine which returns the position of the cursor on the
screen in the X and Y registers.

340-350: The contents of the X register are stored in the Y register (the X
register originally holds the vertical position).

360-370: The accumulator and Y register now hold the same value. The
dccumulator is loaded with zero,thus providing, in the accumulator and Y
register, a 16 bit number in the range 0-24 (the line numbers on the screen).

169

Machine Code Master

This 16 bit integer number is now sent to the routine at LBL003 which con-
verts it to floating point.

390-470: DEEK: This function returns a number in the range 0-65535. It is
actually a Double PEEK and equivalent to the normal BASIC statement
PEEK(X)+ 256*PEEK(X + 1).

390: The parameter evaluated by the function evaluator is converted to an
integer number by this call (PEEKs and DEEKSs are to integer addresses).

400-460: The value returned is to be found in our old friends 14-15 hex. The
accumulator and the Y register are loaded with this value and a jump is
made to LBLO0O03, thus returning the contents of the two bytes to the expres-
sion evaluator.

Extend Expression Evaluator: Fully Assembled Listing

ADD. DATA SOURCE CODE

i) 1@ FPRT

a 20 8YM

@ 30 ORG #C44A

C44n 4@ 3 EXTEND EXFRESSION EV
ALUATOR

C44n 5@ 3 TO USE FOEE *AFAA WI
TH “JMF FUNEWVL'’

C44n EO8F 6@ FUNEVL CFPX ##8F
C44C 014 7@ BCC LEBLOAZ

C44E EB98 80 CFX #¥98

c450 9013 790 BCC LBL2O1

C452 E@9F 100 CFRX #*9F

C454 BROOF 112 BCS L.BL.OB1
C456 20F1AE 120 JSR #AEF1

459 &8 120 FLA

C453A AA 140 TAX

C45p EO98 150 CPX #£78

C45D FO2F 160 BEEG DEEK

CA5F E@9A 178 CrPX #+9A

C461 FOZ20 180 BER YFOS

C46% DAds 128 BNE VARFTR

C465 A4CRLIAF 208 LBLOBL JMF $AFR1
C468 4CDIAF 210 LBLOOZ JMF #4FDI1

C46R AS48 228 VARFTR LDA 72
C46D A447 230 LDy 71

C4as6F 209183 240 LBLRBE J8R FRIE91
C472 ASbLs 250 LDA ¥66

C474 1004 260 BFL LBLOG4

170

Chapter 10 Functions

C476 ABCA 270 LDY #CONST/256
478 AY9E 280 LDA #CONST-CONST/206%
256
Ca7a 208CERA 29@ JSR ¥RABC
47D 206ARB PR ISR FBB6A
C480 4C8DAD 1@ LELBO4 JMF £ADBD
cagz I8 IP@ YPOS SEC
484 ZOFOFF EEY ISR FFFFO
ca87 B8A 4@ TXA
c488 A8 250 TAY
C4a8y AY00 60 LDA #30
CA8R 4C&FC4 70 JMF LBLOOZ
C48E IB@ ;3 PERFORM DEEEK
casg 2OF7R7 9P DEEK JSR ¥BTF7
C4a91 ABOGL 40@ L.DY #1
£49% Ri114 410 LDA ($¥14).Y
495 48 420 FPHA
C496 B8O 47%@ DEY
cav7 Bii4 449 LDA (¥14).Y
C499 A8 450 TAY
Ca9a &8 4460 FLA
C49B 4C6FC4 470 JMF LBLOOZ
C49E 210000 480 CONST BYT 145.0.0.0.0
C4AZ 49@ END

TOTAL ERRORS IN FILE —-— @
FUNEVL Ca444

L.BL.AA1 C465
LBELAAZ C468

VARFTR C46E
LEBL.DAZ Ca&F
LBL.OB4 C480
YFOS C483

DEEK C48E
CONET C4%E

TOTAL NUMBER OF SYMBOLS ——— 9

VARPTR: Notes On Use

If an expression is put into the brackets instead of a variable the result is
meaningless and should not be used as the basis for any changes to the
memory. Other than this the function can be used as a short-cut to
changing individual characters in string arrays (avoiding garbage collec-
tion problems and complex string functions) or simply to get a more accu-
rate idea of what is happening in the variables area. As an example of the

17

Machine Code Master

use of VARPTR, enter A% =10 in direct mode, then PRINT DEEK
(VARPTR(A%) + 1). This returns the value of A%. In the case of strings
PEEK (VARPTR(AS)) will return the length of AS.
DEEK(VARPTR(AS) + 1) returns the start address of A$ in the memory.
The correct syntax for VARPTR is:
VARPTR (< variable name>)

YPOS: Notes On Use

This function is parallel to POS in normal BASIC, including the fact
that the variable specified in the brackets is ignored.

The correct syntax for YPOS is:

YPOS (< dummy argument>)

DEEK: Notes On Use

Very much the same as PEEK except that a two byte value is returned.
DEEK is particularly useful in accessing the values stored in two byte reg-
isters used by the system eg DEEK (43) returns the address of the start of
BASIC.

The correct syntax for DEEK is:

DEEK (< expression>)

Running the Function Extender

As with the extended BASIC keywords, this routine must be assembled
over the machine code file that you have built up to include the BASIC
extender and the other commands. The routine could stand alone without
crashing the system if it were loaded into memory but you would be unable
to crunch the token for the new functions.

In order to patch the routine into the existing function evaluator, the
following line must be added to your existing BASIC Extender II program:
224 DATA 173,175,76,174,175,74,175,175,196

The effect of this line is to place into the function evaluator a jump to our
machine code routine very much as was done for the action keyword exe-
cution routine. Once the change is made the function evaluator can be
loaded, along with the other commands, by the BASIC Extender II pro-
gram.

172

CHAPTER 11
Breaking New Frontiers

When you sit down to write a book such as this one, you toss around ail
kinds of ideas for the routines that you would like to include. Some prove
to be too extensive in the amount of coding they require, others seem irrele-
vant on further consideration. Some however, stand out as being useful
ideas that should not present too many difficulties in their implemen-
tation. One such idea that came to us —admittedly it was very late at night
— was FAST, a routine which would capitalise on RKILL by removing the
interpreter’s check for spaces when executing a program. The 64 was
switched on, the routine entered and assembled, adding two new keywords
FAST and SLOW (the latter simply restores the normal state of affairs).
The routine turned out as follows:

FAST and SLOW: Assembly Language Listing

i@ FRT

2@ S5YM

17/ ORG #COS7

4@ WRD FAST-1.5L0W-1
45 ORG F04A3

S50 SLOW LDY #@

H@ BYT #2C

7@ FasT LDY #4

80 LDX #0

e’ LELGOO LDA FEIAF.Y
1o STA ¥88.X

118 INX

120 INY

130 CRY #¥B

140 BCC LBLODG

150 RTS
END

The BASIC Extender program was loaded and FAST placed into the
memory. The memory was cleared and a small program entered which exe-

173

Machine Code Master

cuted a large loop, the total time taken being around 57.75 seconds.
RKILL was executed on the program, removing all the spaces and then
FAST was entered in direct mode. Not a whimper from the 64, the routine
was obviously going to work first time — a triumph for proper planning
and program design. The loop was run again, with the stopwatch held in
trembling hands.

The result was a time of 57.25 seconds, an improvement of 0.89%!

Not everything that you can do in machine code is actually worth doing,
and not everything that is worth doing can be done. At the end of this book
we are left with the feeling that what we have created is worth doing and
that other people will be able both to do it and to learn from it. In entering
the Mastercode program and the keyword routines (and understanding
them) we hope you will have taken a considerable step forward in
understanding your 64 and the potential it offers for machine code pro-
gramming. May your efforts be more successful than FAST.

174

APPENDICES

APPENDIX A
Checksum Generator

The program given below is the one which was used to generate the
checksum tables provided with each module of the Mastercode program.
The checksum figure for each line is an almost foolproof method of indi-
cating whether a line has been entered correctly. The program works by
adding together the values of all the bytes in the line, rounding down to
zero every time 255 is reached. An incorrect character or a character
omitted will result in the checksum changing. To make use of the
checksums, enter this program into the 64 before you begin on the Mas-
tercode program and then RUN 63800 every time you wish to check a batch
of lines that you have entered, then compare the results with the Checksum
table for the module. If there is a difference then the line you have entered
is not the same as the line given in the book. Note that spaces count in the
calculation of the checksums.

63800 REM CHECKSUM PROGRAM

63801 GOSUB &73810

43802 GOSUR 63840

63803 IF FL»>=0 THEN 63802

63804 END

63810 DEFFN DEEK (X)) = FEEK(X)+256%FEEK (X
+1)

63820 REM DATA FOR MACHINE CODE

43821 DATA *x*

63822 DATA 165,202,166,253,133,020,154,0
21,032,019

63823 DATA 1646,216,160,001,177,095,133,2
54,240,013

63824 DATA 200,177,0895,133,2052,200,177,0
95,133,253

63825 DATA 200,169,000,133,251,177,095,2
40,006,024

63826 DATA 101,251 ,200,208,244,096

63827 DATA -1

177

Machine Code Master

63830 REM PUT DATA INTO MEMORY

63831 AD = 52992

63832 RESTORE

638 READ T&r IF TH<>"wwx" THEN &3HIX

63834 READ T : IF T:=@ THEN POKE AD,T @

AD = AD+1 : GOTO 63834

63835 DEV = 3 ¢ IN$ = " 3 INPUT "QUTPUT
DEVICE NUMBER "3 DEV

63836 IF DEV=1 OR DEV>4 THEN INPUT "FILE
NAME "3 INS$

LHEBX7 RE = CHR$(1%) 1 8% = "EEEXERENERNEEKR
% 23 e J I I TP B N T N NN RN R

63838 RETURN

63840 REM DO INITALISATION

63841 FL = @ : INPUT "FIRST LINE "3 FL
IF FL<@ THEN RETURN

63842 LL = 65536 1 INPUT "LAST LINE "3 L

L

63843 INPUT "MODULE NAME "j;M$

63844 OFPEN 1,DEV,2,IN$

63845 PRINT#1,5% RESPC((40-LEN(M$))/2)M$
R$ R$"LINE NUMBERS'"FL"TO"LLj;RSRS$

63850 REM ACTUAL PROGRAM

63851 LN = FL : C =0 1 Cl = @

63852 POKE 252,LN~INT (LN/256) %256 : FOKE
253, LN/ 256

43853 SYS 52992 : CS = PEEK(251) 1 LN =

FNDEEK (252) +1

63860 REM FORMAT OUTPUT INTO 3 COLUMNS

63861 T$ = LEFT$(STR$ (LN=-1)+" "Le)

LEFT# (STR% (CS) +" "7

63862 FRINT#1,T#;

63864 C = C+1 3 IF C»=3 THEN PRINT#1 : C
=@ Cl=C1 + 1

63865 IF C1:=20 AND DEV=3 THEN C1 = @ 3

GOSUR 63898

63866 IF LN<=LL AND PEEK (254) THEN 63852

63867 CLOSE 1 1 RETURN

63898 GET T# : IF T$="" THEN 63898

63899 RETURN

READY.

178

Appendix A Checksum Generator

CHECKSUM TABLE

43800 58 63801 175 63802 178
&3B03 186 63804 128 63810 179
L3820 32 63821 33 63822 30

63823 I8 63824 46 63825 31

63826 14 63827 1 63830 53

L3831 130 63832 140 63833 176
63834 38 63835 214 L3836 104
63837 145 L3838 142 63840 58

63841 3 L3842 133 4£3843 168
&L3844 64 63845 105 63850 161
63851 13 63852 207 L3853 255
L3860 119 63861 189 63862 168
63864 79 63865 78 17 63866 206

63867 249 63898 198 /77 63899 142

179

APPENDIX B
Mastercode User Guide

The Mastercode program is divided into four sections: Monitor,
Disassembler, File Editor and Assembler, all of which are fully
compatible with each other. On running Mastercode there will be a
noticeable wait while the complex tables for the Disassembler and Assem-
bler are generated. The first section of the program available to the user is
the Monitor — the Assembler Disassembler and File Editor are all called
from the Monitor control subroutine as menu options.

Monitor

Use of the Monitor is straightforward. Simply follow the prompts given
when the program is RUN. The Disassembler and Assembler bothreturnto
the Monitor when they have completed their current assignment. When us-
ing the File Editor, the Monitor is menu option number 0.

Disassembler

The disassembler is capable of providing assembly language translations
of all 6502/6510 machine code instructions in the standard format laid
down by Mostechnology (now part of the Commodore Semiconductor
Group), the designers of the chip. To use the Disassembler all that is
necessary is to specify, in hexadecimal, the start address of the area of
memory to be disassembled. Some care is necessary in choosing the correct
start point since a start address which is not also the first byte of a machine
code instruction will result in one or more ‘???’ indicators or invalidly
translated instructions before the Disassembler synchronises itself with the
memory. The occurrence of ‘???° indicators within the body of a
disassembled area of memory indicates the presence of tables of data.
Disassembled instructions surrounded by ‘???’ indicators should be
treated with some caution, since they may represent random bytes which
merely happen to look like genuine machine code instructions. At the end
of tables of data, some corruption of instructions may also occur, for the
same reason as when an invalid start point is specified. When
disassembling past a table, it is wise to attempt to identify the end

181

Machine Code Master

of the table by commencing with the address of the last ‘???” and making
several disassemblies, each one starting one byte later in the
memory, until a start point is found which generates sensible assembly lan-
guage from the beginning.

File Editor

The File Editor is simply a means of entering a series of numbered lines
— no check is made on entry that these are valid assembly language
instructions. Lines may be inserted into the middle of the existing file by
giving them the appropriate number. Lines may be listed and deleted in
blocks. Single lines may be deleted in input mode by entering a line number
without following text. Files which have not been assembled may be saved
on tape or disc and later recalled. Files on tape or disc may be merged in
with a file currently in memory, provided that the total length of the file
does not exceed 255 lines — each line may contain only one assembly
language instruction. Lines from a file which is being merged into another
currently in memory may be numbered so that they fall into the present
body of text, precede it, follow it or overwrite current lines. The ‘change
device’ facility permits the number of the current input/output device to
be altered, thus enabling files to be saved to device 4 (ie printed), or backup
tapes to be made by those normaily working with discs. No check is made
that the input/output device currently specified is connected or capable of
the saving or loading operation. Machine code data from memory may be
added to a file but will appear in the file in byte form, not assembly
language.

Assembler

The assembler accepts all the standard assembler mnemonics in
standard formats, with the exception that commas are replaced by full-
stops. The main commands available for the assembler are as follows:

1) Assemble to memory: the file entered by means of the File Editor is
translated into machine code and placed into the memory. Programs may
be conflated with previously assembled programs by loading the machine
code program into memory (using the File Editor) and then starting
assembly of the second program at the byte following the end of the first,
thus overcoming any problems you may have with the limitation of a single
file to 255 lines. Note that variables and labels from the first program must
be redeclared for the second — they are not carried over.

2) Assemble without placing in memory: the file is assembled, with a full
listing of all addresses and their contents but memory is unchanged.

3) Error only listing: only those instructions which contain errors will be
printed, together with an indication of the nature of the error.

4) Full listing: the full listing of the program is printed including
indications of any errors. Note that if there are two errors on the same line,

182

Appendix B Mastercode User Guide

only one will be indicated on any one assembly. Subsequent assemblies will
flag any remaining errors once the first batch have been corrected.

The Assembler provides seven ‘directives’ which do not appear in the
machine code program but modify the manner of assembly:
1) ORG < address> : This directive indicates that the following assembly
language instruction is to be assembled at the address specified —
subsequent instructions will follow on from that address. A single
assembly language program may contain several ORG directives
indicating sections of the program which may be placed in entirely
different areas of memory.
2) PRT: Following this directive output of the assembled program is
diverted from the screen to the printer.
3) SYM: This indicates that the ‘symbol table’ containing values of
variables and addresses at which labelled lines are assembled is to be
appended to the listing.
4) END: Whenever encountered, this directive terminates assembly — it
does not have to be placed at the end of a program. When END is used as
the last line of a program, its address signifies the first free byte of
memory which will follow the assembled program.
5) BYT: This directive allows a series of one byte value to be specifiedina
line, separated by full-stops. The values will be entered directly into
memory.
6) DBY: Similar to BYT except that the value specified may be up to two
byte range (0-65535). The two bytes will be placed into memory with the
high byte first. WRD is the same as DBY except that the two bytes are
placed into memory with the low byte first. Note that assembled programs
may be saved as machine code files via the Monitor, provided that they
have been placed into memory.

Important note

The assembler cannot work unless an assembly language program has
been entered by means of the File Editor or loaded from tape or disk.
Attempting to run the assembler section of the program without an
assembler language program in memory will cause Code Master to
terminate with an error. If you find this to be a problem, the following
line can be inserted in the module starting on page 60:

20035 IF LEN(PTR$)=0 THEN RETURN

The assembler will still be unable to perform any useful action but the
program will not terminate.

183

APPENDIX C
Mastercode: Table Of Variables

AD Current address in memory

AM (Assemble to memory) flag used in
assembler

BASE Current number base for conversions

CO COntinue in monitor/COmmand in file
editor

DEV Indicates device for load/save

E$ Used in file editor to record empty lines

EA (End Address) used in monitor

EC (Error Count) during assembly

EN (Error Number) used to indicate type of
error during assembly

EO (Error Only listing) flag used in assembler

ERR Used to flag error conditions

ERR$ Error messages for assembler

EXIT Set if END directive encountered by
assembler

FALSE Logical value (=0)

FI$ Main file array in file editor

FL Line to finish list or delete in file editor

FM Number of lines in FI$

FNDEC Converts decimal digit to hex ASCII

FNHEX Converts hex digit to decimal

FP (Finish Pointer) used by list and delete in
fileeditor

H Used in conversion routines - H$ con-
verted to decimal

H$ General string for input and output of
hex numbers

INS General variable used for input

LN (Line Number) used in file editor

PTR Pointer used in scanning assembly lan-
guageinstruction

PTRS Holds order of items in FI$

185

Machine Code Master

OpP

03
Oo13

028
03$

PASS
PO
Q

Q1
Q3
Qi$

RESULT
SA

SE

SL

SM

Sp

ST

ST$
SY

T$
TAS
T1$
TERM
TRUE
X1

XY
XZ

186

Operand type: assembler and
disassembler

General output string

Output string used in dump of memory
contents to screen

Output string used in dump of memory
contents to screen and disassembler
Output string used in dump of memory
contents to screen

Current pass of two pass assembler
Pointer to mnemonic type

Loop variable used in assembler

Start address of line being assembled
Loop variable used in assembler
Temporary variable used in formatting
assembler output

Output of expression evaluator

(Start Address) used by several routines
Current number of symbols during
assembly

(Start Line) used in list and delete in file
editor

Maximum number of symbols in the
symbol table

Start pointer for list and delete in file
editor

System variable in BASIC

(Symbol Table) used in assembler

Used to indicate dump of symbol table in
assembler T,TA,TB,T0,T1,T2 etc. Tem-
porary numeric variable used in several
modules

Temporary string variable used in several
modules

Decoder tables for
assembler/disassembler

Temporary variable used in several
modules

Temporary result in expression evaluator
Logical value (=-1)

Loop variable used in Hex Loader

Loop variable used in file editor

Loop variable used in file editor

APPENDIX D

Table of Subroutine Functions in
Mastercode Program

10000
10100
11000
11100
11200
11250
11850
11950
12050
12200
13000
13100
13300
13500
14100
14300
15300
15450
15500
15550
15600
15700
15800
19000
20000
23020
23100
23300
23400
23500
23600
23700
23900

General initialisation

Monitor control routine

Convert decimal to hexadecimal

Get byte from memory

Input finish address

Input file name

Ask continue

Convert hexadecimal to decimal

Input start address

Load hex characters into packed string

Get 1 byte from user

Memory modify

Dump memory to screen

Machine code execute

Machine code save

Machine code load

Format operand

Format operand for accumulator addressing mode
Format operand for implied addressing mode
Format operand for immediate addressing mode
Format operand for relative addressing mode
Disassemblé instruction

Disassemble memory area

Initialise decoder tables

Assembler control routine

Find line number in file

Add line to file

Delete line from file

List line from file

Get start and finish pointers

Load file from device

Save file to device

Remove leading spaces

187

Machine Code Master

24000 Get line number from line input
24200 Input first and last lines
24300 Initialise file

24400 List lines

24500 Delete lines

24600 Input lines

24700 Renumber file

24800 File Editor control routine
25000 Add to file from memory
25500 Change device number

26000 Scan for symbol up to colon
26100 Determine operand type used
26300 Evaluate opcode

26400 Pass 1 control routine

26500 Get length of machine code instruction
26600 Calculate directive length
26900 Dump symbol table

27000 Evaluate operand

27200 Evaluate directive

27400 Evaluate immediate operand
27500 Evaluate relative operand
27600 Pass 2 control routine

28000 Assembler error routine
28100 Print IN$

28150 Scan for symbol up to non-letter/non-digit
28250 Find label in symbol table
28300 Evaluate label or number
28500 Evaluate term

28600 Evaluate expression

28700 Add symbol to symbol table
28850 Test for opcode mnemonics

188

APPENDIX E
Table Of ROM Routines Called

A38A Obtain first return address on stack

Ad74 Print ‘READY’ and return to direct mode

AdA4 Insert line into BASIC file

A533 Rechain BASIC file

A613 Convert line number held in 14-15 hex to address of
line start at 5SF-60 hex

A6SE Perform CLR

ATF7 Convert value in floating point accumulator #1 to
unsigned integer

A831 Perform END

ABE0 Print ‘RETURN WITHOUT GOSUB’ and return to
direct mode

ABE3 Print ‘UNDEFINED STATEMENT’ and return to
direct mode

ADSA Get floating point number from BASIC program and
placein F-P accumulator #1

AEF1 Evaluate expression within brackets

AFFD Check next character in BASIC program is a comma,
else print ‘SYNTAX ERROR’

AFEFF Check next character in BASIC program is the same as
that held in accumulator, else print ‘SYNTAX
ERROR’

B248 Print ‘ILLEGAL QUANTITY’ and return to direct
mode 1

B391 Convert unsigned integer in 14-15 hex to floating point
in F-P accumulator #1

B7F7 Convert floating point accumulator #1 to unsigned
integer

B828 End of POKE routine

B86A Add floating point numbers in F-P accumulators #1
and #2. Resultin accumulator #1.

BASC Copy floating point number indicated by accumulator
(low byte) and Y register (high byte) into F-P accumu-
lator $2

E15F Perform save from memory to device

189

Machine Code Master

E175
E1D4

FFF0

190

Perform load or verify from device

Get parameters for load and save from BASIC
program

Kernal routine to put or get cursor position

APPENDIXF
Table of Control Characters

as Represented in the Mastercode Program

[CD] — Cursor Down
[CU] — Cursor Up
[CL] — Cursor Left
[CR] — Cursor Right
[CLR] — Screen Clear
[HOME] — Cursor Home
[GREENI — Control 6

[BLUEI — Control 7

191

Other titles from Sunshine

THE WORKING SPECTRUM
David Lawrence 0946408 00 9 £5.95

THE WORKING DRAGON 32
David Lawrence 0946408 01 7 £5.95

THE WORKING COMMODORE 64
David Lawrence 0946408 02 5 £5.95

DRAGON 32 GAMES MASTER
Keith Brain/Steven Brain 0946408 03 03 £5.95

FUNCTIONAL FORTH for the BBC Computer
Boris Allan 0946408 04 1 £5.95

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-minute
details of the latest games. Other features in the magazine include regular
hardware and software reviews, programming hints, computer swap,
adventure corner and pages of listings for the Spectrum, Dragon, BBC, Vic
20 and 64, ZX 81 and other popular micros. Only 35p a week, a year’s
subscription costs £19.95 (£9.98 for six months) in the UK and £37.40
(£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Eachissue
contains reviews of software and peripherals, programming advice for
beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year’s subscription
(12 issues) costs £8.00 in the UK and £14.00 overseas.

For further information contact:
Sunshine

12-13 Little Newport Street
London WC2R 3LD

Printed in England by Commercial Colour Press, London E.7.

