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Advanced Machine Language

Introduction

The material in this book builds on the fundamentals of 
machine language programming as found in the book The Mach
ine Language Book for the Commodore 64. In this book we will 
show you how to make use of many the Commodore 64 *s special 
features and capabilities using machine language.

The book is divided into three major sections. The 
first section concerns the internal representation of num
bers on the Commodore 64 and describes in detail how the 
computer performs calculations and how its math routines can 
be used from machine language. In addition to the conversion 
of numbers between the various formats, the main emphasis of 
this section lies in writing arithmetic functions which can 
be used from BASIC with the help of the USR function.

The second section deals with a specialty of machine 
language: interrupts. After explaining some of the terms, 
interrupts are discussed in detail. Many sample programs 
illustrate the variety of uses for interrupt handling. At 
the close of this section, a machine language program demon
strates how BASIC subroutines can be controlled with inter
rupts .

The third and final section presents the concept of 
vectors in both the BASIC interpreter and kernal. The in
dividual vectors are described and the procedure for adding 
your own commands is explained. The implementation of the 
REPEAT-UNTIL structure is used to demonstrate this.
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Advanced Machine Language

SECTION 1 Numbers and arithmetic

1.1 Number representation on the Commodore 64

Your Commodore 64 uses two methods to represent numbers 
internally:

You are already familiar with the first type of repre
sentation, which is used for variables of type INTEGER. 
These variables can contain only whole numbers from -32768 
to -*-32767 and can be represented in two bytes (16 bits). The 
upper-most of these 16 bits is used to represent the sign of 
the number.

Decimal Binary Hex
-32768 1 000 0000 0000 0000 80 00
-32767 1 000 0000 0000 0001 80 01
-32766 1 000 0000 0000 0010 80 02
-32765 1 000 0000 0000 0011 80 03

-2 1 111 m i n i l 1110 FF FE
-1 1 111 i n i n i l n i l FF FF
0 0 000 0000 0000 0000 00 00
1 0 000 0000 0000 0001 00 01
2 0 000 0000 0000 0010 00 02

32766 0 111 n i l n i l 1110 7F FE
32767 0 111 n i l n i l n i l 7 F FF

This table illustrates how signed 16-bit numbers are 
represented. You can see that it is similar to the represen
tation of signed 8-bit numbers which can contain the valueO 
-128 to -*-127 and are used for such things as relative ad
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dressing.

Integers are not suited for calculations which require 
fractional values or a large value range. Floating-point 
numbers are used for this purpose. You Bay be acquainted 
with this type of representation from such things as pocket 
calculators that use scientific notation. Let’s take a clo
ser look at floating-point.

Since we are familiar with the decimal system, we’ll 
begin with it. If we want to represent a number, we first 
see how many times the base of this number system, 10, is 
contained within the number as a factor and divide the 
number into two parts. A example should clarify this:

15 = 1.5 * 10^1 
230 = 2.3 * 10~2

When we extend the exponential representation to include 
negative exponents, we can represent all of the numbers:

5 = 5.0 * 10~0 
0.7 = 7.0 * 10^-1

Since we know the base of the number system, a number 
is then represented by its mantissa, 7.0 in the last exam
ple, and the exponent, here -1. This is called normalized 
representation. The factor in front of the exponent is 
always a value between 1 and the base of the number system, 
or 10 in our case. The calculation rules of mathematics also 
apply for these numbers: For example, two normalized
floating-point numbers can be multiplied together by multi
plying the mantissas and adding the exponents. If the prod-
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uct of the mantissas is greater than 10, a factor of ten is 
added to the exponent of the product and the mantissa is 
adjusted so that it lies in the range 1-10. If we multiply 
the last two example numbers together, it looks like this:

5 * 10~0 times 7 * 10~-1

By multiplying the mantissas we get 35; the sum of the 
exponents is -1. The result is therefore 35 * lO^-l. This 
number must now be normalized since the mantissa is greater 
than 10. We get 3.5 * 1(P0, or simply 3.5. The normalization 
can be thought of simply as moving the decimal point. In our 
example, we moved the decimal place one position to the left 
and compensated by increasing the exponent by one. When 
shifting the decimal place to the right, the exponent must 
be correspondingly decremented.

If we want to add our numbers, we know from mathematics 
that only numbers with the same exponent can be added. The 
exponents must therefore be made equal.

If we make both exponents equivalent to the larger, the 
procedure goes like this:

From 7.0 * 10~-1 we get 0.7 * 10~0. Now we need to add the 
mantissas:

5.0 + 0.7 = 5.7 * 10^0

Since the number is already normalized, we have as result 
5.7 times 10~0 or simply 5.7.
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If we want to put this process on a microprocessor, we 
must give a bit of thought to how this can best be realized. 
The processor can work only with binary numbers, so we first 
want to convert this procedure to binary numbers.

Let's select 2 as the base of our number system. Before 
we can implement floating-point numbers on the microproces
sor, we should first decide what value range our numbers 
will have and to what degree of accuracy the numbers will be 
stored. It becomes clear very quickly that, using exponen
tial representation, the exponent is the key to the value 
range, while the mantissa determines to how many places a 
number can be represented. We'll return later to the sub
jects of accuracy and representing decimal numbers in float
ing point format.

A floating-point number in binary representation has the 
following appearance:

1.011101 * 2^10010 
or 1.011101 * 2~18

which is

1 * 2/N18 
+ 0 * 2~17 
+ 1 * 2^16 
+ 1 * 2^15 
+ 1 * 2~14 
+ 0 * 2^13 
+ 1 * 2~12

- 380928

= 262144 
= 0 
= 65536 
= 32768 
= 16384 
= 0 
= 4096

5
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Fractional binary numbers can also be used. For example:

1.011 * 2~0

+ 1 * 2 ~ 0  - 1
+ 0 ♦ 2 ~ - l  = 0
+ 1 * to > i to II 0 . 2 5
+ 1 * IICO1<C'J 0 . 1 2 5

1.375

If, however, we want to represent numbers which are 
smaller than one (the exponents of which are therefore less 
than zero) we must find a form for representing such expo
nents. We recall how we have stored negative numbers in the 
past. One possibility is two’s complement. If we set aside 
one byte, 8 bits, for our exponents, we can represent powers 
of two from -128 to +127. To find out what decimal range of 
values this will allow us to represent, we need only form 
the corresponding power of two:

2
2

127 = 1.7 * 00CO<o

128 = 3.9 * 10^-39

Thus if we reserve one byte for t 
powers of 2 from -128 to +127, 
which in the decimal system have 
imal point or which begin at the 
imal point. These numbers then c 
we are used to in normal calculati 

The Commodore 64 does not use 
floating point numbers, but rathe

he exponent 
we can work 
38 places be 
39th place a 
over the val 
ons in BASIC 
two’s comp 1 

r an offset.

and work with
with numbers
fore the dec-
fter the dec-
ue range which

ement for its
One adds the
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number 129 or $81 (hexadecimal) to every exponent and views 
the result as a sign-less positive number. This simplifies 
the manipulation of exponents in practice. The following

>onent to the 
representation

table gives the assignment of the istored <
actual power of two. We use the hexadecima
for the sake of simplicity.

Representation Exponent Value
$00 see text 0
$01 -128 3.9 * oi<o

$02 -127 5.9 * 10^-39
$03 -126 1.2 * 00CO1<or-H

$7F -2 0.25
$80 -1 0.5
$81 0 1
$82 1 2
$83 2 4
$FE 125 4.3 * o > 00 -3

$FF 126 8.5 * 10^37

If the stored value for the exponent is zero, the number is 
by convention also zero.

Now that we have taken care of the exponents, we can 
give some thought to the mantissa.

Since the mantissa determines the number’s accuracy, we 
must decide how accurately we want to store our numbers. The 
Commodore 64 uses 4 bytes for the mantissa. This allows us 
to represent 32 binary digits. What sort of accuracy does 
this correspond to for decimal numbers?

We compare the decimal values of two binary floating
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point numbers which differ only in the last place.

1.111 1111 1111 m i  m i  m i  n i l  n i l

and

l . n i  m i  n i l  n i l  n i l  n i l  n i l  mo

The two numbers are different in the last place, which has a 
place value of 2~-31. This is, in decimal, approximately

4.6566129 * KT-10

or

0.46566129 * 1CT-9

The two numbers have a value of somewhat less than 2; 
they differ by 5 in the 10th decimal place. We therefore 
conclude that we get a decimal accuracy of about 9 places 
from a mantissa of 4 bytes. This should suffice for most 
applications. The accuracy of 9 places is a relative accu
racy, independent of the exponent. If we normalize the 
decimal numbers so that a digit between 1 and 9 is in front 
of the decimal point, we can still represent and differen
tiate between numbers which differ only in the ninth place 
after the decimal.

At this point we can use an exponent between -128 and 
+126 as well as mantissa of 4 bytes which allows a decimal 
accuracy of 9 places. What we still lack is the ability to 
account for the sign of the mantissa. If we are tricky, we 
can account for the sign of the mantissa without losing any

8
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accuracy.
Our mantissa will always displayed as normalized, mean

ing that a digit between one and one less than the base of 
the number system will always appear in front of the decimal 
point. Using the binary system, the only digit that can 
appear is the digit 1. We therefore assume this and do not 
save it, but use this bit for the sign. The usual convention 
applies, where a "0" indicates a positive number, while a 
"1" denotes a negative number.

Now we have all the information we need in order to convert 
decimal numbers into binary floating-point format. Let’s try 
this with some numbers.

1 = 1 * 2*0

= 1 . 0 0 0  0000 0000 0000 0000 0000 0000 0000 0000 * 2~0

We replace the first 1 in front of the point ("binary 
point") with the sign, account for the offset ($81) on the 
exponent and get

0000 0000 0000 0000 0000 0000 0000 0000 1000 0001

If we write the exponent first, as is done when storing 
floating-point numbers in the computer, we get the following 
picture:

1000 0001 0000  0000  0000  0000  0000  0000  0000  0000

9



Advanced Machine Language

To make it easier to read, we convert the number to hexadec
imal :

81 00 00 00

This is the representation of the floating-point number 1.0. 
We will now try to represent the number 10.0. We divide it 
into powers of two as follows:

10 = 8 +  2

= 2~1 + 2~3
= 1 * 2~3 + 0 * 2~2 + 1 * 2~1 + 0 * 2^0 
= 1.01 * 2^3 binary

With the exponent and complete mantissa, we get the follow
ing result:

1000 0100  0010  0000  0000  0000  0000  0000  0000  0000

or

84 20 00 00 00

We will take a negative number, -5.5

-5.5 = - (4 + 1 + 0.5)
= - (2~2 + 2~0 + 2~-l)
= - (1 * 2~2 + 0 * 2^1 + 1 * 2^0 + 1 * 2^-1)
= - 1.011 * 2~2 binary

= > 1000 0011 1011 0000 0000 0000 0000 0000 0000 0000

or

10
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83 BO 00 00 00

Negative numbers can be easily recognized because the first 
byte of the mantissa is always greater than or to equal $80.

With this knowledge we can easily calculate the decimal 
value of any floating-point number. If we designate the 
individual bytes as follows

EX Ml M2 M3 M4 
83 B0 00 00 00

this formula gives us the value:

X = -SGN (Ml AND 128) * 2/s(EX-129) *
(14- ((Ml AND 127) +(M2+(M3+M4/256) / 256)/256)/128)

You can see clearly that the sign is derived from the most 
significant bit of the most significant byte of the mantissa 
(Ml). The offset of 129 is taken into account on the power 
of two. The weighting of the individual bytes is taken into 
account in the mantissa; subsequent bytes have only one 
256th the value of the preceding byte. Let us try out our 
formula with the above floating-point number.

X = -SGN (176 AND 128) * 2^(131-129) *
(1+ ((176 AND 127)+(0+(0+0/256)/256)/256)/128)

We get the value -5.5 back again.

Up to now we have had no problems in converting decimal 
numbers to binary floating-point numbers. We will now try to 
convert the value 0.4.
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We proceed systematically and subtract the largest 
power of two contained in the number.

0.4 Power of

i

1 
o

1 
CO

1

-2

0.15
- 0.125 -3

0.025
- 0.015625 -6

0.009375
- 0.0078125 -7

0.0015625
- 0.0009765625 -10

0.0005859375
- 0.00048828125 -11

0.00009765625
- 0.00006103515625 -14

0.00003662109275 etc

We can continue this calculation as long as we want to; 
the remainder of a division will never be zero. We receive 
the periodic value

1. 1001 1001 1001 1001 1001 1001 1001 1001 1001 ...» 2~-2

12
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We cannot represent the number 0.4 exactly as a binary 
floating-point number. We must stop the succession of digits 
at the 31st place behind the binary point and then get

1. 1001 1001 1001 1001 1001 1001 1001 100 * 2^-2

In order to increase the accuracy somewhat we will not 
truncate the digits, but rather round the number up or down. 
Binary values are rounded up when the last (here 32nd) digit 
is a 1; the number remains the same for a 0. In our case we 
must round up.

1. 1001 1001 1001 1001 1001 1001 1001 101 * 2~-2

If we now take the exponent and sign into account, we get 
the following:

0111 1111 0100 1100 11001 1100 1100 1100 1100 1101

or in hexadecimal

7F 4C CC CC CD

The fact that we cannot exactly represent all decimal 
numbers with binary floating-point numbers is not just a 
defect in base 2, it is a typical phenomenon when converting 
from one number system to another. Try to represent the 
fraction 1/3 in the decimal systera---it cannot be done exact
ly. The succession of digits

0.33333 33333 33333 ....

must be truncated somewhere. This is not necessary in a
13
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number system with base 3, however. We get simply

0.1

which we interpret as 1 * 3^-1 or exactly one third.
Now that we have heard about the fundamentals of float

ing-point numbers, we want use them. Since a large part of 
the built-in BASIC interpreter is concerned with conversion 
between various number formats as well as floating-point 
arithmetic, it makes sense to learn how to use these rou
tines .

The BASIC interpreter has two floating-point accumula
tors, usually shortened to FAC, in which floating-point 
numbers are stored. FAC #1 is used for all floating-point 
operations. If an operation such as addition requires two 
operands, the second is placed in FAC #2. The result is 
always returned in FAC #1. Floating-point accumulator #1 is 
often designated only as FAC and FAC #2 is then called ARG 
(argument). The numbers are not stored in the shortened 5- 
byte form in these floating-point accumulators. Instead, an 
additional byte is used for the sign. The bit in front of 
the binary point which is otherwise replaced by the sign is 
then reconstructed. Furthermore, a rounding byte is used in 
order to facilitate rounding with various operators. The 
floating-point accumulators use the following memory loca
tions in the zero-page:

14
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Exponent 
Mantissa 1 
Mantissa 2 
Mantissa 3 
Mantissa 4 
Sign
Rounding byte 
Sign-comparison 
byte

FAC ARG
$61 $69
$62 $6A
$63 $6B
$64 $6C
$65 $6D
$66 $6E
$70

$6F
The sign-comparison byte is required for operations 

with two operands and is $00 for equivalent signs and $FF 
for different signs.

The BASIC interpreter has numerous routines which mani
pulate floating-point numbers. We will begin with the rou
tine which reads a decimal number and converts it to a 
floating-point number. This routine is used for every number 
input. First we will take a brief look at a routine called 
"CHRGET" which reads a character from an input line or from 
the BASIC program. The routine is located in the zero-page 
and has the task of reading a character and executing var
ious comparisons. The routine has a second entry point by 
the name of "CHRGOT" which allows the character last read to 
be gotten again.

CHRGET INC TXTPTR 
BNE CHRGOT 
INC TXTPTR+1 

CHRGOT LDA TEXT 
CMP #":"
BCS EXIT 
CMP #M "

15
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BEQ CHRGET 
SEC
SBC #$30 
SEC
SBC #$D0 

EXIT RTS

The power of this routine and the reason it must be 
located in RAM is that it is self-modifying. The address of 
TXTPTR, the pointer to the current position from which the 
character will be fetched, is found in the routine itself. 
This will be immediately clear if we look at the machine 
code for this routine.

0073 E6 7A INC $7A
0075 DO 02 BNE $0079
0077 E6 7B INC $7B
0079 AD 02 02 LDA $0202
007C C9 3A CMP #$3A
007E B0 10 BCS $008A
0080 C9 20 CMP #$20
0082 F0 EF BEQ $0073
0084 38 SEC
0085 E9 30 SBC #$30
0087 38 SEC
0088 E9 DO SBC #$D0
008A 60 RTS

When we call the routine CHRGET, the operand of the LDA 
instruction at CHRGOT is incremented by one and then the 
contents of this memory location are placed into the accumu
lator. Several comparison instructions follow.

16
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If the ASCII code of the character in the accumulator 
is greater than or equal to that for a colon, then control 
passes directly to the RTS instruction. In this case, the 
carry flag is set. If the character was a colon, the zero 
flag is also set. Since the colon denotes the end of a 
statement, this can easily be tested for with the zero flag. 
If the character's ASCII code is less than that for a colon, 
the code is next compared to a space (ASCII 32). If the test 
is positive, control is returned to CHRGET— the next charac
ter is fetched. Spaces are thereby ignored by the interpre
ter. The next two subtractions do not change the value in 
the accumulator, but they do have an effect on the carry 
flag. The carry flag is cleared if the character is an ASCII 
digit between "0" and "9”, corresponding to $30 and $39.

Let's review the points of this routine: the CHRGET 
routine increments the text pointer TXTPTR and returns the 
current character in the accumulator. If the character is a 
colon or a zero byte, which indicates the end of a statement 
or the end of the line, respectively, the zero flag is set. 
If the character was a digit, the carry flag is cleared.

We now come to our conversion routine. Before we can 
call this routine, the accumulator must contain the first 
character of the number and the flags must be set according 
to the CHRGET routine. The text pointer TXTPTR must natural
ly point to our number. The following short program reads a 
number and converts it into floating point format.

100: 033C .OPT P,00
105: 033C *= 828
110: 007A TXTPTR = $7 A
120: 0079 CHRGOT = $79

17
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130: BCF3 ASCFLOAT = $BCF3
140: 033C A9 4B LDA #<NUMBER
150: 033E A0 03 LDY #>NUMBER
160: 0340 85 7 A STA TXTPTR
170: 0342 84 7B STY TXTPTR+1
180: 0344 20 79 00 JSR CHRGOT
190: 0347 20 F3 BC JSR ASCFLOAT
200: 034 A 00 BRK
210: 034B 31 2E 32 NUMBER . ASC ”1.2345
220: 0351 00 .BYT 0

If we assemble this routine and execute it from the monitor 
with

G 033C

the number 1.2345 is converted to floating-point format and 
placed in FAC #1, which we can see with

M 0061 0066

We get the following values:

>: 0061 81 9E 04 18 93 00

We try our 0.4 again. We must place the digits at address 
$034B and terminate them with a zero byte:

M 034B 034B

>: 034B 30 2E 34 00

18
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We get the result

>: 0061 7F CC CC CC CC 00

The sign is saved separately as the sixth byte and is zero 
for positive numbers. We can also work with numbers repres
ented as powers of ten with this number conversion, such as 
-1.4E-7 or 1E12. We will take negative number as our next 
example, -1E8. Now get

>: 0061 9B BE BC 20 00 FF
This time the negative sign is denoted by $FF.

Let us return briefly to the result of the value 0.4. 
We got a value that was one less in the last place than was 
the case for the manual conversion. No automatic rounding is 
performed by our routine; the rounding byte is used only to 
indicate if an overflow is present in the next places. Enter 
0.4 again and note the value of the rounding byte at loca
tion $70. We get $80. This means that the last place of the 
result must be incremented by one. There is a routine at our
disposal which does this for us . If we add this
program, the converted value is automatically rounded

100: 033C .OPT ooQl

105: 033C 828
110: 007 A TXTPTR $7 A
120: 0079 CHRGOT $79
130: BCF3 ASCFLOAT = $BCF3
140: BC IB ROUND = $BC IB
150: 033C A9 4B LD A #< NUMBER
160: 033E A0 03 LDY # > NUMBER
170: 0340 85 7 A STA TXTPTR

19
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180 0342 84 7B STY TXTPTR+1
180
200

0344 20 79 00 
0347 20 F3 BC

JSR CHRGOT
JSR ASCFLOAT

210 034A 20 IB BC 
034D 00

JSR ROUND
220 BRK
230 034E 31 2E 32 NUMBER . ASC "1.2345"
240 0351 00 .BYT 0

If we take a look at the FAC, we have the desired result.

>: 0061 7F CC CC CC CD 00

The rounding byte is naturally cleared by rounding, some
thing of which you can easily convince yourself.

Now that we have converted the digit string to an 
internal floating-point number, let’s reverse the procedure 
by converting a floating-point number back into a string of 
decimal digits. This task is performed by the routine 
FLOATASC, located at address $BDDD. Calling this routine 
converts a number to a string which is placed at address 
$0100. Let us try this by writing the following values into 
the FAC:

>: 0061 90 8F 00 00 00 80

We take a look at the result after calling the routine:

>M 0100 0107
>: 0100 2D 33 36 36 30 38 00 -36608

The above value in the FAC therefore represents the decimal 
number -36608. After calling this routine, the accumulator

20
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and Y register contain the address at which the string was 
placed ($100), here A=0 and Y-l (low byte, high byte). Now 
we can output the string on the screen. Another routine is 
already built into the BASIC interpreter: STROUT, with ad
dress $AB1E.

JSR FLOATASC ;convert FAC to ASCII string at $100 
LDA #<$100 ;least significant address of string
LDY #>$100 ;most significant address of string 
JSR STROUT ;print string pointed to by A,Y

Before we start performing calculations with our float
ing-point numbers, we first want to become acquainted with 
the various BASIC interpreter routines which perform conver
sions from various whole-number formats to floating-point 
format. This is particularly important for our machine lan
guage programs because all of the arithmetic operations 
within the BASIC interpreter are carried out in floating 
point, but input and output for these routines often require 
or expect numbers in INTEGER format.

21
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1.2 Conversion to floating-point format

1.2.1 Signed one-byte values

The following routine converts a signed one-byte value 
into floating-point format. The result will therefore be a 
number between -128 and +127. The byte value is passed in 
the accumulator.

LDA #BYTE 
JSR $BC3C

A value of $80 will be converted to -128, $FF to -1, $7F to 
127, and so on.

1.2.2 Unsigned one-byte values

If the sign is not to be taken into account (the byte 
is to be treated as unsigned, having a value 0-255), the 
following conversion routine must be used:

LDY #BYTE 
JSR $B3A2

This routine converts $00 to zero, $80 to 128, and $FF to 
255.

1.2.3 Signed two-byte values

A two-byte value with sign can be converted with the 
following routine:

22
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LDY #LOW 
LDA #HIGH 
JSR $B395

The least-significant byte Bust be placed in the Y register 
while the accumulator contains the most-significant byte.

The following examples demonstrate the conversion:

A Y Floating-point value

00 00 0
00 01 1
00 FF 255
01 00 256
7F FF 32767
80 00 -32768
FF FF -1

1.2.4 Unsigned two-byte values

If the sign of a two-byte value is to be ignored, the fol
lowing routine is used:

LDY #LOW 
LDA «HIGH 
STY $63 
STA $62 
LDX #$90 
SEC
JSR $BC49

23
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This conversion assuies that the number is unsigned and 
returns values from 0-65535.

A Y Floating-point value

00 00 0
00 01 1
00 FF 255
01 00 256
7F FF 32767
80 00 32768
FF FF 65535

1.2.5 Signed three-byte values

Although three-byte values are rarely used in practice, 
the routines for converting such data into floating-point 
format should be mentioned.

LDA #L0W
LDX #MID
LDY #HIGH
STY $62
STX $62
STA $64
LDA $62
EOR #$ FF
ASL A
LDA #$0
STA $65
LDX #$98

24
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JSR $BC4F

The conversion table looks like this:

Y X A 
00 00 00 
00 00 FF 
00 FF FF 
7F FF FF 
80 00 00 
FF FF FF

Floating-point value 
0
255
65535
8388607
-8388608
-1

We can cover a value range from -8,388,608 to 8388607 with 
3-byte (24-bit) values.

1 . 2 . 6  U n s i g n e d  t h r e e - b y t e  v a l u e s

If the sign is not to be used, the following routine 
can be used.

LDA #L0W 
LDX #MID 
LDY #HIGH 
JSR $AF87 
JSR $AF7E

Here we can represent values between 0 and 2^24-1 =
16,777,215.
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Y X A Floating-point format
00 00 00 0
00 00 FF 255
00 FF FF 65535
7 F FF FF 8388607
80 00 00 8388608
FF FF FF 16277215

1 . 2 . 7  S i g n e d  4 - b y t e  v a l u e s

For the sake of completeness, the conversion of 32-bit 
integer values is also presented here. The routines look 
similar. Because 4 bytes must be passed, the routine expects 
that these values will be stored in the FAC from address $62 
(MSB) to $65 (LSB).

LDA $62 
EOR #$FF 
ASL A 
LDA #0 
LDX #$AO 
JSR $BC4F

We get the following conversion table:

$62 63 64 65 Floating point value
00 00 00 00 0
00 00 00 FF 255
00 00 FF FF 65535
00 FF FF FF 16777215
7F FF FF FF 2147483647 (2.14748365E+09)
80 00 00 00 -2147483648 (-2. 14748365E + 09)
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FF FF FF FF -1

1 . 2 . 8  U n s i g n e d  4 - b y t e  v a l u e s

This conversion routine concludes the presentation. 
Here too the values oust be placed in the FAC.

SEC
LDA #0 
LDX #$A0 
JSR $BC4F

The value range from 0 to 2~32-l = 4,294,967,295 can be 
used.

$62 63 64 65 Floating-point value
00 00 00 00 0
00 00 00 FF 255
00 00 FF FF 65535
00 FF FF FF 16777215
7F FF FF FF 2147483647 (2.14748365E+09)
80 00 00 00 2147483648 (2.14748365E+09)
FF FF FF FF 4294967295 (4.2949673E+09)

The routines described here are useful if you want to 
use one to four-byte values from your own machine language 
routines as arguments for the floating-point routines in the 
BASIC interpreter. The reverse procedure--converting from 
floating-point values to integer numbers— wi11 now be dis
cussed .
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1.3 Conversion to integer format

Only one routine is required for the conversion from 
floating-point to integer format. The result of this conver
sion is a signed 4-byte number. If the number to be convert
ed is in the FAC, the conversion is executed with

JSR $BC9B

Because only numbers which are smaller than 2^31 can be 
converted to integer values without error, the exponent of 
the number should be checked to see that it is smaller than 
$A0, The result of the conversion is stored at $62 (most 
significant byte, including sign) to $65 (least-significant 
byte). Let us try an example.

The FAC contains the floating-point value 10:

EX Ml M2 M3 M4 SGN 
>: 0061 84 AO 00 00 00 00

After the JSR $BC9B we get

>: 0061 84 00 00 00 0A 00

If the FAC does not contain a whole number, the fractional 
portion will be truncated as with the INT function. For 
example, if the FAC contains 321.25:

EX Ml M2 M3 M4 SGN 
>: 0061 89 A0 A0 00 00 00
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We get the result

>: 0061 89 00 00 01 41 00

or $41 + $100 = 65 + 256 = 321. With negative fractional 
nuabers, the result will be next-smallest whole number, so 
that -0.5 becomes -1.

EX Ml M2 M3 M4 SGN 
>: 0061 80 80 00 00 00 FF

We get the result

>:0061 80 FF FF FF FF FF

or -1.

We will later become acquainted with BASIC interpreter 
routines which perform range checks before the conversion to 
integer format, on the ranges 0 to 255 or -32768 to 32767, 
for example.
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1.4 BASIC lath routines

Now that we have covered input, output, and conversion 
of numbers, it is tine that we execute the first calcula
tions .

The interpreter has five basic arithmetic operations, 
each having two operands, which are addition, subtraction, 
multiplication, division, and exponentiation. If we want to 
use these functions, the first operand must be in the FAC 
while the second is expected in ARG. After calling the 
appropriate routine, the result is left in the FAC. These 
are the addresses of the routines:

ADDITION FAC : = ARG + FAC $B86A
SUBTRACTION FAC := ARG - FAC $B853
MULTIPLICATION FAC : = ARG * FAC $BA2B
DIVISION FAC ii > W a / FAC $BB12
EXPONENTIATION FAC : = ARG A FAC $BF7B

Before calling these routines, the accumulator must 
contain the exponent of the number in the FAC ($61). If 
this exponent is zero, the number in the FAC is by conven
tion also zero and special cases can be handled (ARG + 0  =
ARG; ARG * 0 = 0 ;  ARG / 0 results in "DIVISION BY ZERO"; ARG 

0 yields 1). Now let’s multiply two values, such as 7*13 = 
91.

7 = 83 E0 00 00 00 00 
13 = 84 DO 00 00 00 00

We place the values in the floating-point accumulators, load 
the accumulator with the exponent of the FAC, and call the
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routine

>: 0061 83 E0 00 00 00 00 
>: 0069 84 DO 00 00 00 00

>, 1000 A5 61
>, 1002 20 2D BA
>, 1005 00

LDA $61 
JSR $BA2B 
BRK

>G 1000

B*
PC IRQ SR AC XR YR SP NV-BDIZC

>; 1006 EA31 AO 87 B6 00 F8 10100000

>: 0061 87 B6 00 00 00 00 00

Now we can convert the result into a decimal number.

1.0110110 * 2~6 = 1011011 
= 64 + 16 + 8 + 2 + 1 = 91

Next we will try exponentiation. 3^7 should equal 2187.

3 = 82 CO 00 00 00 00
7 = 8E E0 00 00 00 00

We can pass the values and call the exponentiation routine.

>: 0061 83 E0 00 00 00 00
>: 0069 82 CO 00 00 00 00
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>, 1000 A5 61 LDA $61
>, 1002 20 7B BF JSR $BF7B
>, 1005 00 BRK

>G 1000

B*
PC IRQ SR AC XR YR SP NV-BDIZC

>; 1006 EA31 22 00 61 00 F8 10100000

> : 0061 8C 88 B0 00 02 00 00

We get

1.000 1000 1011 0000 0000 0000 0000 0010 * 2~11 = 
1000 1000 1011. 0000 0000 0000 0000 0010

= 2"11 + 2~7 + 2"3 + 2~1 + 2"0 + 2/N-19 
= 2048 + 128 + 8 + 2 + 1  + 1.9*10^-6
= 2187.0000019

You see that the result is not exact— there is a 
in the last two places. Since only 9 significant 
displayed when converting from binary to decimal, 
from the following instruction

PRINT 3~7

the result 2187, although the calculation

PRINT 3~7 - 2187

deviation 
digits are 
we receive
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results in

1.90734863E-06

which reveals the discrepancy. If we analyze the routine for 
exponentiation in greater detail, we see that the following 
algorithm is used:

A ~ B => EXP( B * LOG( A ))

Because the BASIC interpreter can only calculate approxima
tions for the EXP and LOG functions--as we will see later-- 
it is no wonder that exponentiation returns a discrepancy. 
Since two other functions must be calculated for the expon
entiation function, this routine is also one of the slowest 
arithmetic routines. It requires more than 50 milliseconds 
on average. Therefore it is advisable to perform exponentia
tions with simple, integer exponents with repeated mult
iplication, both for the sake of speed and accuracy.

3 ^ 2  should be calculated as 3 I 3

The multiplication here is more than 20 times faster. A 
summary of execution times will be presented later.

So that we can make practical use of our knowledge, we 
will first take a look at the way the BASIC interpreter 
manages variables. A number of pointers exist in the zero- 
page for managing variables. These pointers determine the 
areas for the BASIC program, normal variables, indexed var
iables, and strings. The variable pointers are arranged as 
follows.
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$2B/$2C

$2D/$2E

$2F/$30

$31/$32

$33/$34

$37/$38

Program

Variables

Arrays

f ree

strings

BASIC start

program end/variable start

variable end/array start

array end

string start

string end/BASIC RAM end
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After turning on the computer, the start of the BASIC 
text area is set to $0801 = 2049 and the end to $A000 =
40960. When you enter a program line

10 A= 1

the following is allocated:

At the BASIC start $0801 is

- address of the next BASIC line
- line number (LSB, MSB)
- tokenized program line
- $00 signifying the end of this line

From the monitor this looks like:

>M 0800 080F
>: 0800 00 09 08 0A 00 41 B2 31 
>: 0808 00 00 00

The program pointers have the following values:

>M 002B 0037
>: 002B 01 08 0B 08 0B 08 0B 08 
>: 0033 00 A0 00 00 00 A0

We will try to interpret these contents. At address 
($2B/$2C) = $0801 is the address of the next program line in 
the format lo/hi, or $0809. Then follows the line number, 
also in lo/hi format = $000A = 10. Next is the program text 
$41 = "A", $B2 is the interpreter code for while $31 is
"1" in ASCII code. A zero byte serves to mark the end of the
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line. The next program line follows the same scheme. But 
because we entered only one program line, we find $0000 as 
the address of the next program line. By convention this 
denotes the end of the program. The address following, 
$080B, is stored in ($2D/$2E) and denotes both the end of 
the program and the start of the normal variables. Since we 
have not defined any variables, the pointers for the variab
le end and array end have the same value. If we execute the 
program with RUN, the variable A is allocated.

>M 0800 0810
>: 0800 00 09 08 0A 00 41 B2 31 
>: 0808 00 00 00 41 00 81 00 00 
>: 0810 00 00

>M 002B 0037
>: 002B 01 08 0B 08 12 08 12 08 
>: 0033 00 A0 00 00 00 A0

Now the start-of-variables pointer ($2D/$2E) points to 
$080B and the end-of-variables pointer ($2F/$30) to $0812. 
Thus the variable table is $0812 - $080B = $0007 = 7 bytes 
long and has the following contents:

>: 080B 41 00 81 00 00 00 00

Variable entries are generally 7 bytes long. The first 
two bytes represent the name of the variable, in this case 
$41 $00 = A. Variable names which are only one character 
long contain a zero as the second character. Following the 
name is the floating point representation of the value in 
the abbreviated 5-byte form in which the sign is the first 
bit of the mantissa. The value 81 00 00 00 00 has a decimal
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equivalent of 1.

We will now take a look at what happens when we use 
integer variables. We change our program line to

10 A%=1

>M 002B 0037
>: 002B 01 08 OC 08 13 08 13 08
> : 0033 00 A0 00 00 00 A0

>M 0800 0810
> : 0800 00 0A 08 0A 00 41 25 B2
>: 0808 31 00 00 00 Cl 80 00 01
> : 0810 00 00 00

The program has become one byte longer because of the 
percent sign. The variable entry is still 7 bytes long. Do 
recognize the name A or A% in the table? If you compare the 
bit pattern $C1 $80 with $41 $00, you see that the most 
significant bit (bit 7) of both bytes is set. This is how 
integer variables are denoted. The next two bytes contain 
the 16-bit integer value $0001, in which the most-signifi
cant byte comes first. The next three bytes are unused for 
integer variables. Therefore when you work with normal int
eger variables, there is no space savings. Using integer 
variables does not increase the speed either— in fact, just 
the opposite since all of the math operations are performed 
in floating-point arithmetic and that additional conversion 
are necessary.

Let us move on to the string variables. Enter the 
following program line:
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10 A$="STRING"

RUN the progran and take a look at the result with a 
monitor.

>M 002B 0037
> : 002B 01 08 13 08 1A 08 1A 08
> : 0033 00 A0 00 00 00 A0

>M 0800 0810
> : 0800 00 11 08 0A 00 41 24 B2
> : 0808 22 53 54 52 49 4E 47 22
> : 0810 00 00 00 41 80 06 09 08
> : 0818 00 00

If you take a look at the pointer for the string area, you 
see that nothing has been altered. The variable table begins 
at $0813 and looks like this:

>: 0813 41 80 06 09 08 00 00

The first two bytes again represent the name of the 
variable. You have probably already noticed that the most 
significant bit of the second byte of the variable name is 
set in order to denote % string variable--$41 $00 becomes 
$41 $80. The next three values can be interpreted as fol
lows: The first value, $06, gives the length of the string: 
6 characters. The next two bytes point to the address at 
which the string can be found: $0809. Thus they point to an 
area within the program, directly behind the first quotation 
mark. This is also the reason that the string area is still 
empty. The situation changes if we modify the string, how
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ever, as we see in the next example:

10 A$="STRING”
20 A$=LEFT$(A$,3)

>M 002B 0037
> : 002B 01 08 22 08 29 08 29 08
>: 0033 FD 9F 00 A0 00 A0

>M 0800 0810
>: 0800 00 11 08 0A 00 41 24 B2
>: 0808 22 53 54 52 49 4E 47 22
> : 0810 00 20 08 14 00 41 24 B2
>: 0818 C8 28 41 24 2C 33 29 00
>: 0820 00 00 41 80 03 FD 9F 00
>: 0828 00

The variable table begins at $0822

> : 0822 41 80 03 FD 9F 00 00

Following the variable name is the length (3 this time) and 
the address of the string, $9FFD, which is also the lower 
boundary of the string storage. If we look there, we find 
our new string "STR".

>: 9FFD 53 54 52

How are variable arrays organized? Erase the current program 
(with NEW) and enter the following:

10 DIM A(500)
RUN
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We get the following storage allocation:

>M 002B 0037
>: 002B 01 08 10 08 10 08 E0 11
>: 0033 00 A0 00 00 00 A0

Since no non-array variables are defined, the starting and 
ending pointers have the same value, $0810. This is also the 
start of the array area. The array area extends to $11E0, 
and is therefore $11E0 - $0810 = $09D0 = 2512 bytes long. 
The start looks like this:

>M 0810 0820
>: 0810 41 00 DO 09 01 01 F5 00
>: 0818 00 00 00 00 00 00 00 00
>: 0820 00 00 00 00 00 00 00 00

The name of the array is encoded in the first two 
bytes. The following two bytes contain the length of the 
memory occupied by the array, $09D0, which we calculated 
above. The next "01" indicates that the array has one dimen
sion. Next is the number of array elements, $01F5 = 501.
There are five hundred and one because an element exists 
with the index 0, A(0). Finally, the values of the array
elements are stored starting with the zero element. If we 
enter A(0)=10:A(1)=11 in the direct mode, the representation 
appears as follows:

>M 0810 0820
>: 0810 41 00 DO 09 01 01 F5 84
>: 0818 20 00 00 00 84 30 00 00
>: 0820 00 00 00 00 00 00 00 00
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84 20 00 00 00 => 10; 84 30 00 00 00 => 11

Now let’s see how multi-dimensional arrays are stored.
Enter

DIM B (1,2,3)

in the direct mode. The array table starts at $0803 and 
looks like this:

>M 002B 0037
> : 002B 01 08 03 08 03 08 86 08
>: 0033 00 A0 00 00 00 A0

>M 0803 0813
> : 0803 42 00 83 00 03 00 04 00
> : 080B 03 00 02 00 00 00 00 00
> : 0813 00 00 00 00 00 00 00 00

We recognize the name "B" ($42). The length of the 
array table is $0083 = 131 bytes this time. Then comes a 3 
which indicates that the array is three-dimensional. Next 
are the index boundaries, beginning with the last index 
$0004, then $0003, and $0002 corresponding to 3, 2, and 1. 
How are these values allocated? This is the order in which 
the individual array elements are stored:

B (0,0,0)
B (1,0,0)
B ( 0,1,0 )
B (1, 1,0 )
B ( 0,2,0)
B (1,2,0 )
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B (0,0,1) 
B (1,0,1) 
B (0,1, 1) 
B (1 ,1, 1) 
B (0,2,1) 
B (1,2,1) 
B(0,0,2) 
B (1,0,2) 
B(0,1,2) 
B (1,1,2) 
B (0,2,2) 
B(1,2,2) 
B (0,0,3) 
B (1,0,3) 
B (0,1,3) 
B (1,1,3) 
B (0,2,3) 
B (1,2,3)

If we use arrays with integer variables, only 2 bytes 
are reserved for each array element, resulting in a space 
savings compared to floating point arrays. Only three bytes 
per element are used for string arrays. The first byte 
represents the length of the individual string element and 
the next two bytes give the actual memory address of the 
string. No space is used for the strings themselves until 
they are actually assigned values. Using this information we 
can state the space requirements of any array:

M = 5 + 2*N + T * PROD(Ni+1)

M is the required memory space of the entire array, N is the 
number of dimensions, T is the specified space requirement
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per element (2 for integer, 5 for real, and 3 for string) 
and PROD(Ni+l) the product of the index boundaries + 1.

The following examples should clarify the formula:

The constant 5 is based on 2 bytes for the name, 2 
bytes for the length, and one byte for the number of dimen
sions. Two bytes are required for each dimension for the 
index boundaries. The space for the elements themselves is 
contained in the last term. Let’s try our formula for the 
first array A(500).

P = 5 + 2*1 + 5*(501)
P = 2512 bytes

Our three dimensional array B(l,2,3) requires the following 
space in memory:

P = 5 + 2*3 + 5*(2*3*4)
P = 131 bytes

The array A%(10,10,10) requires the following memory space:

P = 5 + 2*3 + 2*(11*11*11)
P = 2673 bytes

A string array A$(100,100) would hardly fit into memory.

P = 5 + 2*2 + 3*(101*101)
P = 30603 bytes

The array table alone requires 30K bytes; there are 
only 8K bytes left for the 10201 elements.
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1 . 5  B A S I C  f l o a t i n g - p o i n t  r o u t i n e s

Now that we know how to execute the fundamental float
ing-point calculations in BASIC, it is time to look at the 
functions.

A function can be written in general as 

Y = F ( X )

in which X is the argument, F is the function, and Y is the 
result. The floating point functions are written such that 
the argument X must be placed in the FAC before the function 
can be called. The result of the function call is placed 
back into the FAC.

The BASIC interpreter contains a number of useful func
tions which we can use:

Name Address Calculation time Description
ABS $BC58 0.0 ms absolute value
ATN $E30E 44.6 ms arctangent
COS $E264 27.9 ms cosine
EXP $BFED 26.6 ms power of e
FRE $B37D 0.6 ms free memory space
INT $BCCC 0.9 ms greatest-int function
LOG $B9E A 22.2 ms natural logarithm
POS $B39E 0.3 ms cursor column
RND $E097 3.5 ms random number
SGN $BC39 0.4 ms sign
SIN $E26B 24.5 ms sine
SQR $BF71 51.2 ms square root
TAN $E2B4 49.8 ms tangent
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The calculation times were obtained using pi as the 
argument. As you can see from the table, the vary enormous
ly. Above all, the so-called transcendental functions such 
as COS, EXP, LOG, SIN, TAN, and ATN require a relatively 
large amount of time. These functions cannot be calculated 
exactly using the four basic math operators. Most functions 
are approximated using polynomials, which are functions of 
the form

y = ao + ai*x + a2*x2 + a3*x3 + a4*x4 + a4*x5 + ...

The more terns such an expression has, the more exact the 
result will be, but the longer the calculation will take.

If one wants to calculate a polynomial, such as a 5th 
degree polynomial

1 + 2 + 3 + 4 + 5 = 1 5  multiplications 
and 5 additions would be necessary.

There is a different method of solution which goes under the 
name "Horner Scheme" (polynomial substitution). The above 
equation can be reworked as follows:

y = ((((as * x  + a4> * x + a3 ) * x + a2 ) * x + ai ) * x + ao

Here only 5 multiplications and 5 additions are neces
sary. In general, a polynomial of degree n requires n mult
iplications and n additions compared to n*(n~l)/2 multipli
cations and n additions.

The simplicity of this procedure can be demonstrated
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with a simple BASIC program.

100 Y = A(N)
110 FOR I = N-l TO 0 STEP -1 
120 Y = Y * X + A(I)
130 NEXT

The program calculates the value of a polynomial of nth 
degree for the value x and returns the result in y. The 
array A(0) to A(N) contains the coefficients aO through aN.

This routine for polynomial evaluation is the heart of 
all of the transcendental functions which the BASIC inter
preter must calculate.

To use this routine, the argument of the polynomial 
must be in the FAC. The polynomial coefficients must be in 
the following format in the memory:

polynomial degree n 
coefficient of nth degree
coefficient of (n-l)th degree

coefficient of 1st degree
coefficient of 0th degree

The degree of the polynomial is stored as a one-byte 
value, which must follow the coefficients as a 5-byte float
ing-point value. The address of this coefficient field must 
be passed when the routine is called. The low byte must be 
in the accumulator and the high byte in the Y register. With 
this knowledge we can write a routine to calculate polyno
mials.
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It is relatively complicated to place floating-point 
values into object code with a normal assembler. We can 
assign the value to a variable, use a monitor to find the 
variable table, note the corresponding 5 bytes of the var
iable value and then insert this into the source text with 
the .BYT command. ASSEMBLER/MONITOR 64 allows you to insert 
floating-point constants directly into the source. This is 
done with the .FLP pseudo-op (FLoating Point). The assembler 
then performs the conversion into the internal 5-byte rep
resentation .

Let us put our knowledge into practice and calculate the 
following polynomial:

y = 0.7 + 2.5 * x + 8.2 * x2 - 2.3 * x3 + 0.5 * x4

ASSEMBLER 64 V2.0 PAGE 1

100: 033C .OPT P,00
110: »
120: ; POLYNOMIAL CALCULATION
130: i
140: 033C *= 828 ;
150: ;
160: E059 POLYNOM = $E059
170: ;
180: 033C A9 43 LDA #< COEFF
190: 033E A0 03 LDY #> COEFF
200: 0340 4C 59 E0 JMP POLYNOM
210: y

220: 0343 04 COEFF .BYT 4
230: 0344 80 00 00 .FLP 0.5 ;

CASSETTE BUFFER

DEGREE OF POLY. 
A(4)
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240: 0349 82 93 33 . FLP -2.3 ; a (3)
250: 034E 84 03 33 . FLP CO to ; A(2)
260: 0353 82 20 00 . FLP 2.5 i A (1)
270: 0358 80 33 33 .FLP 0.7 ; A(0)
280: ;
] 033C -035D
NO ERRORS

The entire routine consists of passing the starting 
address and calling the polynomial function; the coeffi
cients of the polynomial then follow in decreasing order.

How can we use our new function? It obviously won't 
work well with the SYS command--how are we supposed to pass 
the parameters and get the function value back? We need a 
function similar to the built-in functions like SIN, EXP, 
and so on.

The interpreter has already taken this case into con
sideration. It offers the USR function which you can freely 
define. We need only inform the interpreter of the starting 
address of the function. This starting address is placed in 
the usual form, low/high byte, at the addresses 785/786 
($031l/$0312).

POKE 785,828AND255 : POKE 786,828/256

Now enter the following, after the program has been assem
bled and the above line typed in:

? USR(1)

You get the value 9.6. A check of the formula confirms the
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correctness of the result.

y = 0.7 + 2.5 + 8.2 - 2.3 + 0.5 = 9.6

The following loop can be added for additional checks.

FOR I=-5 TO 5 : PRINT USR(I) : NEXT

793.2
397.1
169.6
54.9
9.2
.7
9.6
28.1
60.4
122.7
243.2

This method for calculating polynomials is recommended 
whenever a program must repeatedly calculate the same poly
nomial. The execution time of this function at 12.5 ms is 
even shorter than many built-in functions. The calculation 
in BASIC requires about 45 ms. The more complicated the 
formula is, the faster the machine language version will run 
in comparison.

As you can gather from the above example, the coeffi
cients, including their signs, must be in descending order 
(meaning that the coefficient of the highest power of x is 
first). If a power of x is missing in the polynomial, a zero 
must be inserted as its value.
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The next example will calculate the factorial function. 
Factorial is a function which is first defined only for 
positive integer values and which consists of the product of 
all integers from one to the given nuaber. For example

5 ! = 1 * 2 * 3 * 4 * 5 = 1 2 0

or

7! = 1 * 2 * 3 * 4 * 5 * 6 * 7  = 5040

In mathematics, the function is also extended 
non-integers, which can again be approximated 
polynomial. This polynomial is only defined for 
ween zero and one, however; function values of 
ments must be counted backwards. For example:

to include 
through a 

values bet- 
other argu-

4.3! = 4.3 * 3.3 * 2.3 * 1.3 * 0.3!

The factorial of 0.3 can be calculated with an eighth degree 
polynomial having the following coefficients:

ao = 1
ai -.57719 1652
02 = .98820 6891
S3 = -.89705 6937
a4 = .91820 6857
as = -.75670 4078
ae = .48219 9394
87 = -.19352 7818
as = .03586 8343
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We can now write a program to calculate this polynomial.

ASSEMBLER 64 V2.0 PAGE 1

100: 033C .OPT PI,00
110: >
120: ; POLYNOMIAL FOR FACTORIAL CALCULATION
130: i
140: 033C * = 828 ; CASSETTE BUFFER
150: ;
160: E059 POLYNOM = $E059
170: »
180: 033C A9 43 LDA #< COEFF
190: 033E A0 03 LDY #> COEFF
200: 0340 4C 59 E0 JMP !POLYNOM
210: ;
220: 0343 08 COEFF .BYT 8 ; 8TH DEGREE POLY.
230: 0344 7C 12 EA . FLP .035868343
240: 0349 7E C6 2C . FLP -.193527818
250: 034E 7F 76 E2 . FLP .482199394
260: 0353 80 Cl B7 . FLP -.756704078
270: 0358 80 6B OF . FLP .918206857
280: 035D 80 E5 A5 . FLP -.897056937
290: 0362 80 7C FB . FLP .988206891
300: 0367 80 93 C2 .FLP -.577191652
310: 036C 81 00 00 . FLP 1
]033C- 0371
NO ERRORS

We can calculate the factorial values for arguments between 
0 and 1 with PRINT USR(X). For example:
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?USR(.1) => 0.951350564
?USR(.5) => 0.886227246

We can also calculate the factorial values for numbers 
outside of this range with a small BASIC routine.

10 INPUT "ARGUMENT”; X
20 IF X<0 OR X>33 THEN 10
30 IF X=0 THEN Y=1 : GOTO 70
40 Y=X : IF X<1 THEN Y = USR(X) : GOTO 70
50 X=X-1 : IF X>1 THEN Y=Y*X : GOTO 50
60 IF XOl THEN Y = Y * USR (X)
70 PRINT "FACTORIAL =";Y

Line 20 prevents negative values from being entered as 
well as values which have a factorial greater then 1E38. The 
argument 0 returns 1 by definition (line 30). In line 50 the 
argument is multiplied by the running product and decrement
ed by one until it is less than or equal to one. A check is 
made in line 60 to determine if the argument is an integer. 
If this is not the case, the polynomial value must yet be 
multiplied by the result. Finally, the result is printed in 
line 70. For example:

0 = >
1 = >
1.5 = >
2 = >
3 = >
0.5 = >
7.35 = >

1
1
1.32934087
2
6
.886227246
10287.3151
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Now that we have calculated the polynomial with a 
machine language routine of our own, we want to try to 
replace the entire BASIC program with a machine language 
program. By so doing we will become acquainted with more of 
the floating-point arithmetic routines. On the next page is 
a flow chart of the program operation.
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START ^

END

END

END

END

END

C END )

)

)

3

D

)
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Let’s try our new function out. (Do not forget to first set 
the USR vector at address 785/786 to our routine-after 
turning the computer on this vector always points to "IL-
LEGAL QUANTITY" )•

?USR(0) = > 1
?USR(1) = > 1
?USR(2) = > 2
?USR(3) = > 6
?USR(.5) = > .886227246
?USR(4.5) = > 52.3427967
?USR(-1) = > ILLEGAL QUANTITY ERROR
?USR(40) = > OVERFLOW ERROR

What we had to do with a relatively complicated BASIC 
program before can now be done quickly and easily, simply by 
calling a function. We used some new routines in the machine 
language program which we want to discuss briefly.

FACMEM - This routine stores the contents of the floating 
point accumulator FAC at the address given in the X (low 
byte) and Y (high byte) register. The contents of the FAC 
are stored in the abbreviated 5-byte form.

MEMFAC - performs the opposite task. It gets a floating 
point number from memory and puts it in the FAC. This time 
the A register must contain the low byte of the address and 
the Y register the high byte.

COMPARE - We can compare two floating-point numbers to each 
other with this BASIC interpreter routine. The first number 
is in memory and is addressed through A (low byte) and Y 
(high byte). The second number must be in the FAC. If both
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numbers are the same, the accumulator (not the floating
point accumulator!) contains a zero and the Z flag is set. 
If the first value is smaller than the number in the FAC, 
the accumulator contains -1 ($FF) and the N flag is set. If 
the number in the FAC was smaller, the accumulator contains 
1 and the N flag is cleared. This routine was used exten
sively in our program.

MEMPLUS - This routine consists of two subroutines. First 
the floating-point number pointed to by A and Y (low/high) 
is placed in ARG and then the routine for adding the FAC and 
ARG is called, which leaves the result in the FAC.

MEMMULT - This routine serves to multiply a number in memory 
with the FAC. The logic corresponds to that of MEMPLUS.

The addresses OVERFLOW and ILLQUAN call the appropriate 
routines for outputting error messages. It was unnecessary 
to check to see if the argument was greater than 34 in our 
case because this error message would automatically appear 
in the course of the multiplications.

The function for polynomial calculation can be put into 
yet another form.

y - ao * x + ai * x3 + a2 * x5 + a3 * x7 + . . .

This function is derived from the normal polynomial calcula
tion by taking x2 as the argument and multiplying the result 
by x once again.

y = x * ( ao + ai * (x2) + az * (x2)2 + a3 * (x2)3 + ... )
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This routine is used for most built-in functions because the 
approximation polynomial is often in this form. The argument 
must usually first be brought into a specific value range 
for which the function is defined and then the result is 
modified corresponding to the original value.

We will calculate the following formula with this routine:

y = 6 * x + 0 . 5 * x 3 + - 0.11 * x7

Note that a term is missing from the sequence (that with 
exponent 5), which we must replace with zero as the coeffi
cient .

ASSEMBLER 64 V2.0 PAGE 1

100: 033C .OPT P,00
110: 033C *  = 828
120: »
130: E043 P0LY2 = $E043
140: >
150: 033C A9 43 LDA #< COEFF
160: 033E A0 03 LDY #> COEFF
170: 0340 4C 43 E0 JMP POLY2
180: ;
190: 0343 03 COEFF .BYT 3 ; DEGREE OF POLY
200: 0344 7D El 47 . FLP -.11
210: 0349 00 00 00 . FLP 0
220: 034E 80 00 00 . FLP .5
230: 0353 83 40 00 . FLP 6
] 033C -0358
NO ERRORS
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Note that here the degree of the polynomial comes from 
the number of the highest power, not the highest power, 
because we have taken x out of the parentheses and use x2 as 
the argument.

Here are a few function values for a check:

USR(O) = 0
USR(l) = 6.39
USR(2) = 1.92
USR(.75) = 4.69625427

At the close of our discussion of floating-point num
bers we want to take up a problem which occurs often in 
programming: sorting number arrays. We will try to implement
the following algorithm in machine language.

100 FOR 1=1 TO N : FL = 0 
110 FOR J = N TO I STEP -1
120 IF A(J-l)>A(J) THEN H=A(J):A(J)-A(J-l):A(J-l)=H:FL=1 
130 NEXT J
140 IF FL= 0 THEN RETURN 
150 NEXT I: RETURN

The program sorts the array A(N) and can be called as a 
subroutine with GOSUB 100. The program uses a bubble-sort 
algorithm. Two successive array elements are compared with 
each other. If the first element is greater than the second, 
the two elements are exchanged and a flag is set. This 
occurs in two nested loops. If no exchange occurs during the 
course of the inner loop, the array is sorted. In this case 
the flag remains zero and the sorting process ends prema
turely. Otherwise, the smallest value will be found in A(0)
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after the first pass. The next pass compares elements 1 
through N, then 2 through N, and so on. Do you remember how 
BASIC array elements are stored? There is a pointer which 
indicates the start of the array table. So that we do not 
have to search through this table to find the right array, 
we will agree that the array to sorted must have only one 
dimension and that it must also be the first array in the 
table.

100: 033C .OPT PI
110: 002F ARRTAB = $2F
120: 0057 * = $57
130: 0057 IPNT * = * + 2
140: 0059 JPNT *  = *+2
150: 005B JPNT1 * = *+2
160: i
170: BBA2 MEMFAC = $BBA2
180: BC5B COMPARE = $BC5B
190: i
200: 033C * = 828
210: ;
220: 033C A5 2F LDA ARRTAB
230: 033E 18 CLC
240: 033F A0 02 LDY #2
250: 0341 71 2F ADC (ARRTAB)

260: 0343 8D D9 03 STA NPNT

270: 0346 C8 INY

Y ;ADD ARRAY 
LENGTH

POINTER N TO 
ARRAY END
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280: 0347 A5 30 LDA ARRTAB+1
290: 0349 71 2F ADC (ARRTAB),Y
300: 034B 8D DA 03 STA NPNT+1
310: 034E AD D9 03 LDA NPNT
320: 0351 38 SEC
330: 0352 E9 05 SBC ♦5
340: 0354 8D D9 03 STA NPNT
350: 0357 BO 03 BCS LI
360: 0359 CE DA 03 DEC NPNT+1
370: ;
380: 035C A5 2F LI LDA ARRTAB
390: 035E 18 CLC
400: 035F 69 07 ADC #7
410: 0361 85 57 STA IPNT ; POINTER I

A (0)
420: 0363 A5 30 LDA ARRTAB+1
430: 0365 69 00 ADC #0
440: 0367 85 58 STA IPNT+1
450: ;
460: 0369 AO 00 I LOOP LDY #0
470: 036B 8C D8 03 STY FLAG ;CLEAR FLAG
480: 036E AD D9 03 LDA NPNT
490: 0371 85 59 STA JPNT ;J=N
500: 0373 AD DA 03 LDA NPNT+1
510: 0376 85 5 A STA JPNT+1
520: ;
530: 0378 A5 59 JLOOP LDA JPNT
540: 037 A 38 SEC
550: 037B E9 05 SBC #5

TO
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560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
705
710
720
730
740
750
760
770
780
790
800
810
820
825
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037D 85 5B STA JPNT1 ;POINTER J-l
037F AA TAX
0380 A5 5 A LDA JPNT+1
0382 E9 00 SBC #0
0384 85 5C STA JPNT1+1
0386 A8 TAY
0387 8A TXA
0388 20 A2 BB JSR MEMFAC ;A(J-l) TO FAC

038B A5 59 LDA JPNT
038D A4 5 A LDY JPNT+1
038F 20 5B BC JSR COMPARE ;COMPARE TO A(J)
0392 30 12 BMI NOSWAP

0394 AO 04
»

LDY #4
0396 8C D8 03 STY FLAG ;SET FLAG
0399 B1 59 SWAP LDA (JPNT),Y
039B AA TAX
039C B 1 5B LDA (JPNT1),Y
039E 91 59 STA (JPNT),Y ;EXCHANGE A(J)
03 AO 8A TXA ;AND A(J-l)
03A1 91 5B STA (JPNT1),Y
03 A3 88 DEY
03A4 10 F3 BPL SWAP

03A6 A5 59 NOSWAP LDA JPNT
03A8 38 SEC
03A9 E9 05 SBC #5
03 AB 85 59 STA JPNT
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830: 03 AD BO 02 BCS TESTJ
840: 03AF C6 5A DEC JPNT+1
850: >
860: 03B1 C5 57 TESTJ CMP IPNT
870: 03B3 DO C3 BNE JLOOP
880: 03B5 A5 5 A LDA JPNT+1 ; i=J
890: 03B7 C5 58 CMP IPNT+1
900: 03B9 DO BD BNE JLOOP
910: y

920: 03BB AD D8 03 LDA FLAG ;NO EXCHANGES?
930: 03BE FO 17 BEQ END
940: y

950: 03C0 A5 57 LDA IPNT
960: 03C2 18 CLC
970: 03C3 69 05 ADC ♦ 5 ;1=1+1
980: 03C5 85 57 STA IPNT
990: 03C7 90 02 BCC TESTI
1000: 03C9 E6 58 INC IPNT+1
1010: y

1020: 03CB CD D9 03 TESTI CMP NPNT
1030: 03CE DO 99 BNE I LOOP
1040: 03D0 A5 58 LDA IPNT+1 ; I = N?
1050: 03D2 CD DA 03 CMP NPNT+1
1060: 03D5 DO 92 BNE I LOOP
1070: ;
1080: 03D7 60 END RTS
1090: ;
1100: 03D8 FLAG * = *+l
1110: 03D9 NPNT * = * + 2
]033C-03DB 
NO ERRORS
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This assembly language program takes over the task of 
the previous BASIC program. As said before, the array to be 
sorted must be one-dimensional. The program does not check 
to see if the array is allocated or if it is one dimen- 
sional--that is the responsibility of the user.

To sort an array, all that is required is to call the
routine with

SYS 828

In order to get an idea of the speed of the program, we
filled various large arrays with random numbers and first
sorted them with BASIC and then with machine language. The
results are found in the following table.

N BASIC Machine lang. routine

10 1” 0.0”
50 to 0.4”
100 1* 37” 1.5”
200 6’ 33” CO

500 41 * 00 00 <1

1000 2h 44* 2' 33.4”

You can see from the table that approximately four 
times as much time is required for twice as many elements to 
be sorted. If you must sort large arrays in BASIC, there 
comes a point at which the time requirement enters the hours 
range. Here our machine language is a good sixty times 
faster. If you have very large arrays and the machine lan
guage routine still takes too long for you, you must use a 
more efficient routine such as quicksort.
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As an exercise, you might like to try to modify our 
routine so that it can sort integer arrays. What must be 
changed? For one, the different space requirement of an 
element must be taken into account--2 bytes must be added or 
subtracted as necessary instead of 5 bytes. For another, we 
should perform the comparison of the elements ourselves. We 
can compare the two-byte values directly instead of convert
ing the integers to floating-point and then executing the 
floating-point comparison. In addition, the routine will be 
faster than the floating-point sort routine.

As a reference for your own applications, we present a 
table of all of the functions and operations of the BASIC 
interpreter which pertain to arithmetic.

Name Address Pointer to
constants

Preparation FAC Function

MEMARG $B A8C A/Y - - ARG : = constant
FACARG $BBFC - - + FAC : = ARG
DIV $BB 12 - A = EXP + FAC : = ARG/FAC
MEMDIV $BB0F A/Y - + FAC : = cons/FAC
TIME10 $B AE2 - - + FAC : = FAC*10
DIVIO $BAFE - - + FAC : = FAC/10
PLUS05 $B849 - - + FAC : = FAC+0.5
MEMFAC $BBA2 A/Y - + FAC : = constant
FACARG $BC0C - - - ARG : = FAC
FACMEM $BBD4 X/Y - - constanit := FAC
MINUS $B853 - A = EXP + FAC : = ARG-FAC
MEMMIN $B850 A/Y - + FAC : = cons/FAC
MULT $B A2B - A = EXP + FAC : ̂ ARG* FAC
MEMMUL $BA28 A/Y - + FAC : = cons*FAC
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PLUS $B86A - A = EXP + FAC := ARG+FAC
MEMPLU $B867 A/Y - + FAC := cons+FAC
POWER $BF7B - A = EXP + FAC := ARG+FAC
PWRMEM $BF78 A/Y - + FAC := ARG^cons
POLY $E059 A/Y - + FAC := polynom.
P0LY2 $E043 A/Y - + FAC := polynom2
OR $AFE6 - - + FAC: =ARG OR FAC
AND $ AFE9 - - + FAC: =ARG AND FAC
NOT $ AED4 - - + FAC := NOT FAC
COMPAR $BC5B A/Y - - comp FAC w/ cons
ROUND $BC1B - - + round FAC
CHGSGN $BFB4 - - + FAC := -FAC

Conversions and standard functions are not listed since 
they were detailed in other places.

The " + " in the FAC column indicates that the contents 
of the FAC are changed; a indicates that they remain the 
same. If an operation uses both the ARG and FAC, the accumu
lator should be loaded with the exponent of the FAC ($61) 
before the call.

With the logical operations AND, OR, and NOT the argu
ments are first converted to 16-bit integers, then the 
aperation is executed bitwise, the result converted back to 
a floating-point number and placed back into the FAC.

The BASIC interpreter contains a number of floating 
point numbers which you can use for your own applications. 
They are listed in the following table.
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Address Constant Decimal value Significance

$AEA8 82 49 OF DA A1 3.14159265 pi
$B1A5 90 80 00 00 00 -32768
$B9BC 81 00 00 00 00 1
$B9C2 7F 5E 56 CB 79 .434255942
$B9C7 80 13 9B OB 64 .576584541
$B9CC 80 76 38 93 16 .961800759
$B9D 1 82 38 AA 3B 20 2.88539007
$B9D6 80 36 04 F3 34 .707106781 1/SQR(2)
$B9DB 81 36 04 F3 34 1.41421356 SQR(2)
$B9E0 80 80 00 00 00 -.5
$B9B5 80 31 72 17 F8 .693147181 LOG(2)
$BAF9 84 20 00 00 00 10
$BDB3 9B 3E BC IF FD 99999999.9
$BDB8 9E 6E 6B 27 FD 999999999
$BDBD 9E 6E 6B 28 00 1E9
$BFBF 81 38 AA 3B 29 1.44269504 1/LOG(2)
$BFC5 71 34 58 3E 56 2.14987637E-5
$BFCA 74 16 7E B3 IB 1.4352314E-4
$BFCF 77 2F EE E3 85 1.34226348E-3
$BFD4 7A ID 84 1C 2 A 9.614011701E-3
$BFD9 7C 63 59 58 OA .0555051269
$BFDE 7E 75 FD E7 C6 .240226385
$BFE3 80 31 72 18 10 .693147186
$BFE8 81 00 00 00 00 1
$E08D 98 35 44 7 A 00 11879546
$E092 68 28 B1 46 00 3.92767774E-4
$E2E0 81 49 OF DA A2 1.57079633 PI / 2
$E2E5 83 49 OF DA A2 6.28318531 PI * 2
$E2E A 7 F 00 00 00 00 .25
$E2F0 84 E6 1A 2D IB -14.3813907
$E2F5 86 28 07 FB F8 42.0077971
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$E2FA 87 99 68 89 01
$E2FF 87 23 35 DF El
$E304 86 A5 5D E7 28
$E309 83 49 OF DA A2
$E33F 76 B3 83 BD D3
$E344 79 IE F4 A6 F5
$E349 7B 83 FC BO 10
$E34E 7C OC IF 67 CA
$E353 7C DE 53 CB Cl
$E358 7D 14 64 70 4C
$E35D 7D B7 EA 51 7A
$E362 7D 63 30 88 7E
$E367 7E 92 44 99 3 A
$E36C 7E 4C CC 91 C7
$E371 7F AA AA AA 13
$E376 81 00 00 00 00

-76.7041703
81.6052237
-41.3147021
6.28318531 PI * 2
-6.84793912E-4
4.85094216E-3
-.0161117015
.034209638
-.054279133
.0724571965
-.0898019185
.110932413
-.142839808
.19999912
-.33333316
1
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S E C T I O N  2  I n t e r r u p t s

2 . 1  I n t e r r u p t  p r o g r a m i n g

One area avoided by many machine language programmers 
is the programming of interrupts. We want to demonstrate the 
principles and prove that any fear of this subject is comp
letely unfounded. We will explain what an interrupt is and 
what possibilities are opened up to the machine language 
programmer by using such new techniques.

First we must explain what we mean by the term "inter
rupted.” What is interrupted, and how? Quite simple--the 
machine language program currently being executed is inter
rupted. This interruption is hardware-generated and can 
occur at any place within the program. What can interrupt a 
machine language program? To find this out we must give some 
consideration to the hardware construction of the processor.

The 6502 or 6510 microprocessor is housed within a 40- 
pin package, two pins of which have the designations

IRQ and NMI

These are abbreviations for Interrupt ReQuest and Non-Mask
able Interrupt. If a signal from the outside is sent to one 
of these pins, the following events occur:

1. Signal on NMI pin

executing the current instruc- 
interrupt:

The processor finishes 
tion and then attends to the
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1) The current value of the program counter is placed 
on the stack (first high byte then low byte).

2) The processor status register (the flags) is then 
pushed onto the stack.

3) The processor reads the contents of the addresses
$FFFA and $FFFB and, interpreting then as the new 
value of the program counter, executes an indirect 
jump: JMP ($FFFA). The program at this address will
then be executed.

This program "services” the interrupt request.

2. Signal on IRQ pin

Here something similar happens. The current instruction 
is completed when the interrupt is registered. With IRQ, 
however, the processor first checks the state of the inter
rupt flag (bit 3 in the status register). Two cases are 
possible:

a) If this flag is set, the interrupt request is ignor
ed and the program continues running.

b) If the flag was not set, the same procedure is 
executed as for NMI:

1) The contents of the program counter and the 
flags are saved on the stack.

2) The I flag is set so that any interrupt re
quests occurring during the interrupt service 
routine will be ignored.

3) The processor gets the new value of the program 
counter from addresses $FFFE and $FFFF. The 
value to which these addresses point is used as 
the new value of the program counter.
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How can we return to the interrupted program? There is 
a special aachine language instruction for this purpose.

RTI - ReTurn from Interrupt

This instruction reverses the interrupt procedure. The value 
of the status register is fetched froa the stack, the con
tents of the prograa counter is pulled froa the stack and 
the prograa continues execution at this address. The inter
rupted prograa does not "notice" any of these activities. 
The processor saves only the status register— the other 
registers, if they are used by the interrupt routine, nust 
be saved by the interrupt service routine before they are 
used and then restored before the return with RTI. For 
exaaple

INTERRUPT PHA
TXA 
PHA 
TYA 
PHA

; save accuaulator 

; save X register 

; save Y register

; interrupt service routine

PLA
TAY ; restore Y register
PLA
TAX ; restore X register
PLA ; restore accuaulator
RTI ; return to interrupted program
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The structure of an interrupt service routine is simi
lar to that of a normal subroutine. The principle difference 
is that a subroutine is always called by the main program 
from specific place, whereas the interrupt routine is called 
from the outside by hardware and can be called at any time, 
from anywhere. In contrast to a subroutine call, the current 
contents of the processor status register are saved in 
addition to the return address. If this were not done, the 
interrupted program could not continue to function normally 
when control was returned to it. Now to the most important 
question:

How can an interrupt be generated?

There are several ways that this can happen in the 
Commodore 64. We will take a look at the ways in which an 
IRQ can be generated. The

video controller VIC 6569

and the I/O interface

CIA 6526

can both generate IRQs. The CIA here is the CIA at address 
$DC00.

A non-maskable interrupt (NMI) can be generated by 

CIA 6526 (address $DD00)
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as well as

the RESTORE key

In order to successfully program our own interrupt 
routines, a detailed knowledge of the capabilities and fea
tures of the peripheral interfaces is indispensable. We will 
discuss these interfaces in sufficient detail for our prog
ressing. More inforsation can be obtained from the book The 
Anatosy of the Cossodore 64.
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2.2 The CIA 6526

The CIA (Complex Interface Adapter) 6526 is an inter
face module of the 65XX family which offers two 8-bit input 
/output ports, a serial 8-bit shift register, two cascadable 
16-bit timers, a real time clock and several control lines.

The CIA has 16 registers which are addressed as succes
sive memory locations by the microprocessor. The Commodore 
64 has two of these chips; the first is located at addresses 
$DC00 to $DC0F, the second at $DD00 to $DD0F.

On the next few pages you will find a short description 
of these 16 control registers which we will get into in 
greater detail in the programs.
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Register 0

Register 1

Register 2

Register 3

Register 4

Port A data register 
Access: READ/WRITE
The contents of this register reflect the condi
tion of the input/output port A.

Port B data register 
Access: READ/WRITE
The contents of this register reflect the condi
tion of the input/output port B.

Data direction register A 
Access: READ/WRITE
The eight lines of data port A can be switched 
to input or output with this register. The cor
responding bit of the data direction register 
■ust be 0 for input or 1 for output.

Data direction register B 
Access: READ/WRITE
This register has the saie function as register 
2, except for port B.

Tiiier A LSB 
Access: READ
When reading this register it returns the cur
rent condition of tiaer A (LSB).
Access: WRITE
By aeans of a write command to this register one 
can load the least-significant byte of the value 
from which the timer is to count down to zero.
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Register 5

Register 6

Register 7

Register 8

Timer A MSB 
Access: RBAD
When reading, the contents of this register give 
the current condition of timer A (MSB).
Access: WRITE
One can load the high byte of the value from 
which timer A is to count down by writing to 
this register.

Timer B LSB
This register corresponds in function to regis
ter 4, but applies to timer B.

Timer B MSB
This register corresponds in function to regis
ter 5, except that it applies to timer B.

Time of day (real-time clock) tenths of a second 
Access: READ
When reading this register, bits 0-3 return the 
current state of the real-time clock, specifica
lly, the tenths of a second in BCD format. Bits 
4-7 are always zero.
Access: WRITE
By writing to register 8 you can, depending on 
the preselection of control register B (register 
15), either set the tenths of a second on the 
real-time clock or select the alarm time. The 
tenths of a second must be given in BCD format, 
in which bits 4-7 must be zero.

76



Advanced Machine Language

Register 9 Tine of day, seconds 
Access: READ
By reading this register you get the seconds of 
the current clock time in BCD format. Bits 0-3 
represent the one’s place and bits 4-7 the ten's 
place.
Access: WRITE
You can either set the clock tine or select the 
alarn tine through a write access to this regis
ter, sinilar to register 8. The seconds count 
nust be in BCD format.

Register 10 Tine of day, minutes
Register 10 is organized similarly to register 
9, but pertains to ninutes.

Register 11 Tine of day, hours 
Access: READ
Reading this register returns the current hour 
value of the real-tine clock. Bits 0-3 repre
sents the one's place. Because the clock counts 
only from one to twelve, only one bit is neces
sary for the ten's place, nanely bit 4. Bit 7 
corresponds to the American time representation 
as a flag for before noon (AM, bit 7=0) or after 
noon (PM, bit 7=1).
Access: WRITE
The write access occurs in the same way as for 
the other real-time clock registers, although 
the significance of the individual bits is the 
same as for the read access.

77



Advanced Machine Language

Register 12 Serial shift register
Data is written to this register which will be 
shifted bit-by-bit out the serial port. By read
ing, the data shifted in can be read.

Register 13 Interrupt 
Access: 
Bit 0 
Bit 1 
Bit 2 
Bit 3

Bit 4 
Bit 5-6 
Bit 7

control register 
READ (interrupt data) 
timer A time-out 
timer B time-out 
clock time = alarm time 
shift register full (for input) 
or empty (for output) 
signal on FLAG pin 
always zero
Bit seven is set if at least one of 
the bits 0-4 is set in both the inte
rrupt control registers.

NOTE: READING THIS REGISTER ERASES IT!
Access: WRITE (interrupt mask)
The significance of bits 0-4 is the same as 
above. If bit seven is set in addition, one can 
enable the interrupt for the selected function. 
If bit 7 is cleared, a one bit disables the 
corresponding interrupt possibility.

Register 14 Control 
Access: 
Bit 0 
Bit 1

Bit 2

register A 
READ/WRITE
0= timer A stop, 1= timer A start 
1= timer A time-out is signaled on 
PB6
0= every timer A time-out creates a 
high signal on PB6, 1= every time-out 
on timer A inverts the state of PB6.
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Bit 3 1= timer A counts once from initial
value to zero and stops (one shot), 
0= timer A starts automatically after 
every tine-out (continuous mode).

Bit 4 1= absolute loading of a new value on
tiner A.

Bit 5 0= timer counts system clock pulses,
1= timer counts pulses on CNT.

Bit 6 0= serial port is input, 1= serial
port is output.

Bit 7 0= real time clock runs at 60 Hz, 1=
real-time clock runs at 50 Hz.

Register 16 Control register B
Access: READ/WRITE
Bits 0-4 same meaning as the corresponding 

bits in control register A, but for 
timer B and PB7.

Bits 5-6 These bits determine the trigger 
source of timer B. 00= timer B counts 
system clock pulses, 01= timer B 
counts CNT pulses, 10= timer B counts 
time-outs on timer A, 11= timer B
counts time-outs on timer A when
CNT=1.

Bit 7 0= set, clock time, 1= set alarm time.
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2.3 Using system interrupt

The simplest option for programming your own interrupt 
service routine is to add it to the system interrupt. What 
generates the system interrupt and what tasks does it per
form?

The system interrupt is controlled by a timer in CIA 1. 
A timer is simply a counter which is decremented by one each 
system clock cycle. When the timer counts down to zero (also 
known as "timing-out"), it sends a signal to the IRQ input 
on the processor. The program will be interrupted and con
trol passed to an interrupt routine found at $EA31. The 
timer consists of two 8-bit registers and can therefore 
count up to approximately 2~16 microseconds or 65 millisec
onds. The system interrupt is generated every sixtieth of a 
second, that is, approximately every 16 ms.

What tasks does this routine perform? The first task is 
to check to see if the STOP key is pressed. If this is the 
case, a flag in the zero-page is set. This flag is checked 
before the execution of every BASIC program. If it is set, 
the BASIC program is stopped. The routine for checking the 
STOP key increments the internal clock TI which returns the 
time in sixtieths of a second.

The second task concerns the cursor. If the computer is 
in the direct mode or is awaiting input, it flashes the 
cursor. Every twentieth time the interrupt routine is cal
led, the character over which the cursor is positioned is 
reversed. Thus the cursor blinks 20/60=3 times per second.

Another task is the supervision of the datasette. If 
the datasette is not under program control (LOAD or SAVE, 
for example), the motor is switched on or off depending on 
whether a key on the datasette is pressed or not.
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The last and perhaps most important task of the inter
rupt routine consists of reading the keyboard. If a key is 
pressed, the key code is determined and the value placed in 
the keyboard buffer. The keyboard buffer is ten characters 
long. It is thereby possible to press several keys "outside” 
of an input routine which then appear on the screen when the 
program expects the characters. The number of characters in 
the keyboard buffer is also saved. When these tasks are 
finished, control exits the interrupt routine and returns to 
the interrupted program.

As we mentioned already, the processor gets the address 
of the interrupt routine from the memory locations $FFFE and 
$FFFF, which are in ROM. How can we change these values? 
Let’s take a look at exactly what happens when an interrupt 
occurs. The address to which the interrupt vector points is 
$FF48.

**************:M************** irq jump point
FF48 48 PHA
FF49 8A TXA
FF4A 48 PHA save registers
FF4B 98 TYA
FF4C 48 PHA
FF4D BA TSX
FF4E BD 04 01 LDA $0104,X get break flag from stack
FF51 29 10 AND #$10 and test
FF53 FO 03 BEQ $FF58 not set?
FF55 6C 16 03 JMP ($0316) BREAK routine
FF58 6C 14 03 JMP ($0314) interrupt routine
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First the contents of the registers are saved on the 
stack. Then the contents of the status register, which are 
automatically saved on the stack by the processor during an 
interrupt, are read and bit 4 is isolated. This is the BREAK 
flag which is set by a BRK command. The BRK command simu
lates an interrupt call in software. In order to distinguish 
it from a hardware interrupt, the BREAK flag in the status 
register is set. The appropriate indirect jump is made based 
on this. If the flag was set, a jump will be made over the 
vector at $0316/$0317, else via the vector at $0314/$0315.

The vector $0314/$0315 is the actual interrupt vector 
and normally points to the previously mentioned address 
$EA31.

If we want to execute additional tasks inside the 
interrupt routine, we can proceed in the following manner:

We change the interrupt vector so that it points to our 
own routine. When our routine is finished, we jump to the 
normal system interrupt routine so that these tasks can be 
performed. Using this procedure we can execute a second 
"job" sixty times per second, independent of the main prog
ram. This routine must naturally not last longer than one 
sixtieth of second, otherwise there will be no time for the 
main program. A long interrupt routine is characterized by a 
slowing down of the main program.

What could the computer execute 60 times per second? 
Here your imagination is the only limiting factor. You 
could, for example, flash the screen or text on the screen, 
similar to the way the cursor is flashed. So that the blink
ing does not go too fast, a counter must be used so that
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the event occurs only once every given number of interrupt
calls •

100: cooo .OPT PI
110: i
120: ;FLASH BACKGROUND/BORDER
130: >
140: cooo * = $C000
150: >
160: D020 BORDER = $D020 ;BORDER
170: D021 BACK = $D021 ;BACKGROUND
180: EA31 IRQROUT = $EA31
190: 0314 IRQVEC = $314
200: >
210: 001E NUMBER = 30 ;EVERY HALF SECOND
220: i
230: COOO 78 INIT SEI ;DISABLE INTERPETS
240: C001 A9 OD LD A #<BLINK
250: C003 AO CO LDY #>BLINK
260: C005 8D 14 03 STA IRQVEC ;IRQ-VECTOR TO

SCREEN
270: C008 8C 15 03 STY IRQVEC+1
280: COOB 58 CLI
290: COOC 60 RTS
300: ;
310: COOD CE 26 CO BLINK DEC COUNT ;DECREMENT COUNTER
320: C010 DO 11 BNE DONE
330: C012 A9 IE LDA ♦NUMBER
340: CO 14 8D 26 CO STA COUNT ;RESET COUNTER
350: ;EXCHANGE COLORS
360: CO 17 AE 21 DO LDX BACK
370: C01A AD 20 DO LDA BORDER
380: CO ID 8D 21 DO STA BACK
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390: C020 8E 20 DO STX BORDER
400: ;
410: C023 4C 31 EA DONE JMP IRQROUT
420:
430: C026 IE COUNT .BYT NUMBER ;COUNTER
] C000-C027 
NO ERRORS

Let’s take a closer look at the above program. The 
routine INIT takes care of the initialization and sets the 
interrupt vector to the blink routine. Note that interrupts 
otherwise possible while the vector is being changed are 
blocked by the SEI instruction. If such an interrupt were to 
be generated when the low byte pointed to the new value 
while the high byte still pointed to the old routine, the 
processor would branch to an undefined place in aeoory and 
would in all likelihood "crash.” If the I bit is set, inter
rupts can be enabled with CLI and we return with RTS. Now 
the new interrupt routine is active.

The following happens at the next interrupt call: 
First, the memory location COUNT is decremented by one. If 
this does not yield a value of zero, execution branches to 
the label DONE and the normal interrupt routine is executed 
from there. If, however, the counter was zero, it is first 
reset to value 30 and the background and border colors are 
exchanged, creating the flash effect.

We can activate our routine by calling it with SYS 
12*4096. Immediately the screen begins to flash twice a 
second. This interrupt routine runs completely independently 
of a BASIC or machine language program until the interrupt 
vector is set back to the old routine. This is done by
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pressing the RUN/STOP-RESTORE keys, for example.

We can easily change the flash frequency with the label 
NUMBER; it gives the number of sixtieths of a second between 
color changes.

As a second example of interrupt routines, we want to 
change the cursor attributes. The cursor should not blink, 
but only be represented as an inverted character. We cannot 
simply place our new routine ahead of the normal interrupt 
routine. We must replace the part which pertains to the 
cursor blinking.

*****:M********************** Interrupt routine
BA31 20 EA FF JSR $FFE A stop key, increment time
BA34 A5 CC LDA $CC blink flag for cursor
EA36 DO 29 BNE $E A61 not blinking, then continue
BA38 C6 CD DEC $CD decrement blink counter
BA3A DO 25 BNE $E A61 not zero, then continue
EA3C A9 14 LDA #$14 set blink counter back to 20
EA3E 85 CD STA $CD and save
EA40 A4 D3 LDY $D3 cursor column
EA42 46 CF LSR $CF blink switch zero then C=1
EA44 AE 87 02 LDX $0287 color under cursor
EA47 B1 D1 LDA ( $ D1) , Y set character code
EA49 BO 11 BCS $EA5C blink switch on, continue
EA4B E6 CF INC $CF blink switch on
BA4D 85 CE STA $CE save character under cursor
EA4F 20 24 EA JSR $E A24 calculate pntr in color RAM
EA52 B1 F3 LDA ($F3),Y get color code
EA54 8D 87 02 STA $0287 and save
EA57 AE 86 02 LDX $0286 color code under cursor
EA5A A4 CE LDA $CE character under cursor
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EA5C 49 80 EOR #$80 invert RVS bit
EA5E 20 1C EA JSR $EA1C set cursor char and color

The cursor blinking is realized as follows. First a 
check is made to see if the cursor is active. If not, the 
following part is skipped. Otherwise the blink counter is 
decremented. If it is not zero, the regaining portion will 
skipped. Otherwise, the phase of the cursor is checked to 
see if it is in the inverted phase. The current or stored 
character is inverted and displayed depending on this. The 
same happens in the color RAM with the character color and 
the current cursor color.

We want to modify the routine so that we have a steady 
cursor. We can do this with the following program.

100: cooo .OPT PI
110: i
120: ;MODIFY CURSOR
130: >
140: FFEA STOP = $FFBA ;READ STOP KEY
150: oocc CURSFLAG = $cc ;FLAG FOR VISIBLE

CURSOR
160: 00CF REVERSE = $CF ;FLAG FOR INVERTED

CHARACTER
170: 0287 CURSCOL = $287 ;COLOR UNDER

CURSOR
180: 00CE CURSCHAR = $CE ;CHARACTER UNDER

CURSOR
190: 00D1 CHAR = $D 1 ;POINTER IN VIDEO

RAM
200: 00F3 COLOR = $F3 ;POINTER IN COLOR
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210: BA24 SETCOL =

220: 00D3 COLUMN -
230: 0286 COLSTR =
240: 0314 IRQVEC =
250: EA61 CONTIRQ =
260: i
270: COOO 78 INIT SEI

280: C001 A9 OD LD A
290: C003 AO CO LDY
300: C005 8D 14 03 STA

310: C008 8C 15 03 STY
320: COOB 58 CLI
330: COOC 60 RTS
340: >
350: COOD 20 EA FF NEWCURS JSR
360: C010 A5 CC LDA

370: CO 12 DO ID BNE
380: C014 A4 D3 LDY
390: C016 A5 CF LDA

400: CO 18 DO 17 BNE
410: C01A E6 CF INC

420: C01C 20 24 EA JSR

430: COIF B1 D1 LDA

440: C021 85 CE STA
450: C023 49 80 EOR

$EA24 ;SET POINTER TO
COLOR RAM

$D3 ;CURSOR COLUMN
$286 ;CURSOR COLOR
$314 ;IRQ VECTOR
$EA61 ;CONTINUE IRQ

;DISABLE INTER
RUPTS

#<NEWCURS
♦>NEWCURS
IRQVEC ;IRQ VECTOR TO

NEW ROUTINE
IRQVEC+1

STOP ;TEST STOP KEY 
CURSFLAG ;CURSOR

VISIBLE? 
NOCURSOR ;NO 
COLUMN ;CURSOR COLUMN 
REVERSE ;CHARACTER AL

READY REVERSED? 
NOCURSOR ;YES 
REVERSE ;SET FLAG FOR 

REVERSE
SETCOL ;POINTER IN COLOR 

RAM
(CHAR),Y ;POINTER AT

CURSOR POSITION 
CURSCHAR ;SAVE 
#$80 ;FLIP RVS BIT
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460: C025 91 D1 STA (CHAR),V ;AND IN VIDEO
RAM

470: C027 B1 F3 LDA (COLOR),Y ;COLOR
480: C029 8D 87 02 STA CURSCOL ; SAVE
490: C02C AD 86 02 LDA COLSTR ;CURSOR COLOR
500: C02F 91 F3 STA (COLOR),Y ; SET
510: C03 1 4C 61 BA NOCURSOR JMP CONTIRQ ;CONTINUE IRQ
]C000-C034
NO ERRORS

When you activate this routine with SYS 12*4096, the
cursor is isimply replaced with an inverted character. You
can modify this routine according to your own taste; the
cursor color need not be the same as the character color, 
for instance--it could always be one color. Instead of the 
inverted representation you can do something different, such 
as display a line. It would also be possible to leave the 
character unchanged and simply alternate between two colors. 
You should consider these examples only as suggestions for 
your own experiments with the interrupt routine— the poss
ibilities are numerous.

Here we can briefly discuss a method of inhibiting the 
STOP key. Because the test for the STOP key is the first 
thing done in the interrupt routine, we can bypass this test 
by changing the interrupt vector to point beyond it. A 
running BASIC program can no longer be stopped with the STOP 
key:

POKE 788, PEEK(788)+3

The vector is simple incremented by three bytes so that the 
test is bypassed. A disadvantage of this method is that the
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internal clock TI and TI$ no longer run. This is because the 
routine that tests the STOP key also keeps the clock up
dated .

An additional application of the system routine is the 
execution of a certain action upon a keypress. It is possib
le, for example to call a hardcopy routine which outputs 
the screen contents to a printer by pressing a function key.

The interrupt routine can check to see if the key was 
pressed. If this is the case, a routine can be called which 
performs the special task. Here too, many applications are
possible, such as switching between two screen pages. Here
is an example of this:

100: 033C .OPT PI
110: i
120: ;SWITCH SCREEN PAGES
130: »
140: 0003 PNT1 = 3
150: 0005 PNT2 - 5
160: DD00 VIDEOMAP = $DD00 ;16K VIDEO RANGE
170: 0288 VIDEOPGE 648
180: 0314 IRQVEC = $314
190: EA31 IRQOLD = $EA31
200: D000 CHARGEN = $D000 ;CHARACTER GEN

ERATOR
210: D800 COLOR = $D800 ;COLOR RAM
220: cooo COLOR2 = $C000 ;STORAGE FOR COLOR

RAM
230: 0001 PORT = 1 ;PROCESSOR PORT
240: 028D CTRL = 653 ;FLAG FOR CONTROL
250: 00C5 KEY = $C5 ;LAST KEY
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260: 0004 FI = 4 ;MATRIX NUMBER OF
FI KEY

270: ;
280: 033C * = 828
290: i
300: 033C 78 INIT SEI
310: 033D 20 94 03 JSR SETCHAR ;COPY CHARACTER

GENERATOR
320: 0340 A9 4C LDA #<TBST
330: 0342 AO 03 LDY ♦>TEST
340: 0344 8D 14 03 STA IRQVEC ;POINTER TO NEW

ROUTINE
350: 0347 8C 15 03 STY IRQVEC+1
360: 034A 58 CLI
370: 034B 60 RTS
380: ;
390: 034C AD 8D 02 TEST LDA CTRL ;CONTROL KEY

PRESSED?
400: 034F 29 04 AND #%100
410: 0351 FO 09 BEQ NOSWITCH ; NO
420: 0353 A5 C5 - LDA KEY ;FI PRESSED
430: 0355 C9 04 CMP ♦ FI
440: 0357 DO 03 BNE NOSWITCH ; NO
450: 0359 20 5F 03 JSR SWITCH ;EXCHANGE PAGES
460: 035C 4C 31 EA NOSWITCH JMP IRQOLD
470: »
480: 035F AO 00 SWITCH LDY #0
490: 0361 84 03 STY PNT1
500: 0363 84 05 STY PNT2
510: 0365 A9 D8 LDA ♦>COLOR ;POINTER TO COLOI

RAM
520: 0367 85 04 STA PNT1+1
530: 0369 A9 CO LDA #>COLOR2 ;POINTER TO
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550
560
570
580
590

600
610
620
630
640
650
660
670
680
690

700
710
720
730
740
750
760
770
780
782
784
786
790
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036B 85 06 STA
036D A2 04 LDX
036F B1 03 SWAP LDA
0371 48 PHA
0372 B1 05 LDA
0374 91 03 STA

0376 68 PLA
0377 91 05 STA
0379 C8 INY
037A DO F3 BNE
037C E6 04 INC
037E E6 06 INC
0380 CA DEX
0381 DO EC BNE
0383 AD 00 DD LDA
0386 49 03 EOR

0388 8D 00 DD STA
038B AD 88 02 LDA
038E 49 CO EOR
0390 8D 88 02 STA
0393 60 RTS

0394 AO 00
*
SETCHAR LDY

0396 84 03 STY
0398 A9 DO LDA
039A 85 04 STA
039C A2 10 LDX
039E A9 33 LOOP LDA
03A0 85 01 STA

STORAGE FOR COLOR
PNT2+1
#4 ;NUMBER OF PAGES
(PNT1),Y

(PNT2),Y
(PNT1),Y ;SWAP COLOR 

STORAGE

(PNT2),Y

SWAP
PNT1+1
PNT2+1

;NEXT PAGE
SWAP
VIDEOMAP
♦til ;ACCESS ADDRESS

FOR VIC
VIDEOMAP
VIDEOPGE
♦$C0 ;SCREEN PAGE
VIDEOPGE

#0
PNT1
#>CHARGEN
PNT1+1
#$10
#$33
PORT ;TURN ON CHARACTER 

GENERATOR
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800: 03A2 B1 03 LDA (PNT1),Y
810: 03A4 48 PHA
820: 03A5 A9 30 LDA #$30
830: 03A7 85 01 STA PORT ;TURN ON RAM
840: 03A9 68 PLA
850: 03 AA 91 03 STA (PNT1),Y
860: 03 AC C8 INY
870: 03 AD DO EF BNE LOOP
880: 03 AF E6 04 INC PNT1+1 ;NEXT PAGE
890: 03B1 CA DEX
900: 03B2 DO EA BNE LOOP
910: 03B4 A9 37 LDA ♦$37 ;STANDARD CONFIG

URATION
920: 03B6 85 01 STA PORT
930: 03B8 60 RTS
] 033C-03B9 
NO ERRORS

This program allows us to switch between two screen 
pages. The first page lies as usual at $0400, while we have 
placed the second page at address $C400. It is also possible 
for the second page to have its own sprites. The sprite 
pointers must be at address $C7F8. The base address of this 
screen is therefore located at $C000. For example, the 
address space from $C800 to $CFFF is available for storing 
sprites and offers room for 32 different sprite patterns 
(sprite numbers 32 to 63). Because the video controller 
always expects the color RAM to be at address $D800, we can 
store the color of the currently invisible page at $C000 to 
$C3FF. Furthermore, we must take into consideration the fact 
that the VIC in the upper 16K from $C000 to $FFFF cannot 
access the character generator ROM. We therefore copy the 
character generator from ROM to the RAM at the same address
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es.

The actual interrupt routine checks bit 2 in the flag 
for the control key. If this bit is set, the control key was 
pressed. If the FI key was also pressed, the routine which 
exchanges the color storage and sets the parameters for 
displaying the other screen page is called. Finally, a 
branch is made to the normal interrupt routine.

When we assemble our program and activate it with SYS 
828, we can switch to the second screen page simply by 
pressing the CTRL and FI keys at the same time. The first 
time you make the switch, you should clear the screen be
cause random values will be left in the video RAM. Pressing 
the two keys again returns you to the original screen. The 
cursor will remain at the same place.

As an additional suggestion, you could try to display 
the clock time during the interrupt routine. The time will 
then appear on the screen at all times, independent of other 
program activities. You can find such a routine in the book 
Tricks and Tips for the Commodore 64.

Another equally interesting possibility for an inter
rupt routine involves sprites. One or more sprites can • be 
moved during each interrupt. Programming the sound chip can 
also be done in an interrupt routine. Here sound sequences 
or entire pieces of music can be played completely independ
ently of other programs. You can see that the possibilities 
which are offered to you are virtually unlimited. Before ws 
begin to generate our own interrupts, we will present two 
more routines which are tied to the system interrupt.
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You nay find the following program quite useful if you 
use the user port to interface with devices of your own. The 
program is tied into the system interrupt and gives you a 
continual display of the individual bits of the user port. 
The direction register is displayed in the first screen 
line. This allows you to see which lines are set for input 
(=0) or output (=1). In the next line the states of the user 
port lines are displayed; a 0 indicates a low signal, a high 
signal is displayed as a 1. Both displays are also given in 
hexadecimal form.

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270: 033C
280: 033C 78
290: 033D AD 14 03
300: 0340 49 7E
310: 0342 8D 14 03

= 7 ;YELLOW

= $314
= $EA31
= $FB

*= 828
SEI
LDA IRQVBC
EOR #< IRQOLD ~ DISP
STA IRQVEC

033C .OPT PI

DD00
DD01
DD03

USER PORT DISPLAY

CIA2
USERPORT = 
DIRECTION

$DD00 
CIA2+1 
CIA2+3

0288
D800

VIDEOPGE = 
COLORRAM =

648
$D800

0007 COLOR

0314 
E A31 
00 FB

IRQVEC
IRQOLD
PNT

INIT
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320: 0345 AD 15 03 LDA IRQVEC+1
330: 0348 49 E9 EOR ♦> IRQOLD * DISP
340: 034A 8D 15 03 STA IRQVEC+1
350: 034D 58 CLI
360: 034B 60 RTS
370: 1
380: 034F A5 FD DISP LDA PNT
390: 0351 48 PHA ;SAVE POINTER
400: 0352 A5 FC LDA PNT+1
410: 0354 48 PHA
420: 0355 A9 1C LDA ♦ 28
430: 0357 85 FB STA PNT ;POINTER TO VIDEO

RAM
440: 0359 AD 88 02 LDA VIDEOPGE
450: 035C 85 FC STA PNT+1
460: 035E AD 03 DD LDA DIRECTION
470: 0361 AO 00 LDY #0 ;DIRECTION IN TOP

LINE
480: 0363 20 77 03 JSR DISPLAY ;DISPLAY
490: 0366 AD 01 DD LDA USERPORT
500: 0369 AO 28 LDY #40 ;USER PORT IN

SECOND LINE
510: 036B 20 77 03 JSR DISPLAY ;DISPLAY
520: 036E 68 PLA
530: 036F 85 FC STA PNT+1 ;GET POINTER BACK
540: 0371 68 PLA
550: 0372 85 FB STA PNT
560: 0374 4C 31 EA JMP IRQOLD ;TO NORMAL IRQ
570: ;
580: 0377 48 DISPLAY PHA ;SAVE VALUE FOR

HEX DISPLAY
590: 0378 A2 08 LDX #8
600: 037A OA LOOP ASL ;HIGHEST BIT IN
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CARRY
610: 037B 48 PHA
620: 037C A9 30 LDA #"0" ;DISPLAY ZERO
630: 037E 90 02 BCC NULL
640: 0380 A9 31 LDA #”1” ;DIPLAY ONE WHEN

C = 1
650: 0382 91 FB NULL STA (PNT),Y
660: 0384 A9 07 LDA #COLOR ;AND SET COLOR
670: 0386 99 1C D8 STA COLORRAM+28,Y
680: 0389 C8 INY
690: 038A 68 PLA
700: 038B CA DEX ;NEXT BIT
710: 038C DO EC BNE LOOP
720: 1
730: ;HEX DIPLAY
740: »
750: 038E C8 INY
760: 038F 68 PLA
770: 0390 48 PHA
780: 0391 4A LSR
790: 0392 4 A LSR ;SHIFT UPPER

NYBBLE DOWN
800: 0393 4A LSR
810: 0394 4A LSR
820: 0395 20 99 03 JSR ASCII ;HIGH NYBBLE
830: 0398 68 PLA
840: 0399 29 OF ASCII AND #*1111
850: 039B C9 OA CMP #10
860: 039D 90 02 BCC SMALLER
870: 039F 69 06 ADC #6
880: 03A1 69 30 SMALLER ADC #"0" ;CONVERT TO ASCII
890: 03 A3 29 3F AND #*111111 ;CONVERT TO

SCREEN CODE
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900: 03A5 91 FB
910: 03A7 A9 07
920: 03A9 99 1C D8
930: 03AC C8
940: 03AD 60

STA (PNT),Y
LDA #COLOR ;AND SET COLOR
STA COLORRAM+28,Y
INY
RTS

]033C-03AE 
NO ERRORS

We have done the initialization somewhat differently. 
We eXclusive-OR the old value of the IRQ vector with the new 
value and thereby arrive at a switch between the old value 
$EA31 and our new routine DISPLAY with every call of SYS 
828. Thus if you want to turn the display off, simply enter 
SYS 828 again and the interrupt vector will be set back to 
$EA31.

The program itself consists of a main program which at 
the start saves the necessary memory locations on the stack 
so that other programs which might use these addresses are 
not disturbed. Then the pointer PNT is set to the 28th 
column of the first screen line, the value of the data 
direction register loaded, and the subroutine for display 
called. After this, Y is set to 40 so that the display 
routine writes one line lower, and the contents of the user 
port are passed. Now the pointers are restored and the 
branch is made to the normal IRQ routine.

The display routine prints the value in the accumulator 
first in binary and then in hexadecimal. We use a loop for 
the 8 bit positions in the binary representation. During 
each pass through the loop, the uppermost bit is shifted 
into the carry with ASL. If this bit was a "l,” then the 
carry is set and we output a "1" on the screen, otherwise a
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"0". After the binary display, the values temporarily stored 
on the stack are displayed in hexadecimal. The upper nybble 
(four bits) is right-shifted into the lower nybble, then 
converted to ASCII and displayed on the screen. The same is 
then done for the lower nybble.

When you activate the routine with SYS 828, the follow
ing representation appears on the screen, for example:

00000000 00
FFFFFFFF FF

This is the value after the computer is turned on. The 
user port is set to input and the open inputs yield a high 
signal. Switch the user port to output and write 100 to it.

POKE 56579, 255
POKE 56577, 100

You get the following display:

FFFFFFFF FF
01100100 64

The bits 2, 5, and 6 are set; this corresponds to the hex
number $64 or decimal 100.

The next routine is similar to the previous. It pro
vides us with a continual display of the remaining free 
memory space. We accomplish this like the FRE function each 
interrupt. We simply calculate the difference between the 
end of the array table and the start of the strings. In 
contrast to the real FRE function, no garbage collection is
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performed in the interrupt routine. If we want to display 
the free space in decimal, it requires a conversion to 
floating-point foraat and again to ASCII representation. 
This takes tine, although we could put up with that. The 
■ain disadvantage of such a method is that we must save all 
used memory locations on the stack because the interrupt can 
stop the program at any place. We would have to save 20 or 
more memory places, which, for one, requires time, and for 
another, requires quite a bit of space on the stack. We will
therefore display the free m< 
mat. This is equally informat

100: 033C
110: »
120: ;DISPLAY
130:
140: 0031 ARRAYEND
150: 0033 STRGSTRT
160: »
170: 0400 VIDEO
180: D800 COLOR
190: ;
200: 0007 CLRCODE
210: i
220: 0314 IRQVEC
230: E A31 IRQOLD
240: i
250: cooo INIT
260: 033C 78
270: 033D A9 49
280: 033F A0 03
290: 0341 8D 14 03
300: 0344 8C 15 03

tmory space in hexadecimal for- 
ve and significantly faster.

.OPT PI

FREE MEMORY SPACE

= $31
= $33

= 1024
= $D800

= 7 ;YELLOW

= $314
= $EA31

*= 828 
SEI
LDA #< FREE 
LDY #>FREE 
STA IRQVEC 
STY IRQVEC+1
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310: 0347 58 CLI
320: 0348 60 RTS
330: >
340: 0349 38 FREE SEC
350: 034A A5 33 LDA STRGSTRT
360: 034C E5 31 SBC ARRAYEND
370: 034E 08 PHP
380: 034F AO 25 LDY ♦ 37
390: 0351 20 61 03 JSR DISPLAY
400: 0354 28 PLP
410: 0355 A5 34 LDA STRGSTRT+1
420: 0357 E5 32 SBC ARRAYEND+1
430: 0359 AO 23 LDY #35
440: 035B 20 61 03 JSR DISPLAY
450: 035E 4C 31 EA JMP IRQOLD
460: 0361 48 DISPLAY PHA
470: 0362 4A LSR
480: 0363 4 A LSR
490: 0364 4A LSR
500: 0365 4A LSR
510: 0366 20 6A 03 JSR ASCII
520: 0369 68 PLA
530: 036A 29 OF ASCII AND #*1111
540: 036C C9 OA CMP #10
550: 036E 90 02 BCC SMALLER
560: 0370 69 06 ADC #6
570: 0372 69 30 SMALLER ADC #"0"
580: 0374 29 3F AND #*111111
590: 0376 99 00 04 STA VIDEO,Y
600: 0379 A9 07 LDA ♦CLRCODE
610: 037B 99 00 D8 STA COLOR,Y
620: 037E C8 INY
630: 037 F 60 RTS
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]033C-0380 
NO ERRORS

The amount of free space is displayed continually on 
the screen after calling the routine with SYS 828. Try the 
following BASIC program and watch the display.

100 DIM A$(200)
110 FOR 1= 1 TO 200 : A$(I) = CHR$(1) : NEXT

You can watch the free memory space get smaller and 
smaller. Now enter ?FRE(0). During the approximately 4 sec
onds which this function requires, you can see that the free 
memory space changes constantly.

If you work with ASSEMBLER 64, you can see how the 
symbol table is created in pass 1 because it uses the same 
pointers as BASIC.
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2.4 Video controller interrupts

Now that we have learned how to use the tiaer control
led systea interrupt for our own purposes, we want to be 
able to generate interrupts ourselves and execute corres
ponding routines.

We will take a look at the chips which are capable of 
generating interrupt requests. These include the two CIA 
6526s, of which CIA 1 can generate an IRQ and CIA 2 an NMI. 
The video controller VIC 6567 can also generate an inter
rupt. The registers necessary for the interrupt will be 
described here.

Register 18 Access RBAD
A read access to this register returns the 
nuaber of the raster line currently being disp
layed on the screen. Because the raster line 
nuaber can be larger than 255, bit 7 of regis
ter 17 is used for the carry.
Access WRITE
When your write to this register, you can set 
the raster line at which the VIC will generate 
an interrupt request.

Register 25 Interrupt Request Register
This register signals an interrupt request by 
the VIC. The individual bits stand for various 
interrupt sources.
Bit 0 The video controller reached the ras

ter line which was set in register 18. 
Bit 1 A sprite collided with a background 

character. The nuaber of the sprite is
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recorded in register 31.
Bit 2 Two sprites collided. The numbers of 

the sprites involved are saved in 
register 30.

Bit 3 A strobe was generated by the light
pen. The X and Y positions are record
ed in registers 19 and 20.

Bit 7 This bit is set whenever any of the
others are set.

Register 26 Interrupt Mask Register
The significances of the bits correspond to the 
those in register 25. An interrupt request is 
generated only if the corresponding bit in the 
IMR is set and the interrupts are enabled.

Register 30 Sprite-sprite collision
If two sprites collide, the bits are set ac
cording to the numbers of the sprites involved. 
Bit 2 in register 25 is also set. These bits 
must be reset after reading the results.

Register 31 Sprite-background collision
If a sprite encounters a background character, 
the number of the sprite is recorded in this 
register and bit 1 of register 25 is set at the 
same time. This register must also be reset 
after use.

The video controller can generate interrupts based on four
different events:
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* raster line reached
* sprite-bac kg round collision
* sprite-sprite collision
* light pen

The video controller records these conditions in register 25 
if one of the four events occurs. The Interrupt Mask Regis
ter (IMR) decides whether an interrupt request to the proc
essor will generated. If a bit is set in this register, the 
corresponding event will cause an interrupt request to be 
generated. This register may be read from and written to 
like a RAM memory location. If a bit is to be set or 
cleared, that is, an interrupt is to be enabled or disabled, 
the appropriate procedure must be followed.

Setting a bit
Set the desired bit and also bit 7. Then write the 

resulting value to the interrupt mask register. If, for 
example, you want to permit an interrupt by a sprite-sprite 
collision (bit 2):

LDA #*10000100 
STA IMR

You set the desired bit and bit number 7. The other bits (0, 
1, and 3) will not be changed.

Clearing a bit
If you want to disable an interrupt, the corresponding 

bit must be cleared. You must set the desired bit, but bit 7 
must be cleared. For example, to disable the sprite-sprite 
collision:
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LDA #*00000100 
STA IMR

Here too the unset bits remain unchanged. It is not possible 
to read the interrupt mask register. If a program requires 
the value of the interrupt mask, it can be stored in RAM at 
the same time it is written to the VIC in order to save the 
value.

A second peculiarity must be taken into account for the 
Interrupt Request Register (IRR). If the video controller 
has generated an interrupt request, this register must be 
reset, otherwise another interrupt will be generated immed
iately following the exit from the interrupt routine. A set 
bit can be cleared in the same manner as is done in the 
interrupt mask register, simply by writing this bit back 
into the interrupt request register. This can be done most 
easily by reading the value and immediately writing it back. 
For example:

LDA IRR
STA IRR

Now the bit pattern is in the accumulator and the individual 
bits can be tested by masking. This is always necessary 
whenever several interrupt sources are active, such as the 
normal system interrupt through the timer and an additional 
interrupt via the video controller. Because both interrupts 
must go over the same vector, we must first determine in our 
interrupt service routine what source generated the request 
and then branch accordingly. An example will make all of 
this quite clear if it sounds a bit confusing at the moment.
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We want to use the raster interrupt in order to display 
16 sprites on the screen at the saie time. Since the video 
controller can only display 8 sprites at a time, we must 
display each set of 8 sprites in succession.

The whole thing functions as follows:

Eight sprites are to be displayed in the upper half of 
the screen. If the video controller has displayed the upper 
half, we generate an interrupt. In the interrupt routine we 
set the parameters for the sprites which are to be displayed 
in the lower half of the screen. At the same time, we must 
prepare the next raster interrupt for the end of the screen 
so that we can again switch back to the upper 8 sprites.

100: 033C .OPT PI
110: >
120: ;RASTER INTERRUPT
130: >
140: D000 VIC = $D000 ;VIDEO CONTROLLER
160: D001 SPRITEY = VIC + 1 ;SPRITE Y-COORD-

INATE
166: DO 12 RASTER = VIC+18 ;RASTER LINE
170: D019 IRR VIC+25 ;INTERRUPT REQUEST

REGISTER
180: DO 1A IMR VIC+26 ;INTERRUPT MASK

REGISTER
190: 0064 LINE 1 = 100 ;FIRST LINE
200: 00C8 LINE2 = 200 ;SECOND LINE
202: 005 A YC00RD1 = 90 ;FIRST Y-COORD-

INATE
203: 00 AA YC00RD2 170 ;SECOND Y-COORD-
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INATE
210: ;
220: 0314 IRQVBC = $314
230: EA31 IRQOLD = $EA31
240: >
300: 033C * = 828
310: 033C 78 INIT SEI
320: 033D A9 64 LDA ♦LINE1 ;FIRST INTERRUPT
330: 033F 8D 12 DO STA RASTER ;AT LINE 100
340: 0342 AD 11 DO LDA RASTER-1
350: 0345 29 7F AND #*01111111 ;ERASE HIGH

BIT
360: 0347 8D 11 DO STA RASTER-1
370: 034A A9 81 LDA #*10000001 ;INTERRUPT BY
380: 034C 8D 1A DO STA IMR ;RASTER LINE
390: 034F A9 5B LDA #<TESTIRQ
400: 0351 AO 03 LDY #>TESTIRQ
410: 0353 8D 14 03 STA IRQVEC ;VECTOR TO NEW
420: 0356 8C 15 03 STY IRQVEC+1 ;ROUTINE
430: 0359 58 CLI
440: 035A 60 RTS
450: >
460: 035B AD 19 DO TESTIRQ LDA IRR ;READ REGISTER
470: 035E 8D 19 DO STA IRR ;AND ERASE
480: 0361 29 01 AND #*1 ;IRQ BY RASTER

LINE
490: 0363 DO 03 BNE OK ;YES
500: 0365 4C 31 EA JMP IRQOLD ;NORMAL IRQ
510: ;
520: 0368 AD 12 DO OK LDA RASTER ;CURRENT LINE
530: 036B C9 C8 CMP #LINE2 ;>= SECOND LINE?
540: 036D BO 16 BCS SECOND ;YES
545: •
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560: 036F A0 C8 LDY #LINE2 ;NEXT IRQ AT 2ND
LINE

555: 0371 A9 AA LDA ♦YCOORD2 ;NEW SPRITE
COORDINATE

560: 0373 8C 12 DO BACK STY RASTER ;SET RASTER LINE
570: 0376 A2 0E LDX #14
590: 0378 9D 01 DO LOOP1 STA SPRITEY,X ;SPRITE COORD

INATES
600: 037B CA DEX ;CHANGE
610: 037C CA DEX
620: 037D 10 F9 BPL LOOP 1
630: >
640: 037F 68 PLA ;GET REGISTERS

BACK
650: 0380 A8 TAY
660: 0381 68 PLA
670: 0382 AA TAX
680: 0383 68 PLA
690: 0384 40 RTI
700: >
710: 0385 A0 64 SECOND LDY tLINEl ;PARAMETERS FOR

FIRST LINE
720: 0387 A9 5 A LDA #YCOORD1
730: 0389 4C 73 03 JMP BACK
]033C-038C 
NO ERRORS

In order to tes^ our routine, you can activate 8 
sprites with the following program. When you then start the 
interrupt routine with SYS 828, 16 sprites suddenly appear 
on the screen. Eight are at the y-coordinate 90 and the 
other 8 at the y-coordinate 170. Each time the upper 8 
sprites are displayed we change the sprite parameters in the
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interrupt routine so that the video controller can display 
the sane sprites again in the lower half of the screen.

100 FOR 1=0 TO 7:POKE 2040+1,12:NEXT
110 V=53248
120 POKE V+21,255
130 FOR 1=0 TO 7:POKEV+2*I,(I+l)*30:POKEV+2*1+1,70:NEXT 
140 FOR 1=0 TO 7:POKEV+39+I,1:NEXT

In addition to the sprite coordinates, you can change 
all of the other sprite parameters as well, such as the 
color or size. You can also change the sprite pointers so 
that other sprite patterns can be displayed, even multico
lor .

You can do more than display 16 sprites. If you change 
the display mode in the raster interrupt routine, you can 
display a split screen. The top half could display high- 
resolution graphics while text appears in the lower half. If 
you place the line number at which a raster interrupt is to 
be generated into a specific memory location, you can even 
continually change it from BASIC with a POKE loop so that 
the border changes. Superimposed effects can also be ach
ieved in this manner. As you can see, there are many pos
sibilities here also.
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2.5 CIA 6526 Interrupts

Now that we are acquainted with the interrupts gene
rated by the video controller, we want to look at the CIA 
6526, which has very diverse interrupt sources.

The CIA 6526 is a universal input/output interface chip 
with two parallel 8-bit ports, a serial shift register, two 
16-bit timers, a real-tine clock as well as several hand
shake lines.

The two parallel 8-bit ports serve to input and output 
data. Of the total of four ports contained in the two CIAs, 
three are used by the system; the two ports of CIA 1 are 
used for reading the keyboard and joysticks. Port A of CIA 2 
yields the 16K address selection for the video controller 
(bit 0 and 1); bit 2 is free, while bits 3 to 7 are used for 
the serial bus. Port B of CIA 2 is available to the user 
through the user port, provided you have not inserted an RS- 
232 cartridge in the user port.

The timers are used as follows by the operating system:

CIA 1 Timer A 60 Hz system interrupt
Timer B serial bus (time-out)

read and write datasette

CIA 2 Timer A 
Timer B

send RS 232 
receive RS 232

If you want to use the timers for your own purposes, 
you can use the CIA 2. CIA 2 does not generate an IRQ, 
however, but an NMI. If you do not want to use the serial
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bus at the sane tine as your routine, you can use tiaer B in 
CIA 1 and thereby generate an IRQ. In special cases you can 
even dispense with the system interrupt and use timer A.

The real-time clocks are not used by the operating 
system; there are therefore two of them at your disposal. 
You can generate either an IRQ (CIA 1) or an NMI (CIA 2) 
with the alarm time.

The serial shift registers can also be used freely. The 
line FLAG which serves as a handshake input, sets the cor
responding bit in the interrupt control register of CIA 2 on 
a trailing edge.

The input/output and handshake lines are used primarily 
for connecting custom peripheral devices. Interrupt program
ming is often required in such applications. We will later 
describe interfacing a printer to the user port as an exam
ple; the primary aim is to include the routine in the oper
ating system so that the device can be addressed by the 
usual BASIC commands OPEN, PRINT#, etc.

The next example uses the real-time clock to make an 
alarm clock. We will use CIA 2 which will generate an NMI 
when the alarm time is reached.

100: 033C
110:
120:
130:
140: DD00
150: DD08

.OPT PI

ALARM WITH REAL-TIME CLOCK IN CIA2
»
CIA2 = $DD00 ;BASE ADDRESS CIA
TOD 10 = CIA2+8 ;TENTHS OF A

SECOND
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160: DD09 TODSEC = CIA2+9
170: DD0A TODMIN CIA2+10
180: DDOB TODSTD = CIA2+11
190: ;
200: DDOD ICR = CIA2+13

210: DDOE CRA CIA2+14

220: DDOF CRB = CIA2+15

230: D020 BORDER = $D020
240: 0002 RED 2
250: ;
260: 0318 NMI = $318
270: FE56 CONTNMI $ FE56
280: ;
290: ;TIME 12H 00 o o o

300: 0000 TENTHS = 0
310: 0000 SECONDS = $00
320: 0000 MINUTES $ 0 0

330: 0001 HOURS = $01
340: »
350: ;ALARM TIME 12H 00’ 05
360: 0000 ALARM.10 = 0
370: 0005 ALARM.SC = $05
380: 0000 ALARM.MN = $00
390: 0001 ALARM.HR = $01
400: >
410: 033C * = 828
420: >
430: ;SET CLOCK TIME
440: 033C AD OE DD LDA CRA
450: 033F 09 00 ORA #$00

;SECONDS 
;MINUTES 
;HOURS

;INTERRUPT CON
TROL REGISTER 
;CONTROL REG
ISTER A 
;CONTROL REG
ISTER B 

;BORDER COLOR

;NMI-VECTOR 
;OLD NMI

.0”

;CLOCK TIME 60 HZ
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550
560
570
580
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600
610
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640
650
660
670
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700
710
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730
740
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0341 8D OE DD STA CRA

0344 AD OF
i

DD LD A CRB
0347 29 7F AND #$7F ;SET CLOCK TIME
0349 8D OF DD STA CRB

034C A5 01 LDA HOURS
034E 8D OB DD STA TODSTD
0351 A9 00 LDA ♦MINUTES
0353 8D OA DD STA TODMIN
0356 A9 00 LDA ♦SECONDS
0358 8D 09 DD STA TODSEC
035B A9 00 LDA ♦TENTHS
035D 8D 08 DD STA TODIO

0360 AD OF DD LDA CRB
0363 09 80 ORA ♦$80 ;SET ALARM TIME
0365 8D OF DD STA CRB

0368 A9 01 LDA ♦ALARM.HR
036A 8D OB DD STA TODSTD
036D A9 00 LDA ♦ALARM.MN
036F 8D OA DD STA TODMIN
0372 A9 05 LDA ♦ALARM.SC
0374 8D 09 DD STA TODSEC
0377 A9 00 LDA ♦ALARM.10
0379 8D 08 DD STA TODIO

037C A9 84 LDA ♦*10000100 ;ALARM
037E 8D OD DD STA ICR ;FREE NMI

0381 A9 8C LDA ♦ < TEST
0383 AO 03 LDY ♦>TEST
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790: 0385 8D 18 03 STA NMI ;NEW NMI VECTOR
800: 0388 8C 19 03 STY NMI +1
810: 038B 60 RTS
820: ;
830: 038C 48 TEST PHA
840: 038D 8A TXA
850: 038E 48 PHA iiSAVE REGISTERS
860: 038F 98 TYA
870: 0390 48 PHA
880: 0391 AC 0D DD LDY ICR
890: 0394 98 TYA
900: 0395 29 04 AND ♦X100 ;;ALARM BIT SET?
910: 0397 DO 03 BNE ALARM ; YES
920: 0399 4C 56 FE JMP CONTNMI
930: i
940: 039C A9 02 ALARM LDA #RED
950: 039E 8D 20 DO STA BORDER ;;BORDER COLOR TO

RED
960:
970: 03A1 68 PLA
980: 03A2 A8 TAY
990: 03 A3 68 PLA
1000: 03A4 AA TAX
1010: 03A5 68 PLA
1020: 03A6 40 RTI
] 033C-03A7
NO ERRORS

The program first defines the addresses of the real-
t ime clock and1 the control register in the CIA 2. Then the
clock time is set to 12 o’clock and the alarm time to 12
o’clock and 5 seconds. The program first sets the real-time 
clock to 60 Hz so that the clock runs correctly. Then bit 7
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in control register B is cleared in order to infora the CIA 
that we want to input the clock time, which we proceed to 
do. Now we set bit 7, program the alarm tine, and enable the 
alarm NMI in the interrupt control register. Bit 2 as well 
as bit 7 must be set in order to do this. Finally, we must 
set the NMI vector to our new routine and the initialization 
is completed.

The actual NMI routine does not have much to do. First 
the registers are saved on the stack, then the interrupt 
control register is read and bit 2 checked. If the bit was 
set, the alarm time was reached. We respond by setting the 
border color of the screen to red. The registers are res
tored and control is returned to the interrupted program. If 
the NMI was not generated by the alarm time, we jump to the 
NMI routine in the kernel. There a check is made to see if 
the STOP key was pressed in addition to the RESTORE key 
which generated the interrupt. If this test is positive, a 
warm start is executed.

Naturally, you can change the action which occurs when 
the alarm time is reached. For example, your routine could 
sound a tone through the sound chip. You should also add an 
easy way of setting the clock and alarm times. The real-time 
clock is very accurate over a long period of time because it 
runs in synchronization with the AC power lines.
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2 . 6  U s i n g  t h e  t i m e r

Each CIA contains two 16-bit timers. An interrupt can 
be generated when the timer times out. These timers are used 
heavily by the operating system and are decremented by one 
with each system clock pulse. If the value zero is reached, 
the corresponding bit in the interrupt request register is 
set and--if the mask in the interrupt control register 
permits it— an IRQ or NMI is generated. The American version 
of the Commodore 64 has a clock frequency of approximately
1.02 MHz, resulting in a clock period of about .98 micro
seconds or close to 1 microsecond. Because the timer can be 
loaded with a 16-bit value, times up to 65,535 clock periods 
or approximately 65 milliseconds (about a fiftieth of a 
second) can be attained. Timer A of CIA 1 is loaded with 
$4295 or 17045, for example, which corresponds to one six
tieth of a second. European PAL versions have a clock freq
uency of 985 KHz, resulting in a clock period of 1.015 
microseconds. The timer is loaded with the value $4025 or 
16421, which corresponds to one sixtieth of a second at the 
slower speed.

There are various operating methods for using the timer 
such as the "one shot” and "continuous" modes. In the one- 
shot mode the timer counts down only once from the initial 
value to zero and then stops. In the continuous mode, the 
timer is automatically reloaded with the starting value and 
started again when it times out. In addition to generating 
an interrupt, the timer can also generate a pulse on the 
user port after time-out. This could be used as the clock 
signal for a peripheral device. In addition, the timers can 
be used as counters. In this mode, the system clock does not 
do the decrementing. Instead, an external signal causes the
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timer to be decremented. One can also couple the timers. One 
timer counts the number of times the other reaches zero. 
This allows the two to be used as a 32-bit timer, so that 
times up to 2~32 clock cycles or about 4,360 seconds (1 hour 
and 12 minutes) can be recorded.

At the close of our chapter on interrupt programming, 
we want to write a machine language program that allows us 
to control BASIC subroutines with interrupts. We will learn 
something about the use of the timers as well as the opera
tion of the BASIC interpreter.

We will introduce a new BASIC command which allows us 
to execute a normal BASIC subroutine when a certain time has 
elapsed. First a bit of background information.

The BASIC interpreter uses a main loop when executing a 
BASIC program to analyze and execute each statement. After 
each statement, a check is made to see if the STOP key was 
pressed. If it was pressed, the main loop is exited and 
control returns to the direct mode. The reading of the STOP 
key occurs via a jump vector. We can change this vector so 
that it points to a new routine. In this new routine we can 
check to see if the condition for executing our interrupt 
program has been met. In other words, to see if the timer 
has timed out. In order to recognize this, an interrupt 
routine sets a flag based on the state of the timer, which 
can then be read by the previous routine.

The new BASIC command specifies which BASIC routine is 
to be executed after an interrupt. An additional parameter 
specifies the time at which the interrupt should be genera
ted. The command looks like this.
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!GOSUB 1000,100

The exclamation point is used to differentiate the new 
coaaand froa the normal GOSUB coaaand. The 1000 is the first 
line number of the subroutine and the 100 is the time at 
which the interrupt will be generated. The time increments 
are fiftieths of a second. We load a timer with this value 
(for one fiftieth of a second). We load the second value 
(the second parameter of the command) into the next timer, 
using the two of them together as a 32-bit timer. We can 
then program times from a fiftieth of second to 65535 fif
tieths of a second, which is 0.02 to 1311 seconds (21 min
utes and 51 seconds).

Our program consists of three routines in addition to 
the initialization. The first modifies the BASIC interpreter 
so that it understands our new command. The second routine 
checks (after each statement) to see if the time-out flag is 
set and if so, branches to the BASIC subroutine. The third 
routine is the interrupt (actually NMI) routine which sets 
the flag for the second routine after the timer times out.

100: ccoo .OPT PI
110: ccoo .SYM 2
130: t
140: ;INTERRUPT ROUTINE FOR BASIC
150: i
160: 0308 EXEC = $308 ;EXECUTE VECTOR

FOR STATEMENT
170: 0318 NMI = $318 ;NMI VECTOR
180: 0328 STOP = $328 ;STOP VECTOR
190
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200: DD00 CIA2 = $DD00
210: DD04 TIMERA = CIA2+4 ;TIMER A
220: DD06 TIMERB = CIA2+6 ;TIMER B
230: DDOD ICR = CIA2+13 ;INTERRUPT CON

TROL REGISTER
240: DDOE CRA = CIA2+14 ;CONTROL REG

ISTER A
250: DDOF CRB = CIA2+15 ;CONTROL REG

ISTER B
260: ;
270: FE56 CONTNMI = $FE56 ;CONTINUE OLD NMI
280: >i
290: 4FB0 TIME = 20400 ;=20 MILLISECONDS
300: 0014 LO = $14 ;LINE NUMBER LO
310: 0015 HI = LO+1
320: 005F LINEADDR = $5F ;ADDRESS OF BASIC

LINE
330: 0039 LINENO = $39 ;RUNNING LINE

NUMBER
340: 0073 CHRGET = $73
350: 0079 CHRGOT = CHRGET+6
360: 007 A TXTPTR = CHRGOT+1
370: 008D GOSUB = $8D ;GOSUB TOKEN
380: AF08 SYNTAX = $ AF08 ;SYNTAX ERROR
390: A8E3 UNDEFD = $A8E3 ;UNDEF * D STATEMENT

ERROR
400: B248 ILLQUAN = $B248 ;ILLEGAL QUANTITY

ERROR
410: A7AE INTER = $A7AE ;INTERPRETER LOOP
420: A96B GETLIN = $A96B ;GET LINE NUMBER
430: A613 GETADDR = $A613 ;SEARCH LINE
440: AEFD CHKCOM $AEFD ;TEST COMMA
450: A7E7 EXECOLD = $ A7E7 ;EXECUTE STATEMENT
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460: AD8A FRMNUM = $AD8A ;GET NUMERICAL
VALUE

470: B7F7 INTEGER = $B7F7 ;AND CONVERT TO
INTEGER

480: A3FB TESTSTACK= $A3FB ;CHECK FOR SPACE
IN STACK

490: F6ED TESTOLD = $F6ED ;CHECK STOP KEY
500: FE47 NMIOLD = $FE47 ;OLD NMI VECTOR
510: ;
520: CCOO t = $CCOO
530: CCOO A9 10 INIT LD A #< TESTSTAT
540: CC02 AO CC LDY #> TESTSTAT
550: CC04 8D 08 03 STA EXEC ;ROUTINE FOR

DECODING
560: CC07 8C 09 03 STY EXEC+1 ;OFF *!*
570: CCOA A9 00 LDA #0
580: CCOC 8D F7 CC STA FLAG ;ERASE FLAG
590: CCOF 60 RTS
600: >
610: CC10 20 73 00 TESTSTAT JSR CHRGET ;GET NEXT CHAR

ACTER
620: CC 13 C9 21 CMP #" , t.
630: CC15 FO 06 BEQ TSTGOSUB
640: CC 17 20 79 00 JSR CHRGOT ;REPLACE FLAGS
650: CC 1A 4C E7 A7 JMP EXECOLD ;AND CONTINUE AS

NORMAL
660: ;
670: CC ID 20 73 00 TSTGOSUB JSR CHRGET ;NEXT CHARACTER
680: CC20 C9 8D CMP #GOSUB ;GOSUB CODE?
690: CC22 FO 03 BEQ OK ; YES
700: CC24 4C 08 AF JMP SYNTAX ;SYNTAX ERROR
710: CC27 20 73 00 OK JSR CHRGET ;NEXT CHARACTER
720: CC2 A FO 68 BEQ IRQOFF ;LINE END, THEN
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SWITCH IRQ ADD
730: CC2C 20 6B A9 JSR GETLIN ;GET LINE NUMBER
740: CC2F 20 13 A6 JSR GETADDR ;GET LINE ADDRESS
750: CC32 BO 03 BCS FOUND ;FOUND?
760: CC34 4C E3 A8 JMP UNDEFD ;NO, UNDEF* D

STATEMENT ERROR
770: CC37 A5 5F FOUND LD A LINEADDR ;LINE ADDRESS
780: CC39 E9 01 SBC #1 ;MINUS 1
790: CC3B 8D F8 CC STA LINESTR ; SAVE
800: CC3E A5 60 LDA LINEADDR+l
810: CC40 E9 00 SBC #0 ;HIGH BYTE
820: CC42 8D F9 CC STA LINESTR+1
830: CC45 20 FD AE JSR CHKCOM ;CHECK FOR COMMA
840: CC48 20 8A AD JSR FRMNUM ;NEXT VALUE
850: CC4B 20 F7 B7 JSR INTEGER ;CONVERT TO

INTEGER
860: CC4E A5 14 LDA LO
870: CC50 05 15 ORA HI ;LOW AND HIGH BYTE

ZERO?
880: CC52 DO 03 BNE OKI ; NO
890: CC54 4C 48 B2 JMP ILLQUAN ;ILLEGAL QUANTITY

ERROR
900: CC57 A5 15 OKI LDA HI
910: CC59 8D 07 DD STA TIMERB+1
920: CC5C A5 14 LDA LO ;LOAD VALUE INTO

TIMER B
930: CC5E 8D 06 DD STA TIMERB
940: CC61 A9 4F LDA #>TIME ;LOAD TIMER A
950: CC63 8D 05 DD STA TIMERA+1
960: CC66 A9 BO LDA #< TIME ;WITH 20MS
970: CC68 8D 04 DD STA TIMERA
980: CC6B A9 11 LDA #*00010001 ;START TIMER A
990: CC6D 8D OE DD STA CRA
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1000: CC70 A9 51 LDA #*01010001 ;START TIMER B
1010: CC72 8D OF DD STA CRB ;TRIGGERED BY

TIMER A
1020: CC75 AD OD DD LDA ICR ;ERASE ICR
1030: CC78 A9 82 LDA #*10000010 ;NMI FOR

TIMER B
1040: CC7A 8D OD DD STA ICR ; FREE
1050: CC7D A9 C9 LDA #<TESTTIME
1060: CC7F AO CC LDY #> TESTTIME
1070: CC81 8D 28 03 STA STOP ;GET STOP VECTOR
1080: CC84 8C 29 03 STY STOP+1
1090: CC87 A9 BO LDA #<NMIROUT
1100: CC89 AO CC LDY #>NMIROUT
1110: CC8B 8D 18 03 STA NMI ;SET NMI VECTOR
1120: CC8E 8C 19 03 STY NMI +1
1130: CC91 4C AE A7 JMP INTER ;TO INTERPRETER

LOOP
1140: ;
1150: CC94 A9 7F IRQOFF LDA #*01111111
1160: CC96 8D OD DD STA ICR ;ALL INTERRUPTS

OFF
1170: CC99 A9 ED LDA #< TESTOLD
1180: CC9B AO F6 LDY #>TESTOLD
1190: CC9D 8D 28 03 STA STOP ;STOP VECTOR TO

OLD VALUE
1200: CC AO 8C 29 03 STY STOP+1
1210: CCA3 A9 47 LDA #<NMIOLD
1220: CCA5 AO FE LDY #> NMIOLD
1230: CCA7 8D 18 03 STA NMI ;NMI VALUE TO OLD

VECTOR
1240: CC AA 8C 19 03 STY NMI +1
1250: CCAD 4C AE A7 JMP INTER ;TO INTERPRETER

LOOP
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1260:
1270: CCBO 48 NMIROUT PHA
1280: CCB1 8A TXA
1290: CCB2 48 PHA
1300: CCB3 98 TYA
1310: CCB4 48 PHA
1320: CCB5 AC OD DD LDY ICR
1330: CCB8 98 TYA
1340: CCB9 29 02 AND #%10 ;TIMER B TIMED

OUT?
1350: CCBB DO 03 BNE TIMEOUT ;YES
1360: CCBD 4C 56 FE JMP CONTNMI ;OTHERWISE NORMAL

NMI
1370: ;
1380: CCCO EE F7 CC TIMEOUT INC FLAG ;SET FLAG
1390: CCC3 68 PLA
1400: CCC4 A8 TAY
1410: CCC5 68 PLA
1420: CCC6 AA TAX
1430: CCC7 68 PLA
1440: CCC8 40 RTI
1450: ;
1460: CCC9 AD F7 CC TESTTIME LDA FLAG ;FLAG SET?
1470: CCCC DO 03 BNE TIMEIRQ ;YES
1480: CCCE 4C ED F6 JMP TESTOLD
1490: ;
1500: CCD 1 CE F7 CC TIMEIRQ DEC FLAG ;ERASE FLAG AGAIN
1510: CCD4 68 PLA
1520: CCD5 68 PLA ;RETURN ADDRESS

FROM STACK
1530: CCD6 A9 03 LDA #3
1540: CCD8 20 FB A3 JSR TESTSTACK ;STILL ENOUGH

STACK SPACE
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1550 CCDB A5 7B LD A TXTPTR+1
1560 CCDD 48 PHA ;CHRGET POINTER

TO STACK
1570 CCDE A5 7A LD A TXTPTR
1580 CCEO 48 PHA
1590 CCE 1 A5 3 A LD A LINENO+1
1600 CCE3 48 PHA ;ACTUAL LINE

NUMBER ON STACK
1610 CCE4 A5 39 LDA LINENO
1620 CCE6 48 PHA
1630 CCE7 A9 8D LDA #GOSUB
1640 CCE9 48 PHA ;GOSUB CODE ON

STACK
1650 CCE A AD F8 CC LDA LINESTR
1660 CCED 85 7A STA TXTPTR ;ADDRESS OF SUB

ROUTINE
1670 CCE F AD F9 CC LDA LINESTR+ 1
1680 CCF2 85 7B STA TXTPTR+1
1690 CCF4 4C B 1 A 7 JMP INTER+3 ;TO INTERPRETER

LOOP
1700 ;
1710 CCF7 FLAG *+l
1720 CCF8 LINESTR * = * + 2
]CC00-CCFA
NO ERRORS

SYMBOL- TABLE
LINESTR CCF8 FLAG CCF7
TIMEIRQ CCD 1 TESTTIME CCC9
TIMEOUT CCCO NMIROUT CCBO
IRQOFF CC94 OKI CC57
FOUND CC37 OK CC27
TSTGOSUB CC1D TESTSTAT CC10
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INIT ccoo NMIOLD FE47
TESTOLD F6ED TESTSTAC A3FB
INTEGER B7F7 FRMNUM AD8A
EXECOLD A7E7 CHKCOM AEFD
GETADDR A613 GETLIN A96B
INTER A7AE ILLQUAN B248
UNDEFD A8E3 SYNTAX AF08
GOSUB 008D TXTPTR 007A
CHRGOT 0079 CHRGET 0073
LINENO 0039 LINEADDR 005F
HI 0015 LO 0014
TIME 4FB0 CONTNMI FE56
CRB DD0F CRA DD0E
ICR DD0D TIMERB DD06
TIMERA DD04 CIA2 DD00
STOP 0328 NMI 0318
EXEC 0308
45 SYMBOLS DEFINED

Before we come to the detailed description of the 
program, here is a small demonstration program.

100 SYS 52224 : REM INITIALIZE EXPANSION 
110 !GOSUB 200,50
120 1=1+1 : PRINT I : IF I<100 GOTO 120
130 IGOSUB 
140 END
200 J=J+1 : PRINT "IRQ CALL #" J : RETURN

When you start this program with RUN, the new command 
is added by the SYS in line 100. Line 110 defines the sub
routine at line 200 as the interrupt program, which is 
executed every second (50 fiftieths). The actual main prog
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ram is in line 120 and outputs the number from 1 to 100. 
When this loop is ended, the interrupt routine is switched 
off by IGOSUB without any parameters and the program ends. 
The interrupt routine is at line 200. It displays a running 
count of the number of calls before returning to the main 
program with RETURN.

If you run the program, numbers from 1 to 100 will be 
printed, but the output will be interrupted five times with 
the message

IRQ CALL ♦ 1

through

IRQ CALL # 5

If you change the second parameter in line 110, you can 
set the frequency at which the subroutine is called. Values 
from 1 to 65535 are allowed. The smaller the value is, the 
more often the interrupt routine will be called. The time 
required to execute the BASIC interrupt routine may not be 
longer than the time between calls, otherwise the interrupt 
routine will interrupt itself and the BASIC stack will 
overflow. For example, if your replace line 110 with

110 IGOSUB 200,1

you will receive the following output:

1
IRQ CALL # 1 
IRQ CALL # 2
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IRQ CALL # 22
IRQ CALL # 23

?OUT OF MEMORY ERROR IN 200

Now to description of the machine language program.

Constants are defined in lines 100 to 500. These con
cern the NMI and BASIC vectori. Then follow the registers 
in the CIA 2 which are necessaiy for the timer interrupt. 
Line 290 defines our time increment. After this are BASIC 
addresses from the zero page as well as error messages and 
ROM addresses used by the BASIC interpreter. The initializa
tion is performed in lines 520 to 590. Here the vector which 
points to the routine for decoding and executing a BASIC 
statement is redirected to our own routine. This routine 
gets the next character from the BASIC text and compares it 
with the exclamation point. If this character is not found, 
the original values of the flags are restored with the 
CHRGOT routine and a jump is made to the point in the inter
preter where statements are normally processed. If, on the 
other hand, an exclamation point is found, we get the next 
character and check if it is the code for GOSUB. If not, 
then we output ’’SYNTAX ERROR.” If so, then it is our new 
command. The next character is fetched. If it is the end of 
the line, a branch is made to the routine which disables the 
interrupt and resets the vectors to their original values. 
Otherwise the line number is determined and its address 
obtained. After a check is made to see if this line really 
exists (signaled by a set carry flag), the line address is 
decremented by one and saved. Now a test cap be made for the 
comma and the second parameter fetched. The second parameter
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determines the duration between interrupts. If it is not 
zero, timer B is loaded with it. Timer A is loaded with the 
value for a fiftieth of a second and both timers are start
ed. Timer B is programmed such that it is decremented each 
time timer A reaches zero (times out). The NMI for timer B 
is then enabled by writing the corresponding bit pattern 
into the control register. Finally, the STOP and NMI vectors 
are set to the new routines before we jump back to the 
interpreter loop.

From line 1150 to 1250 you find the routine which turns 
the interrupt off following a IGOSUB command without para
meters. It also sets the vectors back to the original val
ues. The actual NMI routine is perfomed by lines 1270 to 
1390. The registers are first saved and the status of timer 
B is tested by reading the interrupt control register, to 
see if the timer generated the NMI. If this was the case, a 
flag is set and the NMI routine exited. Otherwise execution 
branches to the normal NMI routine.

The most important subroutine, called by the BASIC 
interpreter after each statement, is found at line 1410. 
Here a check is made to see if the appropriate flag from the 
NMI is set indicating that the time is up. If the test is 
negative, a branch is made to the normal routine which 
checks the STOP key. If the time was up, the flag is cleared 
and the actual return address is pulled from the stack. The 
BASIC GOSUB command is then imitated. After the' program 
determines that there is enough room left on the stack, the 
pointer to the BASIC text as well as the current line number 
are saved on the stack. In order to distinguish this from a 
FOR-NEXT loop which also places its parameters on the stack, 
the GOSUB code is pushed onto the stack. Next the address of
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the subroutine is determined as saved by the definition, 
loaded into the BASIC text pointer and a branch is again 
made to the interpreter loop. The BASIC interpreter executes 
the subroutine and can correctly return to the interrupted 
program when it encounters the RETURN command.

The program ends with the definition of two variables. 
The .SYM pseudo-op in line 120 produces the symbol table 
shown at the end of the listing which includes all of the 
symbols used together with their values.

This new command offers you possibilities in BASIC 
which could previously be attained only in machine language. 
You can now execute time-controlled subroutines in BASIC 
with a time span from 20 milliseconds to 21 minutes to 
choose from. This is one example of interrupt control from 
within BASIC. To illustrate the routine, here is a program 
which flashes the screen by exchanging the background and 
border colors.

100 SYS 52224
110 FI = 53280 : F2 = FI + 1 
120 !GOSUB 1000,30
130 FOR 1=1 TO 1000 : PRINT I, : NEXT 
140 !GOSUB : END
1000 A=PEEK(FI) : POKE F1,PEEK(F2) : POKE F2,A : RETURN

The BASIC interrupt routine should always be deact
ivated with IGOSUB before the end of the program. If you 
later try to list or save a program with the interrupt 
routine active, it will interrupt this process because these 
routines check for the STOP key.
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The next example program displays the Commodore 64 *s 
character set in normal and reverse and then switches, on 
interrupt, between the standard text representation and the 
extended color mode. This is done by setting bit 6 in regis
ter 17 of the video controller. In this mode only 64 char
acters instead of 256 can be displayed. The upper two bits 
of the screen memory now serve to select one of four dif
ferent background colors for each character. These colors 
are placed in registers 33 to 36 of the video controller 
(addresses 53281 to 53284).

100 SYS 52224 
110 !GOSUB 170,25 
120 X= 18
130 PRINT CHR$(X);:X=X+128 AND 255 
140 FOR 1=32 TO 127:PRINT CHR$(I);:NEXT 
150 FOR 1=160 TO 255:PRINT CHR$(I);:NEXT 
160 PRINT:G0T0130
170 A=PEEK(53248+17):POKE53248+17,(A0R64)ANDNOT(AAND64)
180 RETURN
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S E C T I O N  3  B e y o n d  B A S I C

3 . 1  K e r n a l  a n d  B A S I C  e x t e n s i o n s

One advantage that the Comnodore 64 has over its "big” 
brothers, the CBM 8032 and 8096 is that the BASIC inter
preter and operating system kernal can be easily "expanded" 
with your own customized routines.

By expand we mean that we can extend the capabilities 
by adding new or enhanced commands to BASIC. It is no longer 
necessary to access each new command with PEEK, POKE, or 
SYS. There are two ways to do this.

Because the entire address space of the Commodore 64 of 
64K is equipped with RAM, you can easily make changes in the 
BASIC and operating system by copying the BASIC interpreter 
and/or the kernal ROM into the RAM lying at the same ad
dress. Then you can make the desired changes and "switch on" 
this RAM version of BASIC by means of the processor port at 
address 1. This method has both advantages and disadvantages 
compared to the method described later.

The advantage of this method is that you have complete 
freedom in making changes. This freedom is so extensive that 
a completely different language can be used in place of 
BASIC, or a completely new operating system can be constr
ucted. This RAM area is otherwise often used for such things 
as graphics storage. The disadvantage of this method lies in 
that this RAM area is no longer available for other pur
poses. A variant of this method is the use of one or two 
EPROMs in the address range from $8000 to $9FFF or from
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$8000 to $BFFF which contains a BASIC extension, another 
language, or a user-specified program. A cartridge in the 
cartridge slot is necessary for this, however.

A second method does not require additional ROM but 
rather uses entry points in the system software in order to 
modify the most important functions. These key positions are 
accessed via so-called jump vectors which can be changed by 
the user. An indirect jump instruction used at this point. 
For example

JMP (VECTOR)

The low and high bytes of the actual jump address are 
stored at the address vector. These vectors are initialized 
when the computer is turned on and usually point directly 
behind the indirect jump command in the BASIC interpreter. 
If we want to change a certain function, we write our own 
routine and change the appropriate jump vector so that it 
points to our new routine. The principle is similar to that 
which we learned for interrupt vectors.

The following table gives information concerning what 
bit pattern must be written to address 1 in order to get the 
appropriate memory configuration when using the "RAM met
hod" :
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Bit
2 1 0 dec $A000 - $BFFF $D000 - $DFFF gEOOO - gFFFF
1 1 1 7 BASIC I/O KERNAL
1 1 0 6 RAM I/O KERNAL
1 0 1 5 RAM I/O RAM
1 0 0 4 RAM RAM RAM
0 1 1 3 BASIC CHAR GEN KERNAL
0 1 0 2 RAM CHAR GEN KERNAL
0 0 1 1 RAM CHAR GEN RAM
0 0 0 0 RAM RAM RAM

This table contains all possible combinations for the
memory configuration. Combinations 4 and 0 have the same
result; the complete address space is switched to RAM. You
can see: from the table that BASIC can be exchanged for RAM
independently , but the kernal ROM must be switch out t o-
gether with the BASIC ROM. This should be noted if the
kernal is to be replaced. The address area at $D000-$DFFF 
has three functions: it is the I/O area, which is divided as 
follows:

$D000 - $D3FF 
$D400 - $D7FF 
$D800 - $DBFF 
$DC00 - $DCFF 
$DD00 - $DDFF 
$DE00 - $DEFF 
$DF00 - $DFFF

VIC 6567
SID 6581
color RAM
CIA 1 6526
CIA 2 6526
I/O 1 for expansion
I/O 2 for expansion

In addition, the character generator can be addressed at 
this address. Third, this area is allocated with RAM which 
can only be addressed when the entire memory is switched to 
RAM.
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3 . 2  T h e  B A S I C  v e c t o r s

The BASIC interpreter has six vectors which make it 
possible to add new routines. These vectors are placed in 
page 3 and have the following use:

Vector Address Significance
$0300/$0301 $E38B BASIC warm start and error entry point
$0302/$0303 $ A483 input delay loop
$0304/$0305 $A57C conversion to interpreter code
$0306/$0307 $ A7 1A convert interpreter code to text
$0308/$0309 $A7B4 execute BASIC command
$030A/$030B $ AE86 evaluate BASIC expression

With the help of these 6 vectors you have an easily 
accessible way of changing the BASIC interpreter. We will 
become acquainted with the significance of each vector and 
use then for extensions and enhancements.

In order to draw the greatest usefulness from this 
section, you may want to consult the ROM listing of the *64 
found in The Anatomy of the Commodore 64 as we go along. 
This allows you to trace exactly what happens in the BASIC 
int< rpreter.

The* warm start and error vector $300/$301

This vector is used when the END of the program or an 
error is encountered. If an error occurs, the X register 
contains the error number. These numbers range from 1 to 29 
and have the following meaning:
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No. Error nessage

1 TOO MANY FILES
2 FILE OPEN
3 FILB NOT OPBN
4 FILE NOT FOUND
5 DEVICE NOT PRESENT
6 NOT INPUT FILE
7 NOT OUTPUT FILE
8 MISSING FILENAME
9 ILLEGAL DBVICE NUMBER
10 NEXT WITHOUT FOR
11 SYNTAX
12 RETURN WITHOUT GOSUB
13 OUT OF DATA
14 ILLEGAL QUANTITY
15 OVERFLOW
16 OUT OF MEMORY
17 UNDBF’D STATEMENT
18 BAD SUBSCRIPT
19 REDIM’D ARRAY
20 DIVISION BY ZERO
21 ILLEGAL DIRECT
22 TYPE MISMATCH
23 STRING TOO LONG
24 FILE DATA
25 FORMULA TOO COMPLEX
26 CAN’T CONTINUE
27 UNDEF’D FUNCTION
28 VERIFY
29 LOAD
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Brror messages from 1 to 9 are input/output related 
errors and are issued by the operating system (kernal). 
Errors 10 to 29 are generated by the BASIC interpreter. If 
an error is recognized by the BASIC interpreter, the X 
register is loaded with the error number and a jump is made 
to address $A437 by way of the indirect jump JMP ($0300). If 
the program is ended with END as normal, however, the X 
register is loaded with a negative value ($80) in order to 
distinguish it from an error message. This is checked in the 
error routine, the error output bypassed, the message 
’’READY.” displayed, and a branch made to the input-wait 
loop.

We can use the error vector for a variety of purposes. 
For one, we could change the text of the error messages, or 
prevent the program from breaking off when an error is 
discovered, but to branch to a specified BASIC line where 
the error can be caught or perhaps corrected. Some enhanced 
versions of BASIC have a command for this purpose such as:

ON ERROR GOTO ...

Such a command can, for example, be used to catch errors 
generated by peripheral devices.

The input-wait loop $302/$303

When the computer displays the READY. prompt after END 
or an error message, it goes to the warm-start vector at 
$300. Then it jumps to the vector $302/$303. In this rou
tine, the computer waits for the input of a line terminated 
by the <RETURN> key.
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This line is checked to make sure that it is not longer 
than 88 characters (the length of the BASIC input buffer 
located from $200 to $258.) If this length is exceeded, the 
error message "STRING TOO LONG" is displayed. The first 
character of the inputted line determines how the line will 
be treated. If the first character is a digit, the inter
preter assumes that we want to enter a new BASIC line. In 
this case, the entire line number is read and a check is 
made to see if this line exists. If so, the old line is 
deleted from the program. If nothing follows the line 
number, then the line is to be simply deleted and a branch 
is made back to the start of the loop. If additional text 
follows the line number, this text is converted to inter
preter codes, and the program line is inserted into the 
BASIC text, and a branch is again made to the start of the 
loop.

If the first character entered was not a digit, the 
line is interpreted as a BASIC command in the direct mode. 
The line is converted to interpreter codes and a branch is 
made to the place in the interpreter where a BASIC command 
is executed.

We can also use this vector to extend or enhance BASIC. 
For example, it is possible to take program input from a 
sequential disk file or from the user port, from another 
computer connected there, instead of the keyboard. This 
greatly simplifies the transfer of BASIC programs from other 
computers. The slow and error-prone typing-in of listings is 
no longer necessary. With direct coupling of two computers, 
the sending computer need only list its program over the 
interface. The RS 232 is best suited for this purpose since 
most computers have this interface available to them.
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An additional application of this vector is the AUTO 
couand. This coaaand eases the input of programs by auto
matically placing the next line number at the start of the 
line and positioning the cursor behind it.

Conversion to interpreter codes $304/$305

As you probably know, a program line is not saved as it 
was entered. Instead, each command word is shortened to a 
single-byte value called a token. This has two advantages 
over storing the entire text of that word. First, it saves 
memory. Instead of 5 bytes for the word "PRINT" only one 
byte is require for the token. The second advantage is 
noticeable during program execution. When the BASIC inter
preter is executing a program and comes across a token, it 
can immediately execute the appropriate command. If the 
command were saved in text (ASCII) form, the complete word 
would have to be read. Then the interpreter would have to 
read through its command table and see if the word is pre
sent in its table as a command word. The program would take 
considerably longer to run without tokens. If, on the other 
hand, the program line is converted to tokens, this conver
sion is only necessary once and not each time the command is 
executed.

If we want to convert new commands to tokens, we can 
change this vector. Our routine must then compare the word 
read from the input with the table of the new command words. 
If a new command is found, the command word is replaced by 
its token in the program or command line.
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Conversion of the interpreter code to text (ASCII) $306/$307

This vector performs the opposite task of the one 
above. If we want to list a program, we must convert the 
tokens back into text. The token value is used as a pointer 
in the command word table. This vector is used only by the 
LIST command. We must change it when we use our own inter
preter codes so that the new commands can be listed proper
ly. An additional application is to change the operation of 
the LIST command. We could for example make a listing more 
readable by placing a space after each command word, or by 
indenting loop structures. It is also possible to start a 
new line for each new statement separated by a colon.

Execute a command $308/$309

This vector is one of the most important. It points to 
the place in the interpreter where a BASIC command is exe
cuted. Normally, this routine gets a character from the 
BASIC text and check to see if it is a token. If the char
acter is not a token, the interpreter assumes that it is an 
assignment of the form "A = ...” and branches to the LET 
command. If it is a token, its value is used as an index in 
a table containing the BASIC commands. These commands are 
executed as subroutines and after execution can branch back 
to the start of the interpreter loop where the next state
ment can be handled in the same way.

With the help of this vector one can easily add custom 
BASIC commands to the interpreter. These can be designated 
by a special character such as an exclamation point (!). We 
can then check for this character in our routine and execute 
the new command when found.
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If we have added our own tokens for our new commands 
using the previously described vector $304/$305, a special 
character is no longer necessary. Instead, we can first 
check for our new tokens and branch to the original routine 
for executing commands if the new command is not found.

Evaluate a BASIC expression $30A/$30B

This vector is to a function what the previous vector 
was to a command. This vector is used when an element of an 
expression is to be calculated. This element can be a num
ber, a BASIC variable, or a function. If we want to add new 
functions, we must add them using this vector. Numeric as 
well as string functions can be handled. You must also 
modify this vector if you save variables in other forms. 
This allows such things as hex and binary constants.

100:
110:

033C .OPT
)

PI

120:
130:

;INPUT OF HEX
>

AND BINARY NUMBERS

140: 030 A EXPRESSION $30A ;VECTOR FOR EXP
RESSION EVALUATION

150:
160:

AE8D OLDVECT = $ AE8D ;OLD ROUTINE

170: 000D TYP 13 ;VARIABLE TYPE
180: 0073 CHRGET $73
190:
200:

0079 CHRGOT CHRGET+6

210:

220:

BD7E ADDDIGIT = $BD7E ;ADD ONE-BYTE
DIGIT TO FAC

230: 005D FLOAT $5D ;RANGE FOR FLOAT-
140



Advanced Machine Language

ING POINT NUMBERS
240: 0061 EXP = $61 ;EXPONENT FROM FAC
250: »
260: B97E OVERFLOW = $B97E ;OVERFLOW ERROR
270: ;
280: 033C *  = 828
290: ;
300: 033C A9 47 INIT LDA #<TEST
310: 033E AO 03 LDY #>TEST
320: 0340 8D OA 03 STA EXPRESSION ;SET VECTOR

TO NEW ROUTINE
330: 0343 8C OB 03 STY EXPRESSION+1
340: 0346 60 RTS
350: ;
360: 0347 A9 00 TEST LDA #0
370: 0349 85 OD STA TYP ;TYPE FLAG TO

NUMERIC
380: 034B 20 73 00 JSR CHRGET ;GET NEXT CHAR

ACTER
390: 034E C9 24 CMP ;HEX NUMBER?
400: 0350 FO OA BEQ HEXNUMBER
410: 0352 C9 25 CMP ;BINARY NUMBER?
420: 0354 FO 41 BEQ BINNUMBER
430: f

440: 0356 20 79 00 JSR CHRGOT ;REPLACE FLAGS
450: 0359 4C 8D AE JMP OLDVECT ;AND GO TO OLD

EVALUATION
460: 1
470: 035C 20 8D 03 HEXNUMBERJSR CLRFAC ;CLEAR FAC
480: 035F 20 73 00 GETNEXT JSR CHRGET ;GET NEXT CHAR

ACTER
490: 0362 90 OB BCC DIGIT ;DIGIT
500: 0364 C9 41 CMP #MA"
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510: 0366 90 IF BCC END ;LESS THAN "A"?
520: 0368 C9 47 CMP #"F"+1
530: 036A BO IB BCS END ;GREATER THAN "F"?
540: 036C 38 SEC
550: 036D E9 07 SBC #7 ;TAKE OFFSET INTO

ACCOUNT
560: 036F 38 DIGIT SEC
565: 0370 E9 30 SBC #"0" ;CONVERT TO HEX
570: 0372 48 PHA ;SAVE CHARACTER
580: 0373 A5 61 LDA EXP
585: 0375 F0 07 BEQ STILLZERO ; IS FAC STILL

ZERO?
590: 0377 18 CLC
600: 0378 69 04 ADC #4 ;EXPONENT + 4=>

NUMBER * 16
610: 037 A BO OE BCS OVER ;NUMBER TOO LARGE!
620: 037C 85 61 STA EXP
630: 037E 68 STILLZEROPLA ;GET DIGIT BACK
640: 037F FO DE BEQ GETNEXT ;ZERO, THEN ADD

ITION UNNECESSARY
650: 0381 20 7E BD JSR ADDDIGIT ;ADD DIGIT TO

FAC
660: 0384 4C 5F 03 JMP GETNEXT
670: ;
680: 0387 4C 79 00 END JMP CHRGOT
690: ;
700: 038A 4C 7E B9 OVER JMP OVERFLOW
710: ;
720: 038D A9 00 CLRFAC LDA #0
730: 038F A2 OA LDX #10
740: 0391 95 5D LOOP STA FLOAT,X ;CLEAR FLOATING

POINT AREA
750: 0393 CA DEX
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760: 0394 10 FB BPL LOOP
770: 0396 60 RTS
780: >
790: 0397 20 8D 03 BINNUMBERJSR CLRFAC ;CLEAR FAC
800: 039A 20 73 00 GETBIN JSR CHRGET ;GET NEXT CHAR

ACTER
810: 039D C9 32 CMP #"2"
820: 039F B0 E6 BCS END •.GREATER THAN ”1”?
830: 03A1 C9 30 CMP #"0"
840: 03A3 90 E2 BCC END ;LESS THAN "0"?
850: 03A5 E9 30 SBC #”0" ;FROM ASCII TO HEX
860: 03A7 48 PHA
870: 03A8 A5 61 LD A EXP ;IS NUMBER STILL

ZERO?
880: 03 AA F0 04 BEQ ZERO
890: 03AC E6 61 INC EXP ;DOUBLE NUMBER
900: 03 AE F0 DA BEQ OVER ;TOO LARGE?
910: 03B0 68 ZERO PLA
920: 03B 1 F0 E7 BEQ GETBIN ;DON’T ADD ZERO
930: 03B3 20 7E BD JSR ADDDIGIT ;ADD DIGIT
940: 03B6 4C 9A 03 JMP GETBIN ;AND GET NEXT

DIGIT
]033C-03B9 
NO ERRORS

This routine works in the same way as the subroutine 
for processing decimal digits, but it is simpler and easier 
to understand because no fractions or exponents need to be 
taken into consideration. When you activate the program with 
SYS 828, you can enter numbers in either hexadecimal or 
binary format in addition to the usual decimal form. For 
example:
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? $FFFF returns 65535

? *101010 returns 42

You are not limited to four digit hex numbers. The 
entire range of floating point numbers is available. This 
means that a hex number may have a maximum of 31 places. For 
example

? $FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

returns

2.12676479E+37

The entire value range cannot be used in a single 
binary input line; a number of 78 binary digits has a value 
of about 3E+23.

With this command expansion you can use hex and binary 
numbers not only in PRINT statements but wherever decimal 
numbers were previously necessary. This is particularly 
interesting in connection with POKE, PEEK, and SYS commands. 
The address $D000 for the video controller is somewhat 
easier to remember that 53248. For example, sprite 3 can be 
activated with

POKE $D015, PEEK($D015) OR *1000

instead of

POKE 53248+21, PEEK(53248+21) OR 8
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There are a few problems with the hex input. Enter

? $ABCDEF

and you will get a "SYNTAX ERROR." Why? If you look at the 
number closely you may recognize that it contains the com
mand word "DEF" for the definition of functions. Since the 
interpreter first converts the input line into tokens, the 
string "DEF" gets converted to the appropriate token and 
our new function returns a SYNTAX ERROR. We can easily get 
around this by adding a space:

? $ABCD EF

Now we get the correct value 11259375. It is possible to 
insert the space because the CHRGET routine ignores spaces. 
This is also the case for normal decimal numbers.

Let us take a closer look at the operation of the 
routine.

After the usual initialization which sets the vector to 
our new routine, the flag denoting the variable type is 
cleared (set to numeric) as per the interpreter routine. Now 
the next character can be fetched and tested. If it is a 
dollar or percent sign, with which hex and binary numbers 
are designated, respectively, a branch is made to our new 
routine. If this was not the case, the flags are reset with 
CHRGOT and execution continues with the original evaluation 
routine of the interpreter. We proceed as follows in the new 
routine to convert a hex number:

First, the floating-point accumulator is cleared be
cause we will construct our result in it. The next character
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is fetched and checked to see if it is a digit or a letter 
from "A” to "F". If this condition is met, the character is 
converted to the corresponding hex value; for example, "1” 
becomes the value $01 and "A" becomes $0A. The value in the 
floating-point accumulator are multiplied by 16, provided it 
is not zero. We perform this multiplication in the simplest 
and fastest way. Instead of calling a floating-point mult
iplication routine, which takes at least a millisecond, we 
can see that multiplying by 16 is the same as incrementing 
the power of two by 4: 16 = 2~4. We therefore simply add 
four to the FAC exponent, which takes only a few micro
seconds. After we are satisfied that no overflow occurred, 
we get the character just read and add it to the FAC. If the 
number is zero, we can skip the addition. This process is 
done in a loop until the CHRGET routine reads a character 
which is not part of the number.

The conversion of a binary number follows 
pattern and is even simpler. Here we simply incr 
exponent by one instead of multiplying by two. The 
al procedures are the same as those for convertin 
numbers.

the same 
ement the 
addition- 
g the hex
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3 . 3  S t r u c t u r e d  P r o g r a n i n g

Throughout this book we have examined the operation of 
the BASIC interpreter, especially the execution of simple 
commands. We have not examined the concept of programming 
structures. The interpreter recognizes only two sets of 
commands for structured programming:

GOSUB ... RETURN

and

FOR ... NEXT

In order to make use of these structures, the inter
preter must know where to jump when executing the RETURN 
command after a GOSUB to a subroutine so that the main 
program can continue as normal. With the NEXT command, the 
end value and step size must be known in addition to the 
address of the start of the loop so that the interpreter can 
determine when to end the loop. The parameters required for 
RETURN and NEXT could be stored at a predetermined place in 
memory. But what happens if we want to nest several sub
routines or loops?

Care must be taken to ensure that the parameters for 
the last used structure (RETURN or NEXT) can be accessed. 
What was stored last must be gotten back first. We are 
familiar with this principle from the stack: LAST IN - FIRST 
OUT. Therefore the BASIC interpreter simply uses the stack 
to store the parameters of the program structures.
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What data must be saved on the stack by a GOSUB com
mand? First, the address following the GOSUB call must 
certainly be saved. In addition, the current line number 
must be placed on the stack so that it has the correct value 
upon return. In order that one can later distinguish the 
data for a GOSUB command from that of a FOR command, the 
GOSUB identification code is also placed on the stack. A 
complete data set on the stack looks like this:

Stack pointer
before GOSUB command --- > program pointer hi

program pointer lo 
line number hi 
line number lo 
GOSUB code $8D

Stack pointer
after GOSUB command ---- >

The GOSUB command thus requires 5 bytes of space on the 
stack. Because the 6510 stack pointer is only 8 bits long, 
it can address only one page, from $100 to $1FF. It is clear 
then that subroutines cannot be nested to any desired depth. 
A maximum of 256/5 = 51 nested subroutines are possible. 
Since the stack is also used for other purposes as well, 
fewer are actually allowed. Before the execution of a GOSUB 
command, a subroutine is called which checks to see if 
enough space is left on the stack. When calling this subrou
tine, one half the number of required memory locations is 
placed into the accumulator. This must be 3 for the GOSUB 
command; therefore the subroutine tests for 6 bytes. If the 
required space is not available, the message ’’OUT OF MEMORY’* 
is given. This message is unfortunately worded the same as 
the message printed when the memory space for variables has
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been used up. A message such as "STACK OVERFLOW" would be 
more appropriate.

The BASIC interpreter has only the area from $013E to 
$1FA at its disposal in the stack. The memory range from 
$0100 to $0110 is used for converting floating point numbers 
to strings and the space from $0111 to $013E is used for 
error correction when reading from the cassette.

What happens during a RETURN command? First a check is 
made to see if the top stack element is the code for GOSUB. 
If this is not the case, the error message "RETURN WITHOUT 
GOSUB" is given. Otherwise the next four bytes are fetched 
from the stack and the parameters for line number and prog
ram pointer are taken care of. The stack pointer now points 
to the element to which it pointed before the GOSUB call. A 
jump is made to the interpreter loop and the program execu
tion automatically continues with the statement following 
the GOSUB command.

The principle is similar for a FOR-NEXT loop, but 
somewhat more complicated because of the number of para
meters which must be temporarily stored. The required para
meters are stored on the stack in the following order:
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Stack pointer 
before FOR command > program pointer hi 

program pointer lo 
line number hi 
line number lo 
mantissa 4
mantissa 3 
mantissa 2 
mantissa 1 
exponent 
sign
mantissa 4 
mantissa 3 
mantissa 2

TO value

STEP value
mantissa 1
exponent
variable address hi
variable address lo
FOR code $81

Stack pointer
after FOR command---- >

You can see that a FOR-NEXT loop requires 18 bytes of 
storage on the stack. The following happens with a NEXT 
command: First a check is made to see if the top stack 
element is the FOR code $81. If this is not the case, the 
error message ’’NEXT WITHOUT FOR” is given. If a variable 
follows the NEXT command, the address of the variable is 
determined and compared with the variable address on the 
stack. If they are the same or there is no variable name 
given, the variable value is placed in the FAC and the STEP 
value from the stack is added. This value is saved as the
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new variable value and can be compared with the end value on 
the stack. • The sign of the STEP value can determine whether 
the loop will be ended or not. If the loop can be ended, 
the stack pointer is incremented by 18 in order to remove 
the parameters from the stack and a jump made to the inter
preter loop where the next statement can be executed. If, on 
the other hand, the end value was not reached, the line 
number and program counter are taken from the stack. The 
stack pointer remains unchanged however, so that the data 
remain for the next NEXT command.

If a variable name whose address is not saved on the 
stack follows the NEXT command, the stack pointer is inc
remented by 18 to see if another FOR-NEXT data set is pre
sent on the stack. This automatically takes care of nested 
loops.

With this knowledge we can add a new structure to 
BASIC. If you have done any programming in Pascal, you are 
probably acquainted with the REPEAT... UNTIL loop. This is a 
program structure which runs until the end criterium is met. 
For example

REPEAT
1 = 1 +  1
UNTIL 1=10

Here the loop is executed until the end condition of 
1=10 is fulfilled. This structure can be used for a variety 
of purposes. As with the FOR-NEXT loop, the contents of the 
loop are executed at least once. Waiting for a key press can 
also be accomplished with this loop.
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REPEAT : GET A$ : UNTIL A$<>"" 

or simpler

REPEAT : UNTIL PEEK(197)<>64

Here the computer waits until the memory location 197 con
tains a value other than 64, indicating that a key was 
pressed.

The following machine language program implements this 
structure in BASIC.

100: 033C .OPT PI
120:
130: ;REPEAT-UNTIL LOOP
140: i
150: 0308 COMMAND = $308 ;EXECUTE VECTOR

FOR COMMAND
160: ;
170: A7E7 CMD.OLD = $ A7E7 ;OLD ROUTINE
180: 0022 ADDR $22 ;ADDRESS FOR

ERROR MESSAGE
190: 0039 LINENO $39 ;ACTUAL LINE

NUMBER
200: 0073 CHRGET $73
210: 0079 CHRGOT CHRGET+6
220: 007 A TXTPTR CHRGOT+1
230: 0100 STACK $100 ;PROCESSOR STACK
240: A445 ERROR $ A445 ;OUTPUT ERROR

MESSAGE
250: ;
260: A3 FB TESTSTACK- $ A3FB ;TEST FOR SPACE
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270: AD8A FRMNUM

280: A7AE INTER
290: AF08 SYNTAX
300: A906 NEXTSTAT

310: ;

320: 033C
330: 033C A9 47 INIT
340: 033E AO 03
350: 0340 8D 08 03

360: 0343 8C 09 03
370: 0346 60
380: ;
390: 0347 20 73 00 TEST

400: 034A C9 21
410: 034C F0 06
420: ;
430: 034E 20 79 00
440: 0351 4C E7 A7

450: j
460: 0354 20 73 00 NEWCMD
470: 0357 C9 52
480: 0359 FO 07
490: 035B C9 55
500: 035D FO 24
510: 035F 4C 08 AF SYNERR

520:

IN STACK
= $ AD8A ;GET NUMERICAL

EXPRESSION
$ A7 AE ;INTERPRETER LOOP

= $ AF08 ;SYNTAX ERROR
$A906 ;SEARCH FOR NEXT

STATEMENT

828
LD A #< TEST
LDY #>TEST
STA COMMAND ;VECTOR TO NEW

ROUTINE
STY COMMAND+l
RTS

JSR CHRGET ;GET NEXT CHAR
ACTER

CMP #" ! "
BEQ NEWCMD ;NEW COMMAND?

JSR CHRGOT ;REPLACE FLAGS
JMP CMD.OLD ;AND EXECUTE OLD

COMMANDS

JSR CHRGET ;NEXT CHARACTER
CMP #”R" ;REPEAT COMMAND
BEQ REPEAT
CMP #"U" ;UNTIL COMMAND
BEQ UNTIL
JMP SYNTAX ;OTHERWISE SYNTAX

ERROR
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530: 0362 20 73 00 REPEAT JSR CHRGET ;POINTER TO NEXT
CHARACTER

540: 0365 A9 03 LD A #3
550: 0367 20 FB A3 JSR TESTSTACK ;ENOUGH SPACE

IN STACK?
560: 036A 20 06 A9 JSR NEXTSTAT ;SEARCH FOR

NEXT STATEMENT
570: 036D 18 CLC
580: 036E 98 TYA ;OFFSET TO NEXT

COMMAND
590: 036F 65 7 A ADC TXTPTR ; ADD
600: 0371 48 PHA ;AND ONTO STACK
610: 0372 A5 7B LD A TXTPTR+1
620: 0374 69 00 ADC #0
630: 0376 48 PHA
640: 0377 A5 39 LDA LINENO ;LINE NUMBER
650: 0379 48 PHA ;ON STACK
660: 037A A5 3 A LDA LINENO+1
670: 037C 48 PHA
680: 037D A9 52 LDA #MR" ;AND REPEAT CODE
690: 037F 48 PHA ;ON STACK
700: 0380 4C AE A7 JMP INTER ;TO INTERPRETER

LOOP
710: ;
720: 0383 20 73 00 UNTIL JSR CHRGET ;CONDITION

FOLLOWS?
730: 0386 F0 D7 BEQ SYNERR ;NO THEN ERROR
740: 0388 20 8A AD JSR FRMNUM ;EVALUATE CONDI

TION
750: 038B A8 TAY ;SAVE RESULT
760: 038C BA TSX ;STACK POINTER

TO X
770: 038D BD 01 01 LDA STACK+1,X ;LAST STACK
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ENTRY
780: 0390 C9 52 CMP #"R" ;AND TEST FOR

REPEAT CODE
790: 0392 DO 23 BNE RPTERR ;NO, THEN ERROR

MESSAGE
800: 0394 98 TYA
810: 0395 DO 17 BNE RPTENDE ;EXPRESSION TRUE,

END LOOP
820: ;
830: 0397 BD 02 01 LDA STACK+2, X
840: 039A 85 3 A STA LINENO+1 ;GET LINE NUMBER
850: 039C BD 03 01 LDA STACK+3,X
860: 039F 85 39 STA LINENO
870: 03A1 BD 04 01 LDA STACK+4, X
880: 03A4 85 7B STA TXTPTR+1 ;AND PROGRAM

POINTER
890: 03A6 BD 05 01 LDA STACK+5,X ;FROM STACK
900: 03A9 85 7 A STA TXTPTR
910: 03 AB 4C AE A7 JMP INTER ;TO INTERPRETER

LOOP
920: »
930: 03 AE 8A RPTENDE TXA ;STACK POINTER
940: 03 AF 18 CLC
950: 03B0 69 05 ADC #5 ;INCREMENT BY 5
960: 03B2 AA TAX
970: 03B3 9A TXS
980: 03B4 4C AE A7 JMP INTER ;AND TO INTER

PRETER LOOP
990: ;
1000: 03B7 A 9 CO RPTERR LDA #<TEXT
1010: 03B9 85 22 STA ADDR ;SET POINTER TO

ERROR MESSAGE
1020: 03BB A9 03 LDA #>TEXT
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1030
1040
1050

03BD 4C 45 A4

03C0 55 4E 54 TEXT
]033C-03D4 
NO ERRORS

JMP ERROR

.ASC "UNTIL WITHOUT REPEAT"

Now let's see how our new commands are used. For the 
sake of simplicity we have designated our new commands with 
a prefixed exclamation point "!" and an "R" for REPEAT and a 
"U" for UNTIL. When you have the assembly language program 
assembled and activated with SYS 828, you can try it out
withl the following program:

100 1 = 0
110 ! R
120 1=1+1 : PRINT I
130 !U 1=10

The program prints the numbers from 1 to
are also possible.

100 »—i ii o

110 ! R
120 1=1+1 : PRINT " I = " ; I on

130 !R
140 J=J+1 : PRINT " J = ; J
150 ! U J = 3
160 COii

i—
i

In these nested 1oops the counter I
and the counter J in the inner loop also
above problem could be solved more simpl;
FOR-NEXT loops. The main app Lications i

5 3 
The
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through the loop is not known when the loop started, but 
will be determined during the loop. The stop criterium might 
be a pressed key, for example. This program structure is 
also very useful for iterations such as calculating a square 
root using the Newton method.

100 INPUT "INPUT ";A
110 XI = A
120 ! R
130 X0 = XI
140 XI = (X0 + A/X0)/2
150 !U ABS (X1-X0) < IE-8
160 PRINT "THE ROOT IS ";X1

Here an approximation is calculated until the differen
ce between two successive values is less than 10^-8. Try 
this with a few values and compare the result with that of 
the SQR function.

Endless loops can also be constructed with this struct
ure, by using an ending criterium which is never true. For 
example

110 ! R
110 PRINT TI
120 ! U 1=0

This loop will never be exited by the program.

The REPEAT... UNTIL loop runs faster than an IF...GOTO 
construction because the line number to which GOTO is dir
ected must be searched for each time. With the UNTIL com
mand, this address needs only to be fetched from the stack.
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In addition, the program is easier to read and understand 
because the intentions of the programmer come through more 
clearly.

We now come to a description of the machine language 
program. We proceed in much the same manner as the other 
programs structures discussed earlier. After the usual init
ialization in which the vector for command evaluation is 
changed to point to our routine, we first test to see if a 
new command was used. If no exclamation point was found, 
control is returned to the original command evaluation rou
tine. Otherwise the next character is fetched and checked to 
see if it is "U" or "R". The routines REPEAT and UNTIL are 
branched to accordingly. If neither of these two characters 
were read, we jump to the error message "SYNTAX ERROR."

For the REPEAT command we set the program pointer to 
the next character by a call to CHRGET and check to see that 
enough space is left on the stack. We use the routine 
NEXTSTAT to search for the next command, the relative ad
dress of which we get back in the Y register. We add this 
value to the program counter and place it on the stack. The 
line number is also placed on the stack. To denote the data 
set as a REPEAT command, we also push the letter "R" on the 
stack. The data set in the stack is constructed according to 
the GOSUB command. The work is now done and we return to the 
interpreter loop.

The UNTIL command checks to see that a condition fol
lows and evaluates it. The result is saved in the Y regis
ter. Now we load the X register with the stack pointer and 
compare the top stack element with "R", the designator for 
REPEAT. If this element was not an R, we output the message
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"UNTIL WITHOUT REPEAT." Note that the last character of the 
error message must be shifted (bit 7 set). This is how the 
error message output routine determines the end of the 
message. If we did find an R, the next action is dependent 
on the result of the condition. If the condition was not 
met, we load the program pointer and line number from the 
stack and jump to the interpreter loop. Note that the data 
is not taken from the stack with PLA but with LDA STACK,X, 
after the stack register was first copied into the X regis
ter. This retains the value of the stack pointer and the 
data remain for the next UNTIL command. If, however, the 
condition was satisfied, we simply increment the stack 
pointer by 5. This has the effect of removing the data set 
from the stack and we continue with the next command.
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3 . 4  U s i n g  n e w  k e y w o r d s

The easiest way to add new commands to the BASIC inter
preter is to give the command a name by which you can access 
it. Internally this keyword is stored in the form of a 
token, an interpreter code which can range in value from $80 
to $FF.

The Commodore 64 BASIC uses the tokens from $80 to $CB 
for itself, as well as $FF for pi. If we want to add new 
keywords, the interpreter codes from $CC (204) to $FE (254) 
are available to us. We could therefore add up to 54 new 
commands. Let us consider what is necessary in order to do 
this .

First, there must be a routine which converts a line of 
BASIC text into the new tokens upon input. The routine for 
executing the commands must recognize the new token and call 
the appropriate routine to execute this new command. So that 
we can list our program, the LIST program must also be 
changed to output the ASCII form of the new commands when it 
finds the token. The most convenient way to do all this is 
to place our new keywords and the addresses of the corres
ponding routines in a table, exactly as the interpreter does 
with the standard commands.

Recall from our discussion about BASIC vectors that 
four vectors are necessary for these tasks. We have already 
used the vectors for BASIC command execution ($308) and 
function calculation ($30A). For converting keywords into 
tokens we must use the vector $304. To convert tokens back 
into keywords with the LIST command we must use the vector 
$306.
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Once we have written these routines, it is quite easy 
to add new keywords. We need only place the keyword together 
with the address of the routine which executes the command 
in a table.

This procedure is also faster in execution because no 
special characters such as "!" need be added for recognition 
of the new command. In the program itself, the command 
’’REPEAT" looks better than "!R".

Before we venture to write a routine which converts new 
keywords to tokens, we will first take a look at how the 
BASIC interpreter handles this. In order to do this we have 
re-assembled the ROM routine for you here. If we follow the 
principle, it is not hard to change the routine to add our 
own tokens.

100: A57C .OPT PI
110: i
120: ;ROM ROUTINE FOR <CONVERSION TO TOKENS
130: >

140: ;SPECIAL TOKENS
150: >

160: 0083 DATA = $83
170: 008F REM = $8F
180: 0099 PRINT = $99
190: >
200: 0008 CHAR - 8 ;ACTUAL CHARACTER
210: 000B COUNT = 11 ;COUNTER FOR COM

MAND WORDS
220: 0071 PNT = $71 ;POINTER IN LINE

BEING CONVERTED FROM
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230: 0022 QUOTE = $22
240: 000F FLAG = 15 ;FLAG FOR DATA

AND REM
250: 007A TXTPTR = $7 A ;POINTER IN LINE

BEING CONVERTED TO
260: 0200 BUFFER = $200 ;INPUT BUFFER
270: >
280: A09E TABLE = $ A09E ;TABLE OF COMMAND

WORDS
290: ;
300: A57C * = $A57C ;ROM ROUTINE
310: ;
320: A57C A6 7A LDX TXTPTR ;POINTER TO FIRST

CHARACTER
330: A57E AO 04 LDY ♦4 ;POINTER TO LINE

CONVERTED FROM
340: A580 84 OF STY FLAG ;CLEAR FLAG
350: A582 BD 00 02 NEXTCHAR LDA BUFFER,X ;GET CHARACTER

FROM BUFFER
360: A585 10 07 BPL NORMAL
370: A587 C9 FF CMP #$FF ;CODE FOR * PI*
380: A589 FO 3E BEQ TAKCHAR ;YES, TAKE IT
390: A58B E8 INX ;OTHERWISE IGNORE

CHARACTER
400: A58C DO F4 BNE NEXTCHAR
410: ;
420: A58E C9 20 NORMAL CMP #" " ;SPACE?
430: A590 FO 37 BEQ TAKCHAR ;TAKE IT
440: A592 85 08 STA CHAR ;SAVE CHARACTER
450: A594 C9 22 CMP #QUOTE ;QUOTE?
460: A596 FO 56 BEQ GBTCHAR ; YES
470: A598 24 OF BIT FLAG ;TEST FLAG
480: A59A 70 2D B VS TAKCHAR ;TAKE AS DATA
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MODE
490: A59C C9 3F CMP ;QUESTION MARK
500: A59E DO 04 BNE SKIP
510: A5A0 A9 99 LDA ♦PRINT ;REPLACE WITH

PRINT CODE
520: A5A2 DO 25 BNE TAKCHAR
530: A5A4 C9 30 SKIP CMP ♦ "0" ;LESS THAN *0*
540: A5A6 90 04 BCC SKIP1
550: A5A8 C9 3C CMP ;LESS THAN ’<*?
560: A5AA 90 ID BCC TAKCHAR ;YES, TAKE CHAR

ACTER
570: A5AC 84 71 SKIP 1 STY PNT ;SAVE POINTER IN

LINE
580: A5AE AO 00 LDY #0
590: A5B0 84 OB STY COUNT ;COUNTER FOR COM-

MAND WORDS TO ZERO
600: A5B2 88 DEY
610: A5B3 86 7A STX TXTPTR ;SAVE LINE POINTER
620: A5B5 CA DEX
630: *
640: A5B6 C8 CMPLOOP INY ;POINTER IN COM

MAND TABLE
650: A5B7 E8 INX ;AND INCREMENT

LINE POINTER
660: A5B8 BD 00 02 TESTNEXT LDA BUFFER,X ;GET CHARACTER

FROM BUFFER
670: A5BB 38 SEC
680: A5BC F9 9E AO SBC TABLE,Y ;COMPARE WITH

COMMAND WORD
690: A5BF FO F5 BEQ CMPLOOP ;SAME, THEN NEXT

CHARACTER
700: A5C 1 C9 80 CMP ♦ $80 ;LAST LETTER?
710: A5C3 FO 30 BEQ NEXTCMD ;OTHERWISE POINT-

163



Advanced Machine Language

ER TO NEXT COMMAND
720: A5C5 05 OB ORA COUNT ;FOUND #+$80=INTER
725: A5C7 A4 71 TAKCHAR1 LDY PNT ;GET POINTER BACK
730: ;
740: A5C9 E8 TAKCHAR INX
750: A5CA C8 INY
760: A5CB 99 FB 01 STA BUFFER-5,Y ;SAVE CODE
770: A5CE B9 FB 01 LD A BUFFER-5,Y ;RESTORE

FLAGS
780: A5D1 F0 36 BEQ END ;LINE END?
790: A5D3 38 SEC
800: A5D4 E9 3 A SBC #M:" ;SEPARATOR?
810: A5D6 F0 04 BEQ SKIP2 ;CLEAR DATA FLAG
820: A5D8 C9 49 CMP #DATA-":" ;CODE FOR

* DATA *
830: A5D A DO 02 BNE SKIP3
840: A5DC 85 OF SKIP2 STA FLAG ;SET BIT 6 FOR

’DATA*
850: A5DE 38 SKIP3 SEC
860: A5DF E9 55 SBC #REM-":" ;CODE FOR * REM’
870: A5E1 DO 9F BNE NEXTCHAR ;NO, GET NEXT

CHARACTER
880: A5E3 85 08 STA CHAR ;SAVE ZERO BYTE

FOR * REM *
890: A5E5 BD 00 02 REMLOOP LD A BUFFER,X
900: A5E8 FO DF BEQ TAKCHAR ;LINE END, TAKE

CHARACTER
910: A5E A C5 08 CMP CHAR ;NEXT *"* OR REM

OR DATA
920: A5EC FO DB BEQ TAKCHAR ;YES?
930: A5EE C8 GETCHAR INY
940: A5EF 99 FB 01 STA BUFFER-5,Y ;TAKE CHAR-

A C T E R
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950: A5F2 E8
960: A5F3 DO F0
970: i
980: A5F5 A6 7A NEXTCMD

990: A5F7 E6 0B

1000: A5F9 C8 CONTINUE
1010: A5FA B9 9D A0
1020: A5FD 10 FA
1030: A5FF B9 9E A0
1040: A602 DO B4

1050: •
1060: A604 BD 00 02
1070: A607 10 BE

1080: »
1090: A609 99 FC 01 END

1100: >
1110: A60C C6 7B
1120: A60E A9 FF

1130: A610 85 7 A
1140: A612 60
] A57C -A613
NO ERRORS

INX
BNE REMLOOP

LDX TXTPTR ;LINE POINTER TO

INC COUNT
START OF WORD
;COUNTER TO NEXT

INY
LDA TABLE-1,

COMMAND WORD

Y
BPL CONTINUE ;WORD NOT DONE!
LDA TABLE,Y
BNE TESTNEXT ;TEST FOR NEXT

LDA BUFFER,X

COMMAND WORD

BPL TAKCHAR1 ;TAKE CHARACTER
AS SUCH

STA BUFFER-4,Y ;END BUFFER 
WITH ZERO

DEC TXTPTR+1
LDA #$FF ;TXTPTR TO $01FF,

BUFFER-1
STA TXTPTR 
RTS

When a line of BASIC text, is to be converted to tokens, 
it must be placed into the BASIC input buffer located at 
$200 to $258. The pointer TXTPTR ($7A/$7B) must point to the 
first character following the line number. The X register is
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loaded with this pointer. The X register serves throughout 
the entire routine as a pointer to the text to be converted. 
The Y register is used as a pointer in the converted line. 
After the FLAG is cleared, the first character of the line 
is examined. If the ASCII value of this character is greater 
than $7F, it is checked for the code 255 for pi. If this 
test was positive, the character is accepted as such. All 
other characters with bit 7 set are ignored; the pointer is 
incremented and the next character is tested. If the char
acter is a normal unshifted character, it is checked for a 
special character. A space is accepted unchanged. Otherwise 
the current character is saved in CHAR. If the character is 
a quotation mark ("), a branch is made to GETCHAR where 
characters are read until another quotation mark is encount
ered. A DATA statement is recognized by checking FLAG. If a 
DATA command is active, text is accepted unchanged. The code 

is next replaced with ’’PRINT". After the digits and the 
characters ’*;’’ and " : are filtered out and accepted un
changed, comes the actual conversion to tokens.

The pointer in the line being converted (X register) is 
stored in PNT and the counter for the token number of the 
keyword is initialized. The comparison is executed at the 
label CMPLOOP. The current character in the buffer is com
pared to the first letter in the keyword table. If the 
characters are equal, the next character is compared to the 
second letter. If these are equal, the difference is checked 
to see if it is $80. This value denotes the character as the 
last character of a command in the keyword table because it 
is stored with bit 7 set. If this is true, the accumulator 
contains the difference $80. By logical ORing with the 
command number COUNT you get the token number, which is then 
saved. If the characters were not equal, however, the start
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of the next keyword is found by NEXTCMD and the counter for 
the number of keywords is incremented by one. If we are not 
at the end of the table, a branch is made back to the 
compare loop where the next word from the table is compared. 
If the end of the table was found (denoted by a zero byte), 
the current character is accepted unchanged.

After either the token or the unchanged character is 
stored by the routine at label TAKCHAR, the special char
acters are handled. If the colon is found, FLAG is cleared 
so that it can be be set again by another DATA statement. If 
the REM command was found, the current character is saved as 
a zero and all of the characters up to a zero (end of line) 
are accepted unchanged by REMLOOP. At the end of the rou
tine (label END), the converted buffer is terminated with a 
zero and TXTPTR set to one character before the buffer.

If we now want to convert our own keywords to tokens, 
we must ensure that the table containing our own commands is 
searched after the command table in ROM. In addition we must 
determine which tokens we want to use for the new keywords* 
The tokens starting at $CC should be used since they follow 
the existing commands directly.

100: cooo .OPT PI
110: i
120: ;ROUTINE FOR USING
130: >
140: ;SPECIAL TOKENS
150: i
160: 0083 DATA = $83
170: 008F REM = $8F
180: 0099 PRINT $99
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190: ;
200: 0008 CHAR = 8
210: 000B COUNT = 11
220: 0071 PNT = $71
230: 0022 QUOTE = $22
240: 000F FLAG 15
250: 007 A TXTPTR $7 A
260: 0200 BUFFER = $200 ;INPUT BUFFER
270: i
280: A09E TABLE $A09E ;TABLE OF COMMAND

WORDS
290: ;
300: COOO *  = $C000 ;NEW ROUTINE
310: >
320: COOO A6 7A LDX TXTPTR ;POINTER TO FIRST

CHARACTER
330: C002 AO 04 LDY #4 ;POINTER WITHIN

LINE BEING CONVERTED
340: C004 84 OF STY FLAG ;FLAG FOR SPECIAL

CHARACTERS
350: C006 BD 00 02 NEXTCHAR LDA BUFFER,X ;GET CHARACTER

FROM BUFFER
360: C009 10 07 BPL NORMAL
370: COOB C9 FF CMP #$FF ;CODE FOR 'PI*?
380: COOD FO 3E BEQ TAKCHAR ;YES, TAKE CODE

AS SUCH
390: COOF E8 INX ;OTHERWISE IGNORE

CHARACTER
400: C010 DO F4 BNE NEXTCHAR
410: »
420: CO 12 C9 20 NORMAL CMP #" " ;SPACE?
430: CO 14 FO 37 BEQ TAKCHAR ;TAKE AS SUCH
440: CO 16 85 08 STA CHAR ;SAVE CHARACTER
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450 CO 18 C9 22 CMP #QUOTE ;QUOTB?
460 C01A FO 55 BEQ GETCHAR
470 C01C 24 OF BIT FLAG ;DATA MODE?
480 C01E 70 2D B VS TAKCHAR ;YES, TAKE AS

SUCH
490 C020 C9 3F CMP #"?" ;QUESTION MARK?
500 C022 DO 04 BNE SKIP
510 C024 A9 99 LDA ♦PRINT ;REPLACE WITH

PRINT CODE
520 C026 DO 25 BNE TAKCHAR
530 C028 C9 30 SKIP CMP #"0” ;SMALLER THAN ’O’?
540 C02 A 90 04 BCC SKIP1
550 C02C C9 3C CMP ♦ "<" ;LESS THAN '<*?
560 C02E 90 ID BCC TAKCHAR ;YES, TAKE CHAR

ACTER AS SUCH
570 C030 84 71 SKIP1 STY PNT ;SAVE LINE POINTER
580 C032 AO 00 LDY #0
590 C034 84 OB STY COUNT ;COUNTER FOR COM

MAND WORDS TO 0
600 C036 88 DEY
610 C037 86 7A STX TXTPTR
620 C039 CA DEX
630 ;
640 C03 A C8 CMPLOOP INY
650 C03B E8 INX ;INCREMENT POINTER
660 C03C BD 00 02 TESTNEXT LDA BUFFER,X ;GET CHARACTER

FROM BUFFER
670: C03F 38 SEC
680: C040 F9 9E AO SBC TABLE,Y ;COMPARE WITH

COMMAND WORDS
690: C043 FO F5 BEQ CMPLOOP ;SAME, THEN NEXT

CHARACTER
700: C045 C9 80 CMP #$80 ;LAST LETTER?
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710: C047 DO 2F BNE NEXTCMD ;OTHERWISE POINT
ER TO NEXT COMMAND

720: C049 05 OB ORA COUNT ;#+$80 = INTER
PRETER CODE

730: C04B A4 71 TAKCHAR1 LDY PNT ;GET POINTER BACK
740: »
750: C04D E8 TAKCHAR INX
760: C04E C8 INY
770: C04F 99 FB 01 STA BUFFER-5 ,Y ;SAVE CODE
780: C052 C9 00 CMP #0 ;GET FLAGS BACK
790: C054 FO 38 BEO END ;END OF LINE?
800: C056 38 SEC
810: C057 E9 3 A SBC | H  , tt ;SEPARATOR?
820: C059 FO 04 BEQ SKIP2
830: C05B C9 49 CMP ♦DATA-”:" ;CODE FOR

* DATA * ?
840: C05D DO CMo BNE SKIP3
850: C05F 85 OF SKIP2 STA FLAG ;SET BIT 6 FOR

* DATA *
860: C061 38 SKIP3 SEC
870: C062 E9 55 SBC #REM-":" ;CODE FOR ’REM'?
880: C064 DO AO BNE NEXTCHAR ;NO, GET NEXT

CHARACTER
890: C066 85 08 STA CHAR ;SAVE CHARACTER
900: C068 BD 00 02 REMLOOP LDA BUFFER,X
910: C06B FO EO BEQ TAKCHAR ;END OF LINE,

TAKE AS SUCH
920: C06D C5 08 CMP CHAR ;NEXT * N * OR REM

OR DATA
930: C06F FO DC BEQ TAKCHAR ; YES
940: C071 C8 GETCHAR INY
950: C072 99 FB 01 STA BUFFERS ,Y ;TAKE CHAR-

ACTER
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960: C075 E8 INX
970: 0076 DO FO BNE REMLOOP
980: >
990: C078 A6 7A NEXTCMD LDX TXTPTR
1000: C07 A E6 OB INC COUNT ;POINTER TO NEXT

COMMAND WORD
1010: C07C C8 CONTINUE INY
1020: C07D B9 9D AO LDA TABLE-1,Y ;NEXT LETTER
1030: C080 10 FA BPL CONTINUE ;WORD NOT DONE?
1040: C082 B9 9E AO LDA TABLE,Y
1050: C085 DO B5 BNE TESTNEXT ;TBST FOR NEXT

COMMAND WORD
1060: C087 FO OF BEQ NEWTOK ;USE NEW TABLE
1070: ;
1080: C089 BD 00 02 NOTFOUND LDA BUFFER,X
1090: C08C 10 BD BPL TAKCHAR1 ;TAKE CHR AS

SUCH
1100: i
1110: C08E 99 FD 01 END STA BUFFER-3,Y ;LINK BYTE

ZERO FOR DIRECT MODE
1120: »
1130: C091 C6 7B DEC TXTPTR+1
1140: C093 A9 FF LDA #$FF ;TXTPTR TO $01FF,

BUFFER-1
1150: C095 85 7 A STA TXTPTR
1160: C097 60 RTS
1170: ;
1180: ;WORK ON NEW COMMAND
1190: C098 AO 00 NEWTOK LDY #0 ;POINTER TO START

OF NEW TABLE
1200: C09A B9 C3 CO LDA NEWTAB,Y ;GET FIRST CHAR

ACTER FROM TABLE
1210: C09D DO 02 BNE NEWTEST
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1220
1230: C09F C8 NEWCMP INY
1240: C0A0 E8 INX
1250: C0A1 BD 00 02 NEWTEST IDA BUFFER,X ;COMPARE ROUTINE

FOR NEW
1260: C0A4 38 SEC ;COMMAND TABLE
1270: C0A5 F9 C3 CO SBC NEWTAB,Y
1280: C0A8 FO F5 BEQ NEWCMP
1290: COAA C9 80 CMP #$80
1300: CO AC DO 04 BNE NEXTNEW ;TEST FOR NEXT

COMMAND
1310: CO AE 05 OB ORA COUNT ;FOUND
1320: COBO DO 99 BNE TAKCHAR1 ;ABSOLUTE JUMP
1330: >
1340: C0B2 A6 7A NEXTNEW LDX TXTPTR
1350: C0B4 E6 OB INC COUNT ;INCREMENT TOKEN

NUMBER
1360: C0B6 C8 CONTI INY
1370: C0B7 B9 C2 CO LDA NEWTAB-1,Y ;POINTER TO

NEXT COMMAND WORD
1380: COBA 10 FA BPL CONTI
1390: COBC B9 C3 CO LDA NEWTAB,Y
1400: COBF DO EO BNE NEWTEST ;COMPARE TO

INPUT LINE
1410: C0C1 FO C6 BEQ NOTFOUND ;END OF NEW

TABLE
1420: ;
1430: C0C3 52 45 50 NEWTAB . ASC ’’REPEAT” ; TABLE OK

NEW COMMAND WORDS
1440: C0C9 55 4E 54 . ASC ’’UNTIL”
1450: COCE 43 4 F 4D . ASC ’’COMMAND”
1460: CODS 00 . BYT 0 ;END OF TABLE
]C000 -C0D6
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NO ERRORS

With these routines we can convert our own keywords to 
tokens. When entering the new keywords in the new table you 
must be sure that the last character of each command is 
entered with bit 7 set. This is done by pressing shift when 
the entering the character. In our assembly listing this is 
represented as an underlined character. The new commands can 
also be abbreviated as desired. reP could be used for repeat 
or uN for until.

With our procedure you can assign the new keywords a 
token value from $CC to $FE. This gives us a maximum of 51 
new command words. Because this table is indexed with an 8- 
bit register, the total length of the commands may not be 
longer than 255 characters. The end of the table must be 
denoted by a zero byte.

In order to activate our new routine we must set the 
vector $304/$305 to the routine. Before we do this, we first 
want to write a routine which allows us to LIST the new 
keywords. The BASIC vector $306/$307 is used for this. 
Converting tokens to ASCII text takes place here; the organ
izational work such as taking care of the line end and line 
numbers is handled by the list routine. Let us take a look 
at the interpreter LIST routine.
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100: A71A .OPT PI
110: i
120: ;INTERPRETER LIST ROUTINE
130: >
140: 000F QUOTFLG = 15 ;FLAG FOR QUOTE

MODE
150: 0049 PNT $49
160: A09E TABLE $A09E ;INTERPRETER COM

MAND TABLE
170: AB47 CHAROUT $ AB47 ;OUTPUT CHARACTER
180: ;
190: A7 1A $ A7 1A
200: A71A 10 D7 BPL $ A6F3 ;NO INTERPRETER

CODE, SO OUTPUT
210: A71C C9 FF CMP ♦ $FF
220: A71E F0 D3 BEQ $ A6F3 ;CODE FOR PI,

OUTPUT

i GO o A720 24 OF BIT QUOTFLG ;QUOTE MODE?
240: A722 30 CF BMI $ A6F3 ;YES, OUTPUT

UNCHANGED
250:- A724 38 SEC
260: A725 E9 7F SBC #$7F ;SUBRACT OFFSET
270: A727 AA TAX ;SAVE CODE AS

COUNTER
280: A728 84 49 STY PNT ;SAVE POINTER
290: A72 A A0 FF LDY #-l
300: A72C CA NEXT DEX
310: A72D F0 08 BEQ FOUND ;XTH COMMAND WORD

FOUND?
320: A72F C8 LOOP INY
330: A730 B9 9E AO LD A TABLE,Y
340: A733 10 FA BPL LOOP ;WORD NOT DONE?
350: A735 30 F5 BMI NEXT ;NEXT WORD
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360
370: A737 C8 FOUND INY
380: A738 B9 9E A0 LDA TABLE,Y ;GET LETTER
390: A73B 30 B2 BMI $A6EF ;LAST CHARACTER?
400: A73D 20 47 AB JSR CHAROUT ;OUTPUT CHARACTER
410: A740 DO F5 BNE FOUND ;ABSOLUTE JUMP
]A71A-A742 
NO ERRORS

The routine checks for interpreter codes (is bit 7 
set?). The special code for pi is left unchanged. This is 
also ignored in the quote node. First we search for the 
keyword. The token is brought into the range 1-76 by sub
tracting $7F. Then the keyword table is searched and the 
token number is decremented by one at the end of each key
word, which is denoted by the set bit 7. When the number 
counts down to zero, we have found the appropriate word in 
the table. Now we output all characters until we encounter 
the one with bit 7 set. In this case we branch back to the 
list routine. There bit 7 is cleared as the character is 
printed.

If we have new tokens to list, we need only check to 
see if the token is greater than $CB. If this is the case, 
we can search for the keyword in our new table using the 
same method, otherwise we leave the work for the original 
routine.

100: C000
1 1 0 :

1 2 0 :

130:
140: 000F

.OPT PI

; LIST ROUTINE FOR NEW COMMANDS
>

QUOTFLG 15
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150: 0049 PNT $49
160: A09E TABLE = $ A09E ;COMMAND TABLE
170: AB47 CHAROUT = $ AB47 ;OUTPUT CHARACTER
180: ;
190: cooo 10 OF BPL OUT ;NO TOKEN, SO

OUTPUT
200: C002 24 OF BIT QUOTFLG ;QUOTE MODE?
210: C004 30 OB BMI OUT ;SO OUTPUT
220: C006 C9 FF CMP #$ FF ; PI?
230: C008 FO 07 BEQ OUT ;SO OUTPUT
240: COO A C9 CC CMP #$CC ;NEW TOKEN?
250: COOC BO 06 BCS NEWLIST ; YES
260: ;
270: COOE 4C 24 A7 JMP $A724 ;LIST OLD TOKENS
280: con 4C F3 A6 OUT JMP $ A6F3 ;OUTPUT BYTE
290: ;
300: CO 14 38 NEWLIST SEC
310: CO 15 E9 CB SBC ♦ $CB ;SUBTRACT OFFSET
320: CO 17 AA TAX ;CODE AS COUNTER
330: CO 18 84 49 STY PNT
340: CO 1A AO FF LDY #-l
350: C01C CA NEXT DEX ;WORD FOUND?
360: CO ID FO 08 BEQ FOUND ; YES
370: COIF C8 LOOP INY
380: C020 B9 35 CO LD A NEWTAB,Y
390: C023 10 FA BPL LOOP ;EXPECT END OF

WORD
400: C025 30 F5 BMI NEXT ;NEXT WORD
410: j
420: C027 C8 FOUND INY
430: C028 B9 35 CO LD A NEWTAB,Y ;COMMAND WORD
440: C02B 30 05 BMI OLDEND ;AT END?
450: C02D 20 47 AB JSR CHAROUT ;OUTPUT CHARACTER

176



Advanced Machine Language

460: C030 DO F5 BNE FOUND ;AND CONTINUB
470: >
480: C032 4C EF A6 OLDEND JMP $A6EF ;TO OLD ROUTINE
490: t

500: C035 52 45 50 NEWTAB . ASC "REPEAT” ;COMMAND
TABLE

510: C03B 55 4E 54 . ASC "UNTIL”
520: C040 43 4F 4D .ASC "COMMAND”
530: C047 00 .BYT 0
]C000-C048 
NO ERRORS

When we change the LIST vector $306-$307 to point to 
this routine, we can list our new commands correctly. The 
keyword table NEWTAB is naturally identical to the table in 
the routine for creating new tokens and can be shared. In a 
practical application you should assemble the two routines 
together and create a single initialization program which 
changes both vectors appropriately.

We need routines which allow us to process the new 
commands from the BASIC interpreter which can call the new 
commands and functions. This happens, as we know, by using 
the vector $308/$309 for commands and $30A/$30B for func
tions. To simplify the processing, the new commands should 
be assigned tokens such that they form a block. The routines 
can then verify that the token lies in the range of new 
commands or functions. The token value can be used as a 
pointer to a table which contains the starting addresses of 
the routines which perform the new commands. This is the 
same procedure which the built-in interpreter uses. We now 
present a universal routine which handles the processing of 
new tokens. You need only establish the range of the new
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couands and functions and place the starting addresses of
the corresponding routines in t he table.

100: cooo .OPT PI
110: J
120: ;INCLUDING NEW TOKENS
130: >
140: 0308 CMDVBC $308 ;COMMAND VECTOR
150: 030 A FUNVEC $30A ;FUNCTION VECTOR
160: ;
170: 000D TYPFLAG 13 ;FLAG NUMERIC/

STRING
180: 0073 CHRGET = $73
190: 0079 CHRGOT CHRGET+6
200: 007A TXTPTR CHRGOT+1
210: A7BD EXECOLD $A7ED ;OLD COMMAND

EXECUTION
215: A7AE INTER $ A7 AE ;INTERPRETER LOOP
217: AE8D FUNCTOLD $AE8D ;OLD FUNCTION

CALCULATION
218: AEF1 GETTERM = $AEF 1 ;GET EXPRESSION

IN PARENTHESES
219: AD8D CHECKNUM $ AD8D ;TEST FOR NUM

ERICAL RESULT
220: 0054 JUMP = $54 ;JUMP COMMAND FOR

FUNCTIONS
300: oocc CMDSTART $CC ;FIRST COMMAND

TOKEN
310: 00E0 CMDEND = $E0 ;LAST COMMAND

TOKEN
320: ;
330: 00E1 FUNSTART = $E 1 ;FIRST FUNCTION
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340: OOFE FUNEND -

350: i
400: COOO A9 15 INIT LDA
410: C002 AO CO LDY
420: C004 8D 08 03 STA
430: C007 8C 09 03 STY
440:
450: COO A A9 3C LDA
460: COOC AO CO LDY
470: COOE 8D OA 03 STA
480: con 8C OB 03 STY
490: CO 14 60 RTS
500: >

510: C015 20 73 00 NEWCMD JSR
520: CO 18 20 IE CO JSR
530: CO IB 4C AE A7 JMP

550: CO IE C9 CC TESTCMD CMP
560: C020 90 04 BCC
570: C022 C9 El CMP
580: C024 90 06 BCC

590: C026 20 79 00 OLDCMD JSR
600: C029 4C ED A7 JMP

610: i
620: C02C 38 OKNEW SEC
630: C02D E9 CC SBC
640: C02F OA ASL
650: C030 AA TAX
660: C03 1 BD 6F CO LDA

TOKEN
$FE ;LAST FUNCTION

TOKEN

#<NEWCMD 
#> NEWCMD
CMDVEC ;COMMAND VECTOR 
CMDVEC+1

#<NEWFUN
♦>NEWFUN
FUNVEC ;FUNCTION VECTOR 
FUNVEC+1

CHRGET ;NOT TAKEN 
TESTCMD ;EXECUTE COMMAND 
INTER ;BACK TO INTER

PRETER LOOP
♦CMDSTART
OLDCMD ;OLD COMMAND? 
♦CMDEND+l
OKNEW ;EXECUTE NEW 

COMMAND
CHRGOT ;REPLACE FLAGS 
EXECOLD ;AND EXECUTE OLD 

COMMAND

;NEW COMMANDS
#CMDSTART ;SUBRACT OFFSET 

;TIMES 2

C M D T A B + 1 , X ;H I G H  B Y T E
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670 C034 48 PHA ;RETURN ADDRESS
ON STACK

680 C035 BD 6E CO LDA CMDTAB,X
690 C038 48 PHA ;LOW BYTE
700 C039 4C 73 00 JMP CHRGET ;GET NEXT

CHARACTER
710 >
720 C03C A9 00 NEWFUN LDA #0
730 C03B 85 OD STA TYPFLAG ;TYPE TO NUMERIC
740 C040 20 73 00 JSR CHRGET ;GET TOKEN
750 C043 C9 El CMP ♦FUNSTART
760 C045 90 04 BCC OLDFUN ;OLD FUNCTION?
770 C047 C9 FF CMP ♦FUNEND+1
780 C049 90 06 BCC OK1NEW
790 C04B 20 79 00 OLDFUN JSR CHRGOT ;REPLACE FLAGS
800 C04E 4C 8D AE JMP FUNCTOLD ;CALCULATE OLD

FUNCTION
810 >
820 C051 38 OK1NEW SEC ;NEW FUNCTION
830 C052 E9 El SBC ♦FUNSTART ;SUBTRACT

OFFSET
840: C054 0A ASL
850: C055 48 PHA ;SAVE POINTER TO

TABLE
860: C056 20 73 00 JSR CHRGET ;GET NEXT

CHARACTER
870: C059 20 FI AE JSR GETTERM ;GET FUNCTION

ARGUMENT
880: C05C 68 PLA
890: C05D AA TAX ;POINTER AS INDEX
900: C05E B9 72 CO LDA FUNTAB,Y ;LOW ADDRESS
910: C061 85 55 STA JUMP+1
920: C063 B9 73 CO LDA FUNTAB+-1,Y ;HIGH ADDRESS

180



Advanced Machine Language

930: C066 85 56 STA JUMP+2
940: C068 20 54 00 JSR JUMP ;EXECUTE FUNCTION
950: C06B 4C 8D AD JMP CHECKNUM ;TEST RESULT

FOR NUMERIC
960: ;
970: >
980: C06E CMDTAB

990: C06E
1000: ; . . . .
1010: C06E FUNTAB

1020: C06E
]C000 -C06E

.WOR CMD1-1 ;TABLE OF COMMAND 
ADDRESSES -1

.WOR CMD2-1

.WOR FUN1 ;TABLE OF FUNCTION 
ADDRESSES

.WOR FUN2

If you want to use this routine, you need only place 
the numbers of the first and last new tokens in lines 300 
and 310 and the corresponding numbers for numerical func
tions in lines 330 and 340. A table is placed at lines 950 
on so that the routine knows where the new commands are 
located. This table contains the address of the routines 
which execute the commands. Because the routines are called 
with RTS by first placing the return address on the stack, 
one is subtracted from the addresses because the return 
address is automatically incremented by one by the RTS 
command. This is not necessary for functions which are 
called using the normal JSR call.
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3.5 Operating system vectors

We shall review the important functions which use oper
ating system jump vectors that can be changed. In addition 
to the hardware vectors IRQ, BRK, and NMI which we have 
already looked at, we will discuss all of the elementary 
input/output functions which use these vectors. These func
tions are addressed over the kernal routines at $FXXX. The 
following table contains a list of these vectors and the 
addresses to which these vectors point after power-up.

Vector Address Significance

$0314/$0315 $EA31
$0316/$0317 $ FE66
$0318/$0319 $FE47
$031A/$03IB $F34A
$03lC/$03ID $F291
$03 lE/$031F $ F20E
$0320/$0321 $F250
$0322/$0323 $F333
$0324/$0325 $F157
$0326/$0327 $ F 1C A
$0328/$0329 $F6ED
$032A/$032B $ F13E
$032C/$032D $FE66
$032E/$032F $F4A5
$0330/$0331 $F5ED

IRQ vector 
BRK vector 
NMI vector 
OPEN vector 
CLOSE vector 
CHKIN vector 
CKOUT vector 
CLRCH vector 
BASIN vector 
BSOUT vector 
STOP vector 
GET vector
warmstart vector (unused) 
LOAD vector 
SAVE vector

We will become acquainted with the significance of the 
vectors and the functions of the routines to which they 
pertain. With this knowledge we can then write our own 
input/output functions.
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OPEN - JSR $ FFCO

This routine performs the same task as the BASIC com
mand by the same name. The parameters used by the equivalent 
BASIC command must be taken care of before the routine is 
called. There are two other routines which are used to do 
this.

SETFLS - JSR $FFBA

This routine sets the parameters for the logical file 
number, device number, and secondary address. The parameters 
are passed in the processor registers:

LDA LF ; logical file number 
LDX DN ; device number 
LDY SA ; secondary address 
JSR SETFLS ; set parameters

The routine SETNAM - JSR $FFBD exists for passing the file
name. You must provide the length as well as the address of 
the filename. If no filename is used, the length is given as 
zero.

LDA #NAME1-NAME ; length of the name 
LDX #<NAME ; low byte of the address 
LDY #>NAME ; high byte of the address 
JSR SETNAM ; pass parameters

NAME .ASC "FILENAME”
NAME1 = * ; end of the name
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Once these two routines have done their work, the OPEN 
routine can be called.

JSR OPEN

This opens the logical file. The following procedure permits 
one to recognize any errors which may occur. The carry flag 
is used as an error flag. If the flag is cleared after the 
routine call, the routine was executed without error. If an 
error did occur, however, the carry flag will be set and the 
accumulator will contain the error number. These error num
bers have the following meanings:

No. Meaning
0 halt via STOP key
1 too many files
2 file open
3 file not open
4 file not found
5 device not present
6 not input file
7 not output file
8 missing filename
9 illegal device number 

240 RS 232 open/close

The carry flag should be tested after a kernel routine call 
in order to check the error status.

JSR OPEN ; open file 
BCC OK ; everything OK?
JMP ERROR 

OK
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The error numbers correspond to the error messages 
which we are already acquainted with from BASIC. A new error 
number occurs upon OPEN or CLOSE with device number 2, the 
RS 232 interface. As you may know, two 256-byte buffers are 
allocated when an RS 232 channel is opened. These buffers 
are placed at the top end of the BASIC area. This normally 
results in the end-of-BASIC being moved from $A000 to $9E00. 
Since strings are normally placed in this area, this area is 
no longer available. In order to inform the BASIC inter
preter of this situation, the error flag is set and the 
error number 240 is passed. Upon receipt of this error, the 
interpreter executes a CLR command, thereby clearing all of 
the variables. These buffers are freed upon CLOSEing the 
channel and the variables are again cleared. If you use the 
RS-232 interface in your BASIC programs, the OPEN command 
should be one of the first statements in the program and the 
CLOSE command should be executed last. This ensures that no 
variables will be lost during the course of the program.

As an alternative, you could also change the OPEN 
routine. You could simply place the buffers in the area 
beginning at $C000 when opening the RS-232 interface. This 
has no effect on the BASIC program area and the CLR command 
can be dispensed with.

The carry flag is also used as an error flag for the 
I/O routines that will be discussed shortly and the accumu
lator also contains the error number.

The operating system even has its own routine for 
outputting error messages. The output appears in the form

I/O E R R O R  #X
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in which X is the error number (1 to 9). The program is not 
stopped when an error is encountered. We can activate the 
error output by calling the routine SETMSG - JSR $FF90 with 
a value of $40 in the accumulator (bit 6 set). The error 
messages can be turned off by calling SETMSG with a value of 
zero in the accumulator.

An additional function of the routine SETMSG is to 
distinguish between program mode and the direct mode. Bit 7 
is used for this. If bit 7 is cleared, the program mode is 
designated and status messages of the operating system such 
as "SEARCHING FOR”, "LOADING", and "SAVING" are suppressed.

CLOSE - JSR $FFC3

The CLOSE routine requires only one parameter: the
logical file number, passed in the accumulator.

LDA LF
JSR CLOSE

No error messages can occur when using the CLOSE command. An 
exception to this is the closing of an RS-232 channel. Here 
the buffer is freed and the BASIC interpreter executes a CLR 
command. An attempt to close an unopened file does not 
result in an error message.

CHKIN - JSR $FFC6

This command serves to redirect the input from the 
keyboard to an opened file. If you want to read data from 
the diskette, you must first open the file and then use this
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file as input with CHK1N. The logical file number must be in 
the X register for the call.

LDX LF 
JSR CHKIN

Here too, errors are recognized through the set carry flag. 
If the file was not previously opened, we get "FILE NOT 
OPEN”; if you try to read a cassette file, a "NOT INPUT 
FILE” error results. The actual input is performed by the 
routine BASIN, introduced later.

CKOUT - JSR $FFC9

The routine CKOUT is to output what CHKIN is to input. 
It allows the output to be redirected to a previously opened 
file. The CKOUT routine corresponds to the BASIC command 
CMD. The logical file number is again passed in the X regis
ter .

LDX LF 
JSR CKOUT

The possible errors correspond to those for CHKIN. An at
tempt to write to a tape file results in "NOT OUTPUT FILE." 
The output is performed with BSOUT.

BASIN - JSR $FFCF

This routine can be compared to the INPUT command in 
BASIC. If you have not redirected the input with CHKIN, you 
can get characters from the keyboard or from the screen. If 
you call BASIN from within a machine language program, the
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cursor appears on the screen and you can enter characters 
until you press RETURN. BASIN returns, in the accumulator, 
the first character entered. Each additional call of BASIN 
gets an additional character until RETURN (CHR$(13)) is 
encountered. This allows you to make full use of the screen 
editor. If, however, you want characters from an opened 
file, corresponding to the INPUT# command, you must first 
call CHKIN which redirects input from this file. The BASIN 
routine then gets a character from this file upon each call 
and returns this character in the accumulator.

BSOUT - JSR $FFD2

We can output characters with the BSOUT routine. The 
character in the accumulator will be printed on the screen. 
For example:

LDA #$41
JSR BSOUT

This prints the character with the ASCII value $41 or 65 
(the letter A) on the screen. You can also output control 
characters or color codes, exactly as with the BASIC command 
PRINT CHR$(X);. A new-line, as is possible in BASIC with a 
PRINT command without a terminating semicolon, must be ex
plicitly specified in machine language.

LDA #13 ; carriage return
JSR BSOUT ;output

If you do not want to output the characters on the screen, 
but rather to the printer or to a disk file, you must first 
open the appropriate file and use the routine CKOUT. This
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routes the output to the file and all calls of BSOUT output 
the character not to the screen, but to that file. Error 
messages such as "DEVICE NOT PRESENT" may occur if the 
device on the serial bus does not answer.

CLRCH - JSR $FFCC

The routine CLRCH has the opposite function as CHKIN 
and CKOUT. While these routines redirect input or output to 
a logical file, CLRCH resets the standard I/O devices— the 
keyboard and the screen. If you want to get 10 characters 
from logical file 2 from the disk, the appropriate program 
fragment looks like this:

LDX #2 ; logical file number 
JSR CHKIN ; input from file #2 
LDY #0

LOOP JSR BASIN ; get character from the disk 
STA STORE,Y ; and store 
INY
CPY #10 ; 10 characters?
BNE LOOP ; no
JSR CLRCH ; back to standard input

The logical file 2 must be opened before using this 
fragment. The input is routed from the file with CHKIN, ten 
characters are read with BASIN and stored, and the standard 
input is re-established from the keyboard with CLRCH. The 
file remains open; closing must be done explicitly with 
CLOSE.

GET - JSR $FFE4
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This routine corresponds to the GET routine of BASIC. 
You can get a character from the keyboard with it. If no key 
is pressed at the tine the routine is called, a zero is 
returned, exactly as in BASIC where a null string is return
ed if no key is pressed. A loop to wait for a keypress is 
constructed as follows:

LOOP JSR GET 
BEQ LOOP

The loop waits until a key is pressed. The GET conmand 
can also be used on a logical file. As with BASIN, the 
logical file Bust first be set with CHKIN. The GET conaand 
on a file works the saae way as the BASIN routine. After a 
GET on a logical file a call to CLRCH is necessary in order 
to reactivate the standard input.

CLALL - JSR $FFE7

This routine performs the same tasks as CLRCH. In 
addition, however, the nuaber of open files is set to zero. 
This has the effect of closing all of the files. The corres
ponding CLOSE routine is not called. A file opened for 
writing on the disk is not closed properly. This routine is 
called by the BASIC interpreter for each RUN command.

LOAD - JSR $FFD5

This is the operating system LOAD routine. Before call
ing this routine, the device number, secondary address, and 
filename must be set. This can be done with the routines 
SETFLS and SETNAM which were discussed in connection with 
the OPEN command. A program can be loaded at the address
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from which it was saved and which is stored in the disk or 
datasette file, or it can be loaded at an address passed to 
the LOAD command, depending on the secondary address. With a 
secondary address of zero, the file (program) is loaded at 
the address passed in the X (LSB) and Y (MSB) registers. The 
contents of the accumulator determines if a load or a verify 
is to be executed.

LDA #0 ; flag for LOAD 
LDX #<ADDRESS ; start address 
LDY #>ADDRESS 
JSR LOAD
STX ENDADDR ; end address LSB 
STY ENDADDR+1 ; MSB

For the case in which the secondary address is zero, 
the program is loaded at the address given by ADDRESS. The 
ending address of the loaded program is returned in the X 
and Y registers. If the program is not to be loaded but only 
compared with the program in memory (verified), a 1 must be 
passed in the accumulator.

LDA #1 ; flag for VERIFY 
JSR LOAD

If the secondary address is one, the file is loaded at 
the address specified within the file itself and we need not 
pass the start address in X and Y. For VERIFY, a verify 
failure is denoted by a status value (STATUS is located at 
address $90) other than zero. Bit 6 (value 64) must be 
masked out since this signals the end of the program.
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OK

LDA STATUS 
AND #*10111111 
BEQ OK 
JMP ERROR

mask EOF BIT

SAVE - JSR $FFD8

With the SAVE routine it is possible to save a section 
of memory to a peripheral device. The device number and the 
filename must again be previously specified with SETFLS and 
SETNAM. The routine itself must be given the starting ad
dress and ending address+1 of the area to be saved. The 
ending address plus one must be contained in the X and Y 
registers. The accumulator must contain a pointer to the 
zero page address at which the low and high bytes of the

If for example we want to savestarting address are stored.
the area from $1234 to $ 1FFF

LDA #<$1234
STA START
LDA #>$1234
STA START*1
LDX #<$1FFF+1
LDY #>$1FFF*1
LDA #START
JSR SAVE

First the starting address is placed in the zero page loca
tions START and START*1. The ending address plus one is 
placed in the X (LSB) and Y (MSB) registers and the accumu
lator is loaded with the address of START. Note that immed
iate addressing is used because the address itself, not its
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contents, is intended.

Error messages such as "DEVICE NOT PRESENT" or "MISSING 
FILENAME" may occur when saving to diskette or "ILLEGAL 
DEVICE NUMBER" for an attempt to save to the keyboard, 
screen, or RS-232.

Before we try to write our own input/output routines, 
we will briefly review the operation of some operating 
system kernal routines.

OPEN

For the OPEN command the parameters for the logical 
file number, device number, and secondary address are placed 
in a table. This table has ten positions. An attempt to 
open more than 10 files will generate the error message "TOO 
MANY FILES." The rest of the procedure is dependent on the 
device number. If the device is the keyboard (0) or the 
screen (3), any filename is ignored and the routine ends. 
For the datasette (1) a tape file is opened either for 
reading (secondary address = 0) or for writing (secondary 
address = 1) based on the secondary address. Secondary 
address 2 leads to opening a write file and is handled 
differently only by the CLOSE command. For reading, the tape 
file with the filename given in the OPEN command is searched 
for. If no name is given, the first file found is opened. 
For writing, a file with the provided name (if any) is 
opened.

If the device address is 2, RS-232 transmission is 
prepared. As already mentioned, two 256-byte buffers for 
input and output are allocated at the upper end of the BASIC 
storage. The secondary address is ignored. The first two
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characters of the "filename*' are copied to $293 and $294. 
From these parameters the number of bits per word (5-8) is 
calculated and stored in $298. The corresponding baud rate 
values with which the timer in CIA 2 must be loaded are 
determined from the first character of the filename by means 
of a table and saved in $295/$296. If the X line handshake 
was specified, a check is made to see if the signal DSR 
(Data Set Ready) is present. In the absence of this signal 
the appropriate bit in the RS-232 status ($297) is set. 
Otherwise the status is always cleared by the OPEN command.

Device addresses greater than 3 refer to the serial 
bus. If the secondary address and filename are missing, as 
with OPEN 1,4 for the printer, only an entry is made in the 
table. The absence of the secondary address must be made 
known to the routine SETFLS by using a negative value ($FF) 
for the secondary address. Otherwise the OPEN command is 
sent over the serial bus. After the device is addressed with 
LISTEN, the secondary address plus $F0 is sent. The connect
ed device interprets this as an OPEN command. If a filename 
was specified, it is sent at the end before the transmission 
is ended with UNLISTEN.

CLOSE

The CLOSE command ends the transmissions and clears the 
corresponding table entries in the computer. The rest of the 
procedure is again determined by the device address. For 
files on the keyboard and screen, nothing more is done. If a 
tape file is to be closed, the procedure is further depend
ent on the secondary address. If the file was opened for 
reading (secondary address = 0), nothing more need be done. 
For writing, the current contents of the cassette buffer 
are written to the tape. For secondary address 2, an EOT
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(End Of Tape) block is also written. For an RS-232 transmis
sion, the activities are terminated and the two buffers are 
deallocated. If a file on the serial bus is to be closed, 
the computer sends the secondary address (if there was one) 
plus $E0, which is interpreted as a CLOSE command.

CHKIN

If the input is to be taken from a file, the computer 
detemines the device number and secondary address from the 
logical file number and takes additional steps dependent 
upon this. With the datasette, a check is made to see if the 
file is a read file (secondary address = 0), otherwise the 
error message "NOT INPUT FILE" is generated. For devices on 
the serial bus, a TALK command and then the secondary ad
dress are sent. The device is thereby ready to send data. 
The number of the device from which input is to be expected 
is stored independent of the device until the normal input 
is re-enabled with CLRCH.

CKOUT

The CKOUT command functions like the CHKIN command. For 
the datasette, a check is made to see if the secondary 
address is greater than zero (otherwise a "NOT OUTPUT FILE" 
error). A LISTEN command and the secondary address are sent. 
The connected device is then ready to receive data.

BASIN

Here a character is fetched from the keyboard, the 
datasette, the RS-232 interface, or the serial bus depending 
on the active device selected with CHKIN.
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BSOUT

This routine sends the character in the accumulator to 
the device previously determined with CKOUT. The screen 
serves as the standard device.

CLRCH

The CLRCH command cancels the CHKIN and CKOUT I/O 
redirections. The values 0 for keyboard input and 3 for 
screen output are again entered. If devices were active on 
the serial bus, an UNTALK or UNLISTEN command is sent in 
order to inform the devices of the end of the transmission.

196



Advanced Machine Language

3 . 6  P r i n t e r  s p o o l i n g

As an example of the use of the input/output vectors of 
the operating system, we present a routine that emulates a 
Centronics-compatible interface on the user port and also 
allows for printer spooling.

Spooling is the outputting of characters to the printer 
in the "background,” while the computer performs other 
tasks. From this description, it should be quite clear that 
this must be handled by an interrupt routine. In order that 
the normal PRINT output not have to wait until the printer 
is ready for each character, we will write the character in 
a buffer. The interrupt program checks each time to see if 
characters are still in the buffer. If this is so and the 
printer is ready to accept more data, characters are sent 
until either the printer is qo longer ready or there are no 
more characters left to be sent.

100: ccoo .OPT PI
110: »
120: ;PRINTER SPOOLING
130: >
140: ;I/O VECTORS
150: 031A OPEN = $31A ;OPEN VECTOR
160: 031C CLOSE = $31C ;CLOSE VECTOR
170: 0326 BSOUT = $326 ;BSOUT VECTOR
18p: ;
190: 00F7 WPNT = $F7 ;WRITE-POINTER

WITHIN BUFFER
200: 00F9 RPNT = $F9 ;READ-POINTER

WITHIN BUFFER
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220: 0098 NRFLS $98 ;NUMBER OF OPEN
FILES

230: 00B8 LF $B8 ;LOGICAL FILE
NUMBER

240: 00BA FA $BA ;DEVICE ADDRESS
250: 00B9 SA $B9 ;SECONDARY ADDRESS
260: 0259 LFTAB $259 ;TABLE OF LOGICAL

FILE NUMBERS
270: 0263 FATAB LFTAB+10 ;TABLE OF DEVICE

ADDRESSES
280: 026D SATAB FATAB+10 ;TABLE OF

SECONDARY ADDRESSES
290: 009B CHAR $9E ;CHARACTER TO BE

OUTPUT
300: 0001 CONFIG 1 ;MEMORY DIVISION
310: 009A OUTDBV $9A ;DEVICE NUMBER

FOR OUTPUT
320: 0314 IRQVEC $314 ;IRQ VECTOR
330: EA31 IRQOLD $EA31 ;OLD IRQ ROUTINE
340: t

350: F34A OPENOLD = $F34A
360: F1C A BSOUTOLD = $F1CA >
370: F31F SETPARA = $F31F
380: F314 SEARCHLF = $F314
390: F30F SRCHLFX = $F30F
400: F2A1 OLDCLOSE = $F2A1
410: F2F1 CONTCLS = $F2F1
420: F6FE FILEOPEN = $F6FE
430: F64B TOOMANY = $F64B
440: F291 CLOSEOLD = $ F291
450: DDOO CIA $DD00 ; CIA2
460: DDOO PORTA CIA ;PA2 FOR STROBE
470: DDO1 PORTB CIA+1 ;PORT B FOR DATA
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480: DD03 DIRECTION CIA+3 ;DATA DIRECTION
REGISTER

490: DDOD ICR = CIA+13 ;INTERRUPT CONTROL
REGISTER

500: ;
510: E000 BUFFER = $E000 ;PRINTER BUFFER

UNDER KERNAL
520: »
530: CCOO * = $CCOO
540: CCOO A9 OB INIT LDA #<OPENNEW
550: CC02 AO CC LDY #>OPENNEW
560: CC04 8D 1A 03 STA OPEN ;RESET OPEN VECTOR
570: CC07 8C IB 03 STY OPEN+1
580: CCO A 60 RTS
590: >
600: CCOB A6 B8 OPENNEW LDX LF ;LOGICAL FILE

NUMBER
610: CCOD FO 05 BEQ ERROR ;ZERO NOT ALLOWED
620: CCOF 20 OF F3 JSR SRCHLFX ;SEARCH FOR FILE
- DATA
630: CC12 DO 03 BNE 0K2 ;NOT FOUND, OK
640: CC14 4C FE F6 ERROR JMP FILEOPEN ;OTHERWISE ’FILE

OPEN' ERROR
650: CC 17 A6 98 0K2 LDX NRFLS ;NUMBER OF OPEN

FILES
660: CC 19 EO OA CPX #10
670: CC IB 90 03 BCC OK ;LESS THAN 10, OK
680: CC ID 4C 4B F6 JMP TOOMANY ;’TOO MANY FILES’
690: CC20 A5 BA OK LDA FA ;DEVICE NUMBER
700: CC22 C9 04 CMP ♦4 ;EQUAL TO 4?
710: CC24 FO 03 BEQ SPOOL ;YES, SPOOLING
720: CC26 4C 4 A F3 JMP OPENOLD
730: CC29 E6 98 SPOOL INC NRFLS ;INCREMENT NUMBER
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740: CC2B 9D 63 02 STA FATAB,X ;DEVICE ADDRESS
IN TABLE

750: CC2E A5 B8 LD A LF
760: CC30 9D 59 02 STA LFTAB,X ;LOGICAL FILE

NUMBER
770: CC33 A9 FF LD A #-l
780: CC35 9D 6D 02 STA SATAB,X ;NO SECONDARY

ADDRESS
790: CC38 A9 EO LDA #>BUFFER
800: CC3A 85 F8 STA WPNT+1 ;WRITE-POINTER
810: CC3C 85 FA STA RPNT+1 ;AND READ-POINTER
820: CC3E A9 00 LDA #0 ;TO START BUFFER
830: CC40 85 F7 STA WPNT
840: CC42 85 F9 STA RPNT
850: CC44 A9 FF LDA ♦ $FF
860: CC46 8D 03 DD STA DIRECTION ;USER PORT TO

OUTPUT
870: CC49 AD 00 DD LDA PORTA
880: CC4C 09 04 ORA #%100 ;STROBE HI
890: CC4E 8D 00 DD STA PORTA
900: CC51 A9 B5 LDA #<BSOUTNEW
910: CC53 AO CC LD Y #> BSOUTNEW
920: CC55 8D 26 03 STA BSOUT ;BSOUT VECTOR TO

NEW ROUTINE
930: CC58 8C 27 03 STY BSOUT+1
940: CC5B A9 DD LDA #<CLOSENEW
950: CC5D AO CC LD Y #>C LOSENEW
960: CC5F 8D 1C 03 STA CLOSE ;CLOSE VECTOR TO

NEW ROUTINE
970: CC62 8C ID 03 STY CLOSE+1
980: CC65 A9 73 LDA #< SPOOLING
990: CC67 AO CC LD Y #> SPOOLING
1000: CC69 78 SEI
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1010: CC6A 8D 14 03 STA IRQVEC ;IRQ VECTOR TO
SPOOL ROUTINE

1020: CC6D 8C 15 03 STY IRQVEC+1
1030: CC70 58 CLI
1040: CC71 18 CLC ;ERASE ERROR FLAG
1050: CC72 60 RTS
1060: ;
1070: CC73 A5 01 SPOOLING LDA CONFIG
1080: CC75 48 PHA
1090: CC76 A9 35 LDA #$35 ;SELECT RAM
1100: CC78 85 01 STA CONFIG
1110: CC7A A5 F9 TESTNEXT LDA RPNT ;COMPARE WRITE

POINTER
1120: CC7C C5 F7 CMP WPNT ;WITH READ PRINTER
1130: CC7E DO 06 BNE SENDCHAR ;NOT EQUAL, THEN

OUTPUT CHARACTER
1140: CC80 A5 FA LDA RPNT+1
1150: CC82 C5 F8 CMP WPNT+1
1160: CC84 F0 29 BEQ EXIT
1170: CC86 A9 10 SENDCHAR LDA #*10000 ;BIT MASK FOR

FLAG
1180: CC88 2C OD DD BIT ICR ;PRINTER READY?
1190: CC8B FO 22 BEQ EXIT ; NO
1200: CC8D AO 00 LDY #0
1210: CC8F B1 F9 LDA (RPNT),Y ;CHARACTER TO

OUTPUT
1220: CC91 8D 01 DD STA PORTB ;GIVE TO PORT
1230: CC94 AD 00 DD LDA PORTA
1240: CC97 29 FB AND #*11111011 ;STROBE LO
1250: CC99 8D 00 DD STA PORTA
1260: CC9C 09 04 ORA #*000000100 ;AND HI AGAIN
1270: CC9E 8D 00 DD STA PORTA
1280: CCA1 E6 F9 INC RPNT
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1290 CCA3 DO D5 BNE TESTNBXT ;INCREMENT-READ
POINTER

1300 CCA5 E6 FA INC RPNT+1
1310 CCA7 DO D1 BNE TESTNEXT
1320 CCA9 A9 EO LDA ♦>BUFFER
1330 CCAB 85 FA STA RPNT+1
1340 CC AD DO CB BNE TBSTNEXT ;SEND NEXT

CHARACTER
1350 »
1360 CCAF 68 EXIT PLA
1370 CCBO 85 01 STA CONFIG ;OLD MEMORY

DIVISION
1380 CCB2 4C 31 EA JMP IRQOLD ;TO ADD IRQ
1390 ;
1400 CCB5 48 BSOUTNEW PHA ;SAVE CHARACTER
1410 CCB6 A5 9A LDA OUTDEV ;DEVICE ADDRESS
1420 CCB8 C9 04 CMP ♦4 ;EQUAL TO 4?
1430 CCB A FO 04 BEQ OKI ;YES
1440 CCBC 68 PLA
1450 CCBD 4C CA FI JMP BSOUTOLD ;TO OLD OUTPUT
1460 CCCO 68 OKI PLA ;CHARACTER BACK
1470 CCC1 85 9E STA CHAR ;AND SAVE
1480 CCC3 98 TYA
1490 CCC4 48 PHA ;SAVE Y
1500 CCC5 A5 9E LDA CHAR ;CHARACTER
1510 CCC7 AO 00 LDY #0
1520 CCC9 91 F7 STA (WPNT),Y ;WRITE IN BUFFER
1530 CCCB E6 F7 INC WPNT
1540 CCCD DO 08 BNE NOINC ;INCREMENT BUFFER

POINTER
1550 CCCF E6 F8 INC WPNT+1
1560 CCD 1 DO 04 BNE NOINC
1570 CCD3 A9 EO LDA #>BUFFER ;BUFFER POINTER
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TO START
1580: CCD5 85 F8 STA WPNT+1
1590: CCD7 68 NOINC PLA
1600: CCD8 A8 TAY ;Y BACK
1610: CCD9 A5 9E LDA CHAR
1620: CCDB 18 DONE CLC ;CLEAR ERROR FLAG
1630: CCDC 60 RTS
1640: i
1650: CCDD 20 14 F3 CLOSENEW JSR SEARCHLF ;SEARCH FOR FILE

DATA
1660: CCEO DO F9 BNE DONE ;NO FILE OPEN,

DONE
1670: CCE2 20 IF F3 JSR SETPARA ;GET FILE

PARAMETER
1680: CCE5 8A TXA
1690: CCE6 48 PHA ;SAVE X REGISTER
1700: CCE7 A5 BA LDA FA ;DEVICE ADDRESS
1710: CCE9 C9 04 CMP #4 ;4?
1720: CCEB FO 03 BEQ CLOSE 1
1730: CCED 4C A1 F2 JMP OLDCLOSE ;OLD CLOSE

ROUTINE
1740: CCFO A9 CA CLOSE 1 LDA #< BSOUTOLD
1750: CCF2 A2 FI LDX ♦>BSOUTOLD
1760: CCF4 8D 26 03 STA BSOUT ;VECTOR TO ADD

BSOUT ROUTINE
1770: CCF7 8E 27 03 STX BSOUT+1
1780: CCFA A9 91 LDA ♦<CLOSEOLD
1790: CCFC A2 F2 LDX #>CLOSEOLD
1800: CCFE 8D 1C 03 STA CLOSE ;VECTOR TO OLD

CLOSE ROUTINE
1810: CDO 1 8E ID 03 STX CLOSE+1
1820: CD04 A9 31 LDA #<IRQOLD
1830: CD06 A2 EA LDX #>IRQOLD
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1840: CD08!! * 8 SEI
1850: CD09 8D 14 03 STA IRQVEC ;;REPLACE OLD
1860: CD0C 8E 15 03 STX IRQVEC+1
1870: CD0F 58 CLI
1880: CD 10 4C FI F2 JMP CONTCLS ;END CLOSE

NORMALLY
]CCOO-CD13 
NO ERRORS

Before we come to the description of the routine, we 
should first learn something about the operation of the 
Centronics interface for a better understanding of the 
printer output.

A Centronics interface is a parallel interface, meaning 
that 8 bits (a complete byte) are always sent in parallel. 
In order that the computer and printer be able to agree on 
the time of the transmission, two "handshake" lines are 
used. The first line is called STROBE and is controlled by 
the computer. The line floats high, meaning that it is 
normally logically high. If the computer wants to send a 
character to the printer, it places the data on the data 
lines and signals the printer through a short low impulse on 
the STROBE line meaning that the data is ready for it. The 
printer accepts’ the data and forces the BUSY line high until 
it has processed the character and is ready to accept the 
next. Before the computer can send the next character, it 
must first wait until the BUSY line returns to low. The CIA 
2 of the Commodore 64 is used for the interface. Port B, the 
user port, serves to transmit the data. The STROBE signal 
goes over the PA2 line (bit 2 of port A) and the BUSY line 
of the printer is connected to the FLAG line of the user 
port. Bit 4 in the interrupt control register of the CIA is
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automatically set by high to low transition. We can there
fore recognize exactly when the printer is ready to receive 
data. The following timing diagram represents the relation
ship graphically.

BUSY

DATA

STROBE

Now to the description of our program. After the def
inition of the addresses we find first the initialization 
which sets the OPBN vector to our new routine in the usual 
manner. The routine itself begins in the same way as the 
operating system routine with the test of the logical file 
number. If it is zero, we output an error message. Otherwise 
we search for an open file with this number. If no file with 
the same number was opened, we can check to see if ten files 
are already open. If so, then the capacity of the file table 
is exhausted and we output the error message "TOO MANY 
FILES." Otherwise we check the device number. If the device 
number is not four, we jump to the normal OPEN routine.

205



Advanced Machine Language

Otherwise we increment the number of open files and enter 
the logical file number, device number, and secondary ad
dress in the appropriate tables. The buffer pointers are set 
to the start of the buffer. We use the 8K from $E000 to 
$FFFF under the operating system as the buffer. Then the 
user port is switched to output and the STROBE signal is 
forced high. Now the vectors for BSOUT and CLOSE are set to 
our new routines. The actual spooling is done during the 
interrupt; we change the interrupt vector to point to the 
routine SPOOLING. After that, the carry flag is cleared and 
we can return with RTS.

The spool routine, which is tied into the system inter
rupt, first switches the memory configuration to RAM and 
checks to see if there is a character to output in the 
buffer. This is the case if the write pointer, which is 
incremented by the routine BSOUT by each write to the buf
fer, is not the same as the read pointer. If the printer is 
now ready to accept characters, we get a byte from the 
buffer and place it on the user port. We notify the printer 
that we have sent it a valid character by toggling the 
STROBE line to low and back to high again. Now we increment 
the read pointer so that the next character can be sent from 
the buffer.

We now branch to the start of the routine and output 
the next character. The loop is executed until either no 
characters are left to be sent or the printer is no longer 
ready to accept them. At the label EXIT, the normal memory 
configuration is switched back on and the normal interrupt 
routine is executed.
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The routine BSOUTNEW tests to see if the output is 
going to device 4. In this case, the character is written 
into the buffer and the buffer pointer is incremented. The 
routine does not destroy any register contents and is exited 
with the cleared carry flag to indicate that no errors 
occurred.

In CL0S6NEW, the vectors for BSOUT and CLOSE are reset 
to the original addresses if the device address four is 
recognized. The interrupt vector is also set to its old 
value. The output of any characters still in the buffer is 
terminated. A loop must be inserted which waits until the 
buffer pointers for reading and writing are the same in 
order to avoid this.

A cable is necessary to connect the Commodore 64 user 
port to the Centronics interface of the printer. The follow
ing lines must be connected:

USER 1PORT - CENTRONICS
A GND 16
B FLAG-BUSY 11
C DO 2
D D1 3
E D2 4
F D3 5
H D4 6
J D5 7
K D6 8
L D7 9
M PA2-STROBE 1
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Since most printers with a Centronics interface use the 
ASCII character set which is different from the Conmodore 
64 *s character set, the output can also include a conversion 
to ASCII codes.

The following must be noted when starting. Connect the 
printer and the computer with the cable and turn on first 
the computer and then the printer. This guarantees that the 
printer will be in the READY condition and will set the FLAG 
bit in the CIA. Now you can load the machine language prog
ram and initialize it with SYS 52224. After OPEN 1,4, all 
data 3ent via PRINT#1 are written to the buffer, whose 
contents are sent to the printer in the interrupt routine. 
Writing to the buffer is done very quickly so that your 
application program does not have to wait for the printer.
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129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
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150
151
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153
154
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158

Advanced Machine Language

of BASIC keywords and their tokens
Command Address Token Command Address

END $A831 $9F 159 OPEN $E 1BE
FOR $A742 $A0 160 CLOSE $E1C7
NEXT $AD IE $A1 161 GET $AB7B
DATA $A8F8 $ A2 162 NEW $A642
INPUT# $ABA5 $ A3 163 TAB ( -
INPUT $ABBF $A4 164 TO -
DIM $B081 $A5 165 FN -
READ $AC06 $A6 166 SPC( -
LET $ A905 $ A7 167 THEN -
GOTO $A8A0 $A8 168 NOT -
RUN $ A871 $ A9 169 STEP -
IF $A928 $AA 170 + $B86A
RESTORE $A81D $AB 171 - $B853
GOSUB $A883 $AC 172 * $BA2B
RETURN $ A8D2 $ AD 173 / $BB12
REM $A93B $AE 174 $BF7B
STOP $A82F $AF 175 AND $AFE9
ON $A94B $B0 176 OR $AFE6
WAIT $B82D $B 1 177 > -
LOAD $E 168 $B2 178 = -
SAVE $E 156 $B3 179 < -
VERIFY $E165 $B4 180 SGN $BC39
DEF $B3B3 $B5 181 INT $BCCC
POKE $B824 $B6 182 ABS $BC58
PRINT# $ AA80 $B7 183 USR $0310
PRINT $AAA0 $B8 184 FRE $B37D
CONT $ A69C $B9 185 POS $B39E
LIST $A69C $BA 186 SQR $BF71
CLR $ A65E $BB 187 RND $E097
CMD $ AA86 $BC 188 LOG $B9EA
SYS $E 12 A $BD 189 EXP $BFED
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Token Command Address
$BE 190 COS $E264
$BF 191 SIN $E26B
$C0 192 TAN $E2B4
$C1 193 ATN $E30E
$C2 194 PEEK $B80D
$C3 195 LEN $B77C
$C4 196 STR$ $B465
$C5 197 VAL $B7 AD
$C6 198 ASC $B78B
$C7 199 CHR$ $B6EC
$C8 200 LEFT$ $B700
$C9 201 RIGHT$ $B72C
$CA 202 MID$ $B737
$CB 203 GO -

The table is constructed such that the command words 
come first ($80-$A2), then the special words which are used 
in combination with other commands ($A3-$A9). The operators 
are next ($AA-$B0), followed by the comparison operators 
($B1-$B3) and the BASIC functions ($B4-$CA). The code for GO 
which allows GOTO to be written as GO TO concludes the 
table. Behind the command words are the addresses of the 
corresponding routines in ROM, whenever possible.
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