o0&
D6
£3
P o
B .
anmvm
MC

‘Mastering the Commodore 64 Mark Greenshieids —Interface

i

MASTERING THE
COMMODORE 64
Mark Greenshields

N ;RER 5 (CE
T W
BUBHCALI0kS

44-46 Earls Court Road, London W8 6EJ

This book is dedicated to my parents
Jack and Sheila Greenshields.

First published in the UK by:
Interface Publications,

44 —46 Earls Court Road,
London, W8 6EJ.

© Copyright 1983, Mark Greenshields

All rights reserved. This book may not be reproduced in part or
in whole without the explicit prior written permission of the
publishers. The routines outlined in this book may not be used
as part of any program offered for publication nor for programs
intended to be sold as software, except as allowed by the
publisher. Permission must be sought, in advance, for all
applications of this material beyond private use by the
purchaser of this volume.

ISBN 0 907563 38 4

Cover lllustrator, David John Rowe.

Typeset and Printed in England by Commercial Colour Press,
London E7.

4

CONTENTS

SECTION 1
1.1 THE BASIC LANGUAGE

This section covers the whole of the BASIC language on the
Commodore 64.

1.2 COLOUR
This section tells how to achieve colour on the 64.

1.3 ANIMATION
This section teaches animation in BASIC.

1.4 MUSIC AND SOUND SYNTHESIS

This section teaches music and sound in BASIC on this
remarkable machine.

1.5 PROGRAMMABLE CHARACTERS

This section teaches how to program your own characters in
BASIC including muilticolour characters.

1.6 SPRITES

This section shows how sprites are created, stored and used in
one or four colours.

1.7 HIGH RESOLUTION GRAPHICS

This section shows how to do high resolution graphics without
Simon’s BASIC.

1.8 OTHER COMPUTERS’ BASICS

This section shows you how to convert other machine’s
BASICsinto C =64 BASIC. Includes the ZX computer’s PRINT
AT X,Y ; statement.

1.9 THE PERIPHERALS

This section shows the beginner how to use a printer, a 1540(1)
disk drive, joysticks and cassette files on the Commodore 64.

1.10 SPEEDING UP AND IMPROVING YOUR BASIC
PROGRAMS

Just as the title says. ..

SECTION 2
2.1 MACHINE LANGUAGE

This section teaches assembly language and machine code on
the C =64.

2.2 COLOUR IN MACHINE CODE
How to use colour in machine code.

2.3 ANIMATION IN MACHINE CODE
This section shows you how to use animation in machine code.

2.4 SOUND AND MUSIC IN MACHINE CODE

This section shows you how to use sound in machine code
programs.

2.5 PROGRAMMABLE CHARACTERS IN MACHINE CODE

This section teaches you how to create and use programmable
characters in machine code.

2.6 SPRITES IN MACHINE CODE
This section teaches you how to use sprites in machine code..

6

2.7 COMMODORE 64 ARCHITECTURE AND INTERRUPTS

This section explains how the 64 is put together and how to use
the interrupt functions. Includes a machine code program to
program the function keys with any thing you want (keywords,
etc).

2.8 SIMILARITIES BETWEEN BASIC AND MACHINE CODE

This section shows the similarities between BASIC and
machine code and shows how some parts can be directly
changed into the other language.

2.9 PROGRAMS

This section contains a Hex loader/saver/enterer, a Hex to
decimal conversion program and vice versa, and a few
miscellaneous programs for you to type in and try.

SECTION 3

THE APPENDICES

This section contains every appendix you would want from a
character code table to a complete memory map of the 64 with
KERNAL routines listed. It gives the Hex of every address for
machine code programmers.

FOREWORD
— by Tim Hartnell

The Commodore 64 is one of the most powerful personal
computers on the market. It has the graphic capabilities of an
arcade machine, the sound of an expensive music synthesiser,
and expansion capabilities which make it ideal for many
business applications.

But you need a key to unlock the 64s possibilities, and | believe
that Mark Greenshields gives you such a key with this exciting
book. He takes you through BASIC programming on the
Commodore 64, including demonstration programs at every
turn to reinforce the information he is sharing, and to make the
use of each command and function crystal clear.

From there, you’ll progress to assembly language {machine
code) programming. By the time you’ve studied this section,
you'll have gained a great deal of competence in this exciting
area of programming.

Mark shows you a number of easy ways to control sound,
sprites, the high-resolution graphics and colour.

It's time to get underway, so you too can learn to master the
Commodore 64.

Tim Hartnell,
March 1983.

Tim Hartnell is author of a number of personal computer books,
including ‘The Book of Listings’ (BBC Publications), ‘Getting
Acquainted with Your Vic 20’ (Interface Publications) and ‘The
Personal Computer Guide’ (Virgin Books).

9

INTRODUCTION

There are certain expressions which are frequently used in the
book. They should be studied and understood before
continuing with the book.

VARIABLES

A variable is a letter, series of letters or a letter and a number
that stand for a number or a list of letters in a program. This is
done to save time and memory and add flexibility. There are
three types of variables:

1. A numeric variable.
2. Aninteger variable.
3. A string variable.

They are all suffixed in different ways to distinguish them from
each other. A numeric variable has no suffix:

egd.
aorzora(l)or a4, etc.

An integer variable is the same as a numeric variable except that
it is suffixed with a ‘%’ sign. Their use is primarily to save
memory in preference to numeric variables.

eg.
a% or D% or a(1)% or h7 %, etc.

A string variable is used 1o store ‘strings’ of letters or numbers.
This makes text easy to handle. (it is suffixed, with an ‘$’ (dollar
sign).

egd.
A$ or f$ or A(1)$ or h7$, etc.

1

MATHEMATICAL OPERATORS
+ add
— subtract
* multiply
/ divide
! to the power of

MASTERING THE COMMODORE 64

The Commodore 64 uses a language called BASIC (Beginners
All-purpose Symbolic Instruction Code). Itis the simplest of all
languages to learn and use. However, it has a few drawbacks.
Most of all it is slow. This book will try to explain how to speed
up BASIC programs.

12

ACKNOWLEDGEMENTS

With thanks to my parents Jack and Sheila Greenshields, my
sister Louise, Douglas Grant, John Lovie, Graeme Douglas,
Anita Fabiani and Steve Beats of Commodore. Also special
thanks to MICROCOM.

I would also like to thank Tim Hartnell and Richard Gollner for
making this book possible.

Mark Greenshields,
February 1983.

13

SECTION 1.1

This section covers the whole of the BASIC language on the
Commodore 64 and explains how sound and music synthesis,
colour, high-resolution and sprites can be used on the
Commodore 64.

The commands are not presented in alphabetical order because
it is far easier to learn them in this order.

We will begin with the command PRINT.

The command PRINT does exactly what it says. It prints
characters on the screen, printer, disk drive or cassette. It has
two basic formats:

1) PRINT ** "(quote signs). This puts what is inside the
guotes onto the screen.

2) PRINT A. This prints the value given to the variable A. If A
has not been set then it will PRINT 0.

When a variable is used after a quote then a semicolon (;)
should be used.

eg. PRINT “HELLO YOUR SCORE IS” ; SCORE

Now that we can print variables on the screen we want to
change them. This brings us to our next command, LET. The
LET command is used to assign a (variable) to a number or
string. The variable (numeric) can be assigned a number
between:

—1.70141183 E+38 (times ten to the power of 38) to
+1.70141183 E + 38 for the largest floating point number,

15

and = 2.93873588 E—39 for the smallest floating point
number.

The LET command allows you to add or subtract (or multiply
or divide) one number from another.

eg.
LETA=A+1
LETA=A+B+C

In every case the LET command can be omitted on the
Commodore 64.

eg.
LETA = 1isthesameas A = 1.

So far, as soon as the computer has carried out your command
it forgets all about it. To write a program we need a way of
making the computer remember our commands. For this we
assign /line numbers to the commands. They are stored and
carried out in ascending order. They can be in the range @ to
63999.

eg.
10 PRINT I COST" ; price “POUNDS"
5 price = 350

Commands with line numbers are referred to as progams. The
above program would start with line 5.

Once a program is written we need a way to start it. We do this
with the command RUN. This command clears all previously
set variables to zero (or strings to empty strings). It then
executes the program from the first line number. It can also
have a number after it. In the following case the program would
start to execute from line 100.

RUN 100
100 PRINT “HELLO”
110 PRINT “GOODBYE"

16

Once you are finished looking at your program you will want to
stop it. This is done with the RUN/STOP key (at the left of the
keyboard). If you accidentally press this key, you can re-start
the program by typing the command CONT. This will only work
if you don’t change anything in the program.

EDITING

Now that you have written your first program you will want to
change certain things. There is one new command and a few
utilities which are in the Commodore 64 to help you. The
command is LIST. It has four different formats:

1) LIST Lists the whole program.

2) LIST —100 Lists the program up to and including line
100.

3) LIST 100- Lists the program from line 100 to the
end.

4) LIST 100—200 Lists the program from line 100 to line
200.

The LIST command puts the program lines onto the screen for
you to see or change.

There is an excellent editing facility on the Commodore 64.
There are three.special keys (and SHIFT) to help with editing.
These are:

1) CRSR (up and down). Move the cursor up or down the
screen.

2) CRSR (right and left). Move the cursor right and left.

3) INST DEL. Inserts or deletes spaces into (or characters
out) from a program.

When editing you have three options:

1. Re-type the whole line. The new one will replace the old
one.

2. Get rid of the line completely by typing the line number
and pressing RETURN.

3. Use the cursor and correct the error.

17

If you are studying a program as it is running then it can be
slowed down by pressing the CTRL key.

Now that you have written a program you will probably want to
store it for later use. For this you will need the ‘C2N Datasette’
or the floppy disk drive (see disk handling). Thereis a command
which stores a program on the cassette and this is SAVE. It has
two main formats:

1. SAVE. Stores the program on tape without a name.
2. SAVE “NAME”. Stores the program on tape and names it
‘NAME'.

When you press RETURN after typing this command you will
be told to press record and play on tape. Do this and wait (have
a tape in, of course). If the computer stops with ‘OK. READY’
then rewind the tape and type ‘VERIFY’. Otherwise rewind the
tape and re-SAVE the program.

The command VERIFY checks the program on the tape to see if
it is the same as that which is in the computer’s memory. If all is
OK then it will say so. If not re-SAVE the program.

Once the program is on tape you will want to retrieve it at some
time. The command LOAD does just that. It has two basic
formats which are just like those of SAVE. They are:

1. LOAD. This loads the first program on the tape, and

2. LOAD “NAME". This loads the program named ‘NAME’
whether or not itis the first program on the tape. If the program
LOADs properly then it will say ‘OK’". If you get aload error then
try again.

NOTE

Try to keep the tape recorder at least two feet away from the
TV. This will help successful SAVing and LOADing. Keep your
cassettes away from the TV!

Itis a good idea to save each program twice on the tape and use
computer quality C12 cassettes for more reliable storage.

18

There is a short cut to typing ‘LOAD’ to load a program. Press
SHIFT and without taking your finger off press RUN/STOP.
The program will now automatically load and run.

Often in a program the user is required to enter some
information into the computer. There are two commands
which deal with this. The first of these is INPUT, which has two
formats:

1. INPUT A$ or INPUT A (for strings or numbers
respectively).

2. INPUT “ENTER YOUR NAME" ; A$ or INPUT “ENTER
YOUR AGE” ; A.

The second format works in exactly the same way as the first
except that it PRINTs information before asking for information
(with a question mark).

The INPUT command assigns values or strings to the variables
just like the LET command only it allows the variable to be
changed while a program is running. A skill level in a game is an
example.

NOTE

Don’t use more than 38 characters in the quotes because if you
do the information will also be accepted by the variable giving
bad data.

When you have finished with a program you are likely to want
to get rid of it from the computer's memory. Instead of
switching the computer off you can type the command ‘NEW'.
It clears the program from memory and sets all variables to zero.
Once a program has been NEWed it is lost, unless it has been
SAVEd on tape or disk.

If you want to clear the variables but leave the program intact
you type ‘CLR’.

19

The other command for inputting information is GET AS$.
Unlike INPUT it only accepts one letter or number at a time and
it cannot print text. Its principal use is where options are given
and you are asked to choose A,B,C,D,E or F, for example. In
the following program the computer asks for aletter or number.
It will then print what you press.

10 GETA$
20 PRINTA$
39 RUN

SCREEN COMMANDS

The cursor can be moved around the screen, coloured one of
16 colours or reversed with special PRINT commands. To use
them you just ‘PRINT "’ and then the relevant command/s like
this.

All the commands are listed below with their meanings.

@ PRINT" g IS CLEAR SCREEN"
19 PRINT" g IS HOME CURSOR"
20 PRINT" g IS BLACK"

3@ PRINT” E IS WHITE"

48 PRINT" £ IS RED"

58 PRINT" [IS CYAN"

68 PRINT” _ IS PURPLE"

70 PRINT" 2 1S GREEN"

80 PRINT" & IS BLUE"

90 PRINT" gz IS YELLOW"

198 PRINT"a IS ORANGE"

118 PRINT W IS BROWN"

120 PRINT"y IS LIGHT RED"
138 PRINT"w IS GREY 1"

142 PRINT"x IS GREY 2"

158 PRINT"y IS LIGHT GREEN"
168 PRINT"z IS LIGHT BLUE"
170 PRINT"1 IS GREY 3"

20

180 PRINT"R. IS RUS ON"

198 PRINT"r_ IS RUS OFF"

208 PRINT"Q IS CURSOR DOWN"
218 PRINT"q. IS CURSOR UP™
228 PRINT"1 IS CURSOR LEFT"
238 PRINT"4a IS CURSOR RIGHT”

The colours zero to seven are obtained by pressing CTRL and a
key numbered 1 to 7. The colours eight to 15 are obtained by
pressing the Commode key (C =) and any number from 1 to 8.

The cursor commands are obtained with the cursor keys at the
bottom right of the keyboard.

Reversed characters are turned on by pressing CTRL and 9, and
they are turned off with CTRL 0.

When you are writing a programiit is likely that you will want to
know how much free memory you have left. The command for
thisis PRINT FRE (X). This command will only work if you have
less than 32K of memory left. So to make this just POKE 52,0:
POKE56,136. This gives you seven less K but if you need them
then type 562,160: POKE 56,160. The memory is measured in
bytes. A byte is one character. So if you have 1024 bytes left
you can have 1024 characters more in your program.

The Commodore 64 has an ASCII character set which controls
everything from colour and cursor controls to printer
commands. They are accessed with the command PRINT
CHRS$ (ASCIl code).

eg.
PRINT CHR$ (147) clears the screen. For a complete list of
the CHR$ codes see Appendix 11.

There is a complementary command to CHRS. It returns the
value for the character. It is ASC(character). If it is a single

21

character then the format is PRINT ASC(“character”). If itis a
string then the format is PRINT ASC(AS$).

eg.
PRINT ASC(““A") gives 65.

STRING HANDLING COMMANDS

A string can be divided up for various purposes. There are three
commands that do this:

LEFT$ (string name, number of letters)

RIGHTS$ (string name, number of letters)

MID$ (string name, starting position, number of letters).
LEFTS takes a set number of characters from the left side of the
string.

eg.
A$ = “ABCDEFGHIJK"”
PRINT LEFT$(A$,2) PRINTs AB

RIGHT$(A$,3) takes the rightmost characters which in this
case is IJK.

MID$(A$,3,4) takes characters from the middle starting at
position three which in this case is CDEF. These commands are
very powerful and allow complex string slicing to take place.

The length of a string can be found with the LEN(AS$)
statement:

eg. '
PRINT LEN (A$)

Which in this case will print 11. The numerical value of a string
can be found with VAL(AS$). It is only useful for numeric
(totally) strings as letters return a zero value. There is a
command which returns the numerical value of a string or
argument. Itis STRS.

eg.
PRINT STR$(12122) PRINTS 144
22

In a program you will often want to know what a certain part of
a program does. There is a command which caters for this.
When the computer meets this command it ignores what
comes after the command and goes immediately to the next
line. The command is REM.

eg.
10 PRINT CHRS(147)

20 REM LINE 10 CLEARS THE SCREEN
30 REM HELLO *1234567890 ETC.

More than one command can be put on one line. They are
separated by the colon (:). It is then just as if there was a new
line, only it is on the same one.

eg.
10 PRINT “HELLO"” :REM PRINTS HELLO

When a program eventually comes to the end you usually want
to startit again. One way is to have the last lineas RUN. Thereis
a better way to do this which preserves variables, GOTO line
number.

eg.

18 PRINT"THE COMMODORE 64"
28 GOTO18

There is a command that allows you to go to a subroutine or
routine outside the main program. It is GOSUB. When you
have GOSUBed from a program you have to return to it. The
command RETURN does just that. It returns to the command
after the one you just left.

eg.

180 PRINT"S”

28 PRINT"COMMODORE 64"
380 G0SUBGG

4@ PRINT"COMPUTER"

58 GOTO020

60 PRINT"RgTHE"

78 RETURN

23

It works just like GOTO except that it must be returned from.

A program can be stopped by other methods than pressing the
STOP key. There are two commands which do this. The first of
these is END. END stops a program when encountered but it
cannot be re-started unless RUN or GOTO is used. Its main use
is logically to end a program.

The second of these commands is STOP. This command
functions in much the same way as END except that the
program can be continued by typing CONT. This command is
used principally in debugging programs.

The following two programs are the same except that in
Program Two, the program can be continued.

PRINT"THE COMMODORE 64~
END
GOTO1

PRINT"THE COMMODORE 64~
STOP
GOTO1

WN e

WN -

In a program there is often a situation where results depend on
the value of a number, for example.

eg.
IF a number equals 10 THEN do command.

The IF command checks to see if an expression is true. IF it is,
THEN the computer does what is after the THEN. If the
statement is false THEN the computer goes to the next line.

i A=l

20 IFA=12THENGOSUB100@
38 A=A+1

4@ PRINTA

24

S8 GOT028
188 PRINT"THE STATEMENT IS TRUE™
118 A=1:RETURN

Now we have come upon a problem. The program is running
too fast to see clearly. This brings us to our next command
(well, three).

In the above example we needed to intrcduce a delay, ie. we
wanted the computer to do something for a short time. On the
Commodore 64 (or most other computers for that matter) we
get it to count from one number to another before continuing.
The FOR NEXT loop is what we use. It has the syntax:

'FOR’ variable = First number ‘TO’ second number ‘STEP’
what to go up or down by.

The STEP tells the computer whether it has to count in ones or
halves, for example. The step can be any positive or negative
whole or decimal fraction.

The FOR TO STEP loop would only carry out the first part of the
statement unless we told it to loop back and do the NEXT one
and the NEXT.

eg.

This program gets the computer to count from one to 100
and print it in the top left screen position. As in this program if
the step is one (only up) then it can be omitted.

1@ FORA=1T0180:REM START LOOP

20 PRINT"S"3A:REM PRINT NUMBER

38 NEXTA:REM G0 BACK AND DO AGAIN UNTIL
A=100

The variables can be omitted fromthe NEXT statement, butitis
advisable to leave them in as it makes programs easier to
understand. FOR NEXT loops (as they are known) can be

25

nested (one or more inside another) but they must be in the
correct order. The innermost loop is completed before any of
the rest. In the following example the loops are NEXTed. The
‘C’ loop completely executes before the ‘B’ or the ‘A’ loop. The
‘C’ loop executes fully for every part of the ‘B’ loop and 2@ times
for every part of the ‘A’ loop.

1@ FORA=BTO20

20 PRINT"A=";A

39 FORB=3BTOASTEP-1

40 PRINT"B=";B

50 FORC=2080T0250STEP1.5

60 PRINT"C=";C

78 NEXTC,B,A:REM DO C THEN B THEN A

Sometimes during a game you want to introduce a random
situation into a game, for example. There is a BASIC command
which creates a random number. It is RND and it has the
syntax: A = RND (1). The one in brackets can be any numeric;
it does not alter the value of the random number.

The RND function creates a number between @ and
0.99999999. However, these numbers are not always in the
range that we want. If we want a number between zero and six
we need to multiply the random number by six:

A= RND(1) *6.

But wait. . .we can only get numbers between @ and 5.99994.
We need to add a new command to help us. It is INT. INT
returns the integer value of a number (the whole number).

eg.
PRINT INT (5.9999) is five (it just ignores what is after the
decimal point).

Soto getarandom number between one and six we need to use
the following:

PRINT INT (RND(1) *6) +1
26

The syntax for this is:
A = INT(RND(1)* upper limit + lower limit

The Commodore 64 has two inbuilt time clocks. One which
counts in seconds, minutes and hours and one which countsin
sixtieths of a second. They are accessed by the statements:

TIMES is the hours, minutes and seconds clock.
Tl is the sixtieth of a second clock.

Toreset the clock type: Ti$ = “000000" . This resets both the Tl
and TI$ clocks.

Often in a program you will come across a need for numeric or
string data. This will need to be read from somewhere (just as
you would read your ‘data’ from a book). The commands that
do this are:

READ (a string or numeric variable).
DATA (the actual data to be read).

The following example takes a number from the DATA and
multiplies it with A.

1@ PRINT"g"

28 A=12

30 FORC=8T012

4@ READB

58 PRINTAXB

68 NEXTC ,

70 DATA ©0,1,2,3,4,5,6,7,8,9,18,11,12

If the DATA is to be read again it must be freed from the
computer. The command is RESTORE. It stands by itself:

186 RESTORE

If subscripted variables are to be used then space must be
allocated to them in the computer’s memory. The comand that

27

does this is DIM. It has the syntax:

DIM variable (number of numbers — 1) a string, numeric or
subscripted variable.

The number of divisions inside the brackets is limitless, but DIM
statements are ‘'memory greedy’ so just because you have 40K
(for BASIC) at your disposal you can still run out of memory if
you use too large a number!

DIM A (999) is OK and so is DIM A (1,1,1,1,1,1,1,1,1,1) but
DIMA(9999)orDIMA(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
are too big. You can only DIMension an array (list of numbers or
letters) once so put these at the beginning of the program. If
you re-DIM an array you willgetan ‘RE DIM'd ARRAY ERROR’.

A subscripted variable is one that has a number in brackets after
it.

eg.
A{12) or A(12,12,12), etc

The use of a subscripted variable is mainly in adventure games
or in programs with a lot of information which is released
depending on the value of one variable or result of a calculation.

In mathematical calculations it is often necessary to evaluate
complex equations frequently. They are usually long and
memory consuming. Why not create the function and call it as
it is needed. To define the function we use the DEF FN
command. To call it we use the FN command. The FN of each
has a variable after it to tell the computer which function to call.

eg.
5 A=12

19 DEFFNX(XJ)=(AX(1212])
20 PRINTFNXCA)

38 A=AX2:G60T020

28

The syntax is:

DEF FN variable (X) = (X expression)
and A = FN variable (x) or number

The Commodore 64 comes equipped with trigonometric and
scientific statements:

SIN (X)
COsS (X)
TAN (X)

They: all give the value of X where X is an angle measured in
radians. A radian is 57.29577 degrees. So, to calculate the
value of X when X is in degrees use the following formula:

SIN (degrees/57.2957795)
or COS or TAN.

eg.

FIND the SIN of 30. ...
PRINT SIN (30/57,2957795)

The answer is .5 which is correct. The same formula applies for
COS and TAN as well.

When finding the inverse, ie. going from the value of X to X,
you multiply by 57.2957795 to get the degrees. There is only
one inverse trigonometric function and that is ATN.

eg.
If the value of X is .5, what is X?
PRINT ATN (.5 * 57.2957795)
Answer 26.5650512

Although the Commodore 64 does not have the inverse SIN
and COSINE they can be calculated using the following
equations:

INVERSE SINE = ATN(X/SQR(— X*X+ 1)} in radians or
INVERSE SINE = ATN(X/SQR(— X*X+1)*57.2957795in
degrees.

29

INVERSE COSINE = X — ATN(X/SQR(—X*X+1))+n/2
in radians or

INVERSE COSINE =ZZZZ(-ATN(X/SQR(-X*X+ 1)) +n
/2)*57.2957795 in degrees

But now we see the SQR function. What does it mean? Well, it
calculates the square root of a number.

eg.
PRINT SQR (81)
Answer 9

The number in the brackets must be greater than or equal to
zero.

Often in maths you just want the answer to a question — you
don’t want to know its sign. There is a BASIC command which
deals with this. It is ABS.

eg.
PRINT ABS(—-999) gives 999 but PRINT ABS(999) also
gives 999.

If you just want to know the sign but not the answer, the
statement SGN tells you this.

eg.
PRINT SGN (—999) gives — 1 but PRINT SGN (999) gives 1.

The result will be one if the answer is positive, minus one if
negative and zero if zero. :

The LOG of a number can be calculated with the LOG
statement. It is the natural log. To convert to LOG base 10
simply divide by LOG(10). To get the inverse of the LOG you
use EXP. This takes the log of the number and puts the
mathematical constant e (2.71827183) to the power of the
LOG.

30

eg.

PRINT LOG (999)

Answer 6.90675478

PRINT EXP (6.90675478)

Answer 998.79325 which is rounded up to 999.

Instead of using cursor commands (in quotes) you can use a
faster and more memory economic method with the two
commands, TAB and SPC. These commands are used in
conjunction with the PRINT command. The TAB command
moves the cursor to the column specified.

eg.
PRINT TAB(12) moves the cursor to column 12.

SPC moves the cursor a number of spaces forward.

eg.
PRINT SPC(12) moves the cursor 12 spaces forward.

Both perform the same function except that when SPC is used
after TAB the cursor does not move to the next line but X
spaces forward.

The position of the cursor (column) can be found by the
command POS.

eg.
PRINT POS (X)
result 22.

The character in the brackets can be any printable one letter or
numeral. It only works in program mode or after a cursor
command or control character(s).

There are situations in programs where binary comparisons
need to be made. A binary number is a number which can be
one or zero. In the Commodore 64 or any other computer with
an ‘8 bit’ microprocessor, the maximum number is 255 which is
11111111 in binary. In binary a one stands for on and a zero

31

stands for off. To change a decimal number to binary or vice
versa use the following table. If a one is in the box below a
number, then add that number to the total.

128 64 32 16 8 4 2 1 DECIMAL
BINARY
1) 1 o 0 1 0 1 = 165

The main use of binary comparisons is in machine code where
there are no ‘greater than’ or ‘less than’ commands. It is also
used in character designing. See their respective sections for
more information. There are three binary comparison
commands in BASIC. They are AND OR and NOT.

They all add two binary numbers together and depending on
which command is used the answer appears.

With AND there must be a one in both boxes for a one to be put
into the third.

1901101 11 183
AND1T 1 1 1 1 0 0 0 248
10110000 176

The other command for binary comparison is OR. It functions
like AND except that if a one is in either box then a oneis putin
the third.

19110
OR 1T 1 1 1 1

1111111 1 255

The statement NOT is used where you want the program to do
something if the answer is false.

32

p=1
p=p—1:1FNOT P THEN 100

The program will branch to line 100 if P is not equal to 1. AND,
OR and NOT can also be used in IF THEN statements such as:

IFA=1ANDB = 2THEN 100. Ifandonlyif A=1and B=2
then GOTO line 100.

IFA=10RB =2THEN100. If A=1 or B=2 then GOTO
line 100.

IF NOT THEN 100. IF A=0 then GOTO line 100.

FILES AND TAPE/DISK/PRINTER USAGE

All these commands will be fully explained in the printer and
data file sections. But here is a short summary. The command,
OPEN tells the computer to send the data to other devices
except the screen. However, it only opens the way. Other
commands need to be used to actually move the data. It
requires one, two or three operators.

The devices that can be ‘'OPENED’ are:

DEVICE DEVICE NUMBER

Keyboard 9

Cassette 1

RS232 2

Screen 3

Printer 4

Printer 5 (depending on switch on printer)
Disk drive 8

Serial bus4-127

Serial bus 128255 (if after carriage return)

It has the syntax:

OPEN device no, command #, string.

33

The command ‘ ' is used to tell the computer which mode to

put the OPEN into.

DEVICE COMMAND #

Cassette 0
Cassette 1
Cassette 2
Disk 1-14
Disk 156
Keyboard 1—-2565
Screen 1-255
Printer 0
Printer 7

eg.

OPEN 1,0

OPEN 1,1,0,”name”

EFFECT

Read tape file.

Write tape file.

Write tape file with end of
tape marker at end of file.
Open data channel.

Open command channel.
No effect.

No effect.

Upper case/graphics mode.
Upper lower case.

Read the keyboard.
Read from cassette.

After a device has been opened and when its use is over, the
computer must be told. The CLOSE command does this. It has
the same syntax as the OPEN command. Soifyou OPEN1,1,1

then you must CLOSE 1,1,1.

Note: don’t open a file more than once without closing it first.

If total control is to be made by the device, eg. listing a program
onto the printer, then the CMD command must be used. The

numbers are as follows:

CMD DEVICE NUMBER
Printer 4orb

Disk 8

Screen 3

Keyboard 0

Cassette 1

RS 232 2

Serial bus4—255

34

When the device has finished being used it must be CLOSEd by
the following method: PRINT # device no: CLOSE device no.

eg.
OPEN 4,4:CMD 4:PRINT“HELLO";:PRINT #4:CLOSE 4

This prints ‘HELLO’ on the printer and properly closes the
channel to the printer and sends control to the screen.

IF a file has been OPENed then it can have information printed
on it or data inputed from it.

The printing command is PRINT #. It has the syntax:
PRINT # device no, data.

The data can bein quotes or variables just like the normal PRINT
command. When you have finished you must CLOSE the same
file that you OPENED.

Information can be PRINT #ed onto any device except the
keyboard.

The inputing command is INPUT #.

If a file has been OPENed then information can be INPUT #ed
from it.

It has the syntax:
INPUT # device no, data.

The data can be variables or text enclosed in quotes.

When you are finished you must CLOSE the file that you
OPENED.

Information can be INPUT #ed from any device except the
screen or the printer. Instead of INPUT there is another
command as in normal BASIC:

35

GET 4

Like in normal BASIC, GET # acts just like GET by getting one
bit of data at a time (one variable or letter).

It has the syntax:
GET # device no, variable (string or normal).

As with PRINT 4 and INPUT 4, GET 4 must also have the
channel CLOSED when finished with.

There is a statement which returns the device number of thelast
device to be used. It is STATUS.

eg.
PRINT STATUS
ex. result. 16. .. .read error.

In a program where there are lots of possible subroutines which
can be used, depending on the result of a calculation, for
example.

Instead of lots of IF THEN statements we can use an ON GOTO
or ON GOSUB command. If the value of the statement is one
then the program branches to the first line number in the list, if
two then it branches to the second. If the value is less than one
or greater than the number of line numbers in the list then the
computer goes to the next line of the program (or the next
command after the colon).

eg.

i@ A=1

28 ON A GOSUB 100,110,120,130
38 A=A+1

49 GOTO20

108 PRINT"A="3A

195 RETURN

110 PRINT"A="3A

115 RETURN

36

120 PRINT"A=";
125 RETURN
138 PRINT"LAST IN LIST";A:END

Numbers greater than one can be used by using equations as in
the following example.

180 A=.5:A=A%2

20 ON A GOSUB 190,110,120,130
38 A=AX%2

40 GOTO209

186 PRINT"A="
185 RETURN
119 PRINT"A=":A

115 RETURN

120 PRINT"A=":A

125 RETURN

138 PRINT"LAST IN LIST";A:END

A

.

MEMORY CHANGING

These are the most powerful set of commands that the
Commodore 64 (or any other computer) possess. They allow
machine code to be entered and executed, they can control
sound, etc, and they can totally change the computer’s
behaviour.

The first of these commands is POKE. It has the syntax:
POKE address, number (between @ and 255)
There are some addresses which cannot be POKEd. These are

called ROM. The BASIC interpreter and the character set and

the operating system are stored there. All other locations may
be POKEd.

POKEing a memory address puts a number into that address
and in certain addresses control colour, sound, sprites, high

37

resolution, etc. An address is a location in memory which is
unique to any other. They cannot ever change. The values
contained in some of them, however, can. Think of a memory
address as a letter box that is only big enough for one letter. But
that letter can be between zero and 255 units in size. To put
another letter into that letterbox you must remove the old one.
This is what POKEing does. It acts like the postman. Only it
takes a letter away for every new one it delivers.

The addresses that can be POKEd are between zero and 66535.
However, addresses between 40960 and 49151 and 57344 and
65535 cannot be POKEd. The character ROM is also
unPOKEable and it is between locations 53248 and 57344.
(This is paged so these locations can be POKEd. See the
section on programmable characters). POKE can be used with
variables as well as numbers.

eg.
POKE 2040,13 :
POKEA,B

WARNING

Make sure the variable A in the example above is always set as
POKEing into location zero can cause a crash (never ending
loops that you can not stop). The only way to recover fromone
is to turn the power off and on again. . . losing your program.

POKE has a complimentary command. Itis PEEK. PEEK returns
the value contained in a memory address or location. All
addresses from zero to 65535 can be PEEKed. PEEK does not
alter the contents of the address. It can also be used with
numbers or variables.

eg.
A = PEEK(65535):PRINT A

result 255
PRINT PEEK(®)

38

result 47

IFPEEK (1060) = 21 THEN 109. If location 1060 contains 21
then goto 100

There is a command that waits for a location to contain a
specific value. It is WAIT. It has two syntaxes:

1. WAIT address, variable
2. WAIT address, variable 1, variable 2

It is not a command that should be used unless you are an
experienced programmer, as you could get into aloop that you
cannot get out of. It is mainly used in input/output operations.
However, one good use for WAIT is for waiting for the user to
press a key. To do this more effectively make a line of your
program:

POKE 198,0 : WAIT 198, 1

The program will wait until you press a key and then carry on
with the next line.

The way that the WAIT command works is that it takes the
value in the memory address and ANDs it with variable one.
Then it exclusive ORs (see the machine code section) the
number left with variable two. This sounds and is complex but
just think of it as a filter which when clear waits until the clear
value changes.

Machine code is entered into memory by means of the POKE
command. However, we need a method of starting the
machine code. There are two ways:

SYS(x) This command ‘runs’ the machine code from address

X.

USR(x) This command runs a machine code subroutine from

the addresses stored in addresses 784 and 785 and passes the

value of x to the machine code program. SYS is far more

powerful and is easier to use. For a fuller explanation see the
machine code section of the book.

39

SECTION 1.2

COLOUR

The Commodore 64 has 16 colours at its disposal. They can be
used for the border, the screen, characters, high resolution
graphics and sprites. The normal colour resolution (smallest
individually colourable spot) on the screen is limited to 40 * 25
(the same as the characters). This section shows only this low
resolution as the high resolution will be covered in the section:
sprites, high resolution and programmable characters as they
allow more colours per unit.

First, we deal with the border and screen colours:

The screen and border colours are controlled separately by the
POKE command. They are both in the range 0 to 15. See the
table below.

The border is controlled by the location 53280. When the
computer is switched on the normal value in this location is
254,

eg.
To change the border to black: POKE 53280,0

The screen is controlled by location 53281. When the
computer is switched on or reset, the normal value in this
location is 246.

eg.
To change the screen to red: POKE 53281,2

These registers can only show 16 colours but can be POKEd

41

and PEEKed up to 255. To make sure that the right colour is
POKEd or PEEKed it is advisable to put AND 15 after the
statement. This filters out excess numbers and gives the true
colour.

eg.
POKE 53281,2 AND 15 for a red screen
PRINT PEEK (53281) AND 15 to PEEK the screen.

Characters can be one of 16 colours (as shown in the table).
There are three ways of accessing these colours.

1. They are available directly from the keyboard by using the
CTRL key (C=) key and the number keys 1 to 8. Using the
CTRL key the colours on the front of the number keys can be
accessed. Using the Commodore key and the numbers 1 to 8
the second set of colours are accessed. These are shown in the
table below. These colour commands can be used in programs
by putting them in PRINT statements and they will change the
colour of the text following them. They appear in a listing as
special symbols.

5 POKES3281,0: POKES3280,2:REM BLACK SCRE
EN AND RED BORDER

1@ PRINT"EHELLO"sREM WHITE

280 PRINT"£YOUL":REM RED THEN GREEN

25 FORREST=0T0200: NEXTREST

38 GOTO10@

2. The CHR$(x) statement also changes colours. Itis used in
conjunction with the PRINT command.

eg.
PRINT CHR$(5);"HELLO";:PRINT CHR$(144)"YOU"
The colours along with their values are in the table.

3. There is a register (location) that contains the current
cursor colour (colour printing in at the moment) and it can be

42

COLOUR CODES TABLE

=K EY &

©

IKEA4S, | CTRL &

CREEM | BORDER | LOOKS LIKE | CHR$(

o
ot

COLOUR 4

[
IR R s TP I LR AR
Pt

rs——
ppe—p—
o s s
- ot o
epsp—

i
b AR g TRl A e O R B
{

BgiEe B AR o
LR N RO SR TR I A ORI S o B S B

[R A T R)
RN R TR SN N N R
R R T R E e R I R I e R
o WO o
-

(WSRO R G o (R O AN e Y

Lo RS BRI GO o T
SO YWD 000 et v e e
a0l ra
[= Bl U3 R T1 o 11} L L
T WD oG Aa—-NLWD
AT > W) I3 W [g
=T oo 1Coo 2> 0mul
DO wooe Wi o
xR FOMEEEEO
PN o 0 L O

D
w

POKEd to change colours. It is location 646. It can be POKEd
with the values @ to 15 as shown in the table {16 —255 will work
but only repeat @ to 15). This is the most efficient method for
changing colour. It is also the fastest.

eg. To print out bars of every colour.

18 FORA=BTQ15
28 POKEG46,A
38 PRINT"R.
48 NEXTA

If you are having trouble getting good colours on your TV use
this program to tune it with. The colours should all be crisp and
clear.

44

SECTION 1.3

ANIMATION

Animation is the movement of characters on the screen,
principally for use in games.

As the screen on the Commodore 64 has 40 characters across
by 25 characters down, there are 1000 screen locations. The
screen is permanently memory mapped (stored in memory) and
takes up 1,000 bytes of memory. It is stored from locations
1024, to 2023 inclusive. See the table at end of the section.

There are two ways of producing animation in BASIC. One is
using TAB, SPC and the cursor controls but this method is
slow and pretty useless so | will not waste time on it. The
second, far better method is POKEing to the screen. To put a
character onto the screen you POKE the location you want it to
appear in with its code from Appendix 2. For example, POKE
1024,1: puts an A in the top left of the screen. Clear the screen
and try it. Thereiitis ...orisit??? Yes, it is there, but you can't
see it as it has no colour.

There is a similar part of memory to the screen which is set aside
for the colour on the screen. You POKE each location (or the
ones you want) with a colour code from @ to 15. But remember
you can only see characters which are not the same as the
screen colour. This ‘screen’ is stored from locations 55296 to
56295 inclusive. See the table at end of the section.

To colour the A you POKEd into 1024, type POKE 55296,1 (or
any colour you want). The A should now be displayed in white.

45

The colour map is laid out exactly the same as the character map
(screen) except thatitis 54272 locations further on. The easiest
method to colour a character that you have POKEd onto the
screen is to do the following:

POKE location , character : POKE location + 54272 , colour

To find out what character is on the screen or what colour it is
we use the PEEK() statement.

eg.
PRINT PEEK (1024)

If the A was still in 1024 then 1 would be PRINTed, otherwise
32 would be returned (32 is the code for a space). If we PEEKed
the colour it would give 1.

eg.
PRINT PEEK (55296) or PRINT PEEK (1024 + 54272)

The answer should be 1. The following short game
demonstrates the use of POKEing and PEEKing the screen.

Use the M key to move right and the Z key to move left. You
have to dodge the asteroids (full stops) and ram the oncoming
ships (A). Good luck.

3 PRINT"g”

1@ POKES3281,0:POKES3280,0:FORA=0T024: PR
INT:NEXT:B=1504:C=20

20 A=RND(1)x40:POKE1984+A,46: POKE1384+A+
54272 ,RNDC(1Ix14)+1

25 IFRNDC123>.2?THENP=RND(1)x40: POKEP+1384
,1:POKEP+1984+54272,7

30 GETA%$: IFA$="2"ANDC>BTHENPOKEB+C,32:C=
c-1

35 IFA$="M"ANDC<40THENPOKEB+C ,32:C=C+1

46

49 POKEB+C,32

58 PRINT

6@ IFPEEK(B+CJ)=46THEN120

78 IFPEEK(B+C)=1THENGOSUB208@

90 POKEB+C,22:POKEB+C+54272,3

198 GOTO20

120 PRINT"s :POKES3281,2:PRINT"YOU HIT A
N ASTEROID"

125 PRINT"YOU SCORED ";S;"POINTS":5=0
139 PRINT"DO YOU WANT TO TRY AGAIN?”

140 GETA%$: IFA$="Y"ORA$="N"THEN158

145 GOTO140

1580 IFA%$="N"THENEND

168 IFA%$="Y"THENRUN

200 FORA=ATO16:POKES3280,A:NEXT:S=5+18:R
ETURN

As you can see from the program (lines 30—50) before you
move you must erase your last position. This is achieved by
POKEing a 32 (space) onto your position and then moving.

eg.
POKE location, 32 :move character: POKE location,
character.

If you feel easier by positioning characters on the screen in
columns and rows, you can still POKE to the screen using co-
ordinates using the following formula:

POKE 1024 + column + (40 * row) , character
(Columns are from zero to 39 and rows from @ to 24.)

Use the same ‘X and Y co-ordinate method for the colour,
replacing 1024 with 55296. Then to move, update row and
column variables respectively.

Below are the screen and colour maps for the Commodore 64.

47

SCREEN MEMORY MAP

COLUMN

39
1063

et

COLOUR MEMORY MAP

COLUMN

2023

55335
i

5296~

§5336

55376

55416

55456

55496

55536
55576

55616

55656
55696
55736

55776

55816

55856
55896

55936

$5976

56016

56056

56096

56136

56176

56216

56256

48

56295

2

2%

4

MO¥

The values to POKE into the above colour locations are as
follows:

® BLACK 1 WHITE

2 RED 3 CYAN

4 PURPLE 5 GREEN

6 BLUE 7 YELLOW

8 ORANGE 9 BROWN

10 LIGHT RED 11 GREY 1

12 GREY 2 13 LIGHT GREEN

14 LIGHT BLUE 15 GREY 3

For example, to make the colour of location 1024 (left-hand top
corner of the screen) yellow type POKE 55296,7.

49

SECTION 1.4

MUSIC AND SOUND SYNTHESIS

The sound output from the Commodore 64 is the best from any
computer | have ever heard. You can totally control the
individual ‘voices’ to make them sound like any sound, note or
voice that you want. The Commodore 64 has three individual
voices and one, two or all three of them can be played
simultaneously. The sound can even be fed to an external
amplifier to give a really professional sound.

In this section | will refer only to voice 1 unless stated. However,
the principles for the other two voices are exactly the same.
Simply substitute the numbers for the voice you want to use in
place of the ones | use for voice 1. These numbers are in the
table at the end of this chapter and in Appendix 8.

Sound on the Commodore 64 is controlled by the POKE
command. It changes values in the SID (Sound Interface
Device) chip which is the sound microprocessorin the 64. It has
27 different registers which control the three voices. Before
you create any sound you need to set various parameters. They
should be done in the following order.

1: VOLUME. This is a master control which controls the
volume of all three voices at once. Itis in the range @ (no volume
— off) to 15 (full volume) values higher than 15 do other things
and these will be explained later. The register to POKE is 54296.
If you want to set volume to full, type POKE 54296,15.

2: ATTACK/DECAY — This is set separately for all three
voices. Itis the setting which controls the rate at which the note

51

‘hits you’ and rises to its peak volume. Both values are
controlled by one register per voice. The attack is controlled by
the left-hand four bits (eight bits = one byte) and the decay is
controlled by the right-hand four. The register to POKE is
54277.

ATTACK/ POKE ATK4 ATK3 ATK2 ATK1 DEC4 DEC3 DEC2 | ~DEC1

DECAY 54277 128 84 32 16 8 4 2 1

The larger the number the longer the time till the note reaches
its peak. To get longer attack or decays or both add the
respective bits together.

To get a long attack but no decay add bits 8,7,6 and 5
together.

eg.
128 + 64 + 32 + 16 = 240
So POKE 54277 , 240.

Or to get a medium attack and a medium decay, try:

64 +32 +4 +2
POKE 54277, 102.

3: SUSTAIN/RELEASE — This is set separately for each
voice. It is the setting which controls how long a note stays at
its maximum and how fast it decays to zero. Both settings are
controlled by one register per voice. The sustain is controlled

by the left-hand four bits and the release by the right-hand
four.

The register to POKE is 54278.

SUSTAIN/}| SUS4 Sus3 sus2 sus1 REL4 REL3 REL2 REL1 POKE

RELEASE 128 64 32 16 8 4 2 1 54278 |

52

The longer the sustain the longer the note takes to fade to zero.
To get long sustains or releases or both, add the bits in the
above table and POKE into 54278.

eg.
To program a note that will play indefinitely, use no release:
POKE 54278,128

Or a note that releases as soon as it reaches its peak:
POKE 54278,7

4: WAVEFORM — Each voice on the Commodore 64 can
have one of four possible waveforms: triangle, sawtooth,
pulse, or noise.

You POKE register 54276 with the value for the waveform you
want.

WAVEFORM POKE TRIANGLE SAWTOOTH | PULSE | NOISE

54278 17 33 65 129

Changing the waveform can drastically change the sound
produced.

For example, to create a sawtooth waveform for voice 1, type
POKE 54276,33.

5: HIGH FREQUENCY/LOW FREQUENCY — Each note
you play on the Commodore 64 requires two values to be
POKEd. The low frequency is nearly always the higher number.
The low frequency register is 54272. The high frequency
register is 54273.

For example, to play a C (if all the parameters have been set),
type

POKE 54272,75 : POKE 54273,34
53

These two registers are used to play music or make noises on
the triangle, sawtooth or noise waveforms. The pulse
waveform has two different registers to be POKEd.

5/b: (Pulse waveform only) — These are the low and high
frequency registers for the pulse waveform. High frequency
‘pulseis register 54275 which is POKEd with a number from @ to
15. Low frequency pulseis register 54274 which is POKEd with
a number from 0 to 255.

For example, to play a note first POKE 54276,65 (pulse set)
then type

POKE 54274,150:POKE 54275,7

To play a scale on voice 1, use the following program. It uses
the triangle, sawtooth and noise waveforms.

3 WF=17

1@ POKES4296,15:POKES4277,8: POKES4278,35
:REM UOL AND ADSR

15 FORX=8T02

28 POKES4276 ,WF:REM WAUEFORM

22 IFWF=17THENWF =33:GOT030: REM CHANGE WA
UEFORMS

24 IFWF=33THENWF=129:REM CHANGE WAUEFORM
S

38 FORA=BTO8:READL ,H:REM NOTE DATA

49 POKES4272,L:POKES4273,H:REM MAKE NOTE
50 FORR=1T0308:NEXTR:REM PAUSE

60 NEXTA:REM GO BACK & DO NEXT NOTE

B85 RESTORE:NEXTX

78 DATA?5,34,126,38,52,43,198,45,97,51,1
72,57,188,64,149,68,90,0

There are also filters available for each voice. There is a high
pass filter, a low pass filter and a band pass filter. They are all
controlled by location 54296. The low pass filter is turned on by
POKEing 54296 with 16. The high pass filter is turned on by

54

POKEing 54296 with 64. The band pass filter is turned on by
POKEing 54296 with 32. (To turn on volumes as well add 15 to
values). There are also filters which ‘turn off’ each voice;
however, when you switch these filters off the voice sounds the
same as before you filtered it. This is location 54295.

To filter voice 3 POKE 54295 ,4
To filter voice 2 POKE 54295,2
To filter voice 1 POKE 54295,1

You can also add resonance to the three voices. To do this you
POKE 54295 with the respective bit (four to seven) ie. 8 to 128.
You can add these values together to filter, each or all voices.
For example to filter both voice 1 and 2 type POKE 54295,3.

55

SECTION 1.5

PROGRAMMABLE CHARACTERS

Every and any character that can be displayed on the screen
can be changed or reprogrammed to represent anything else,
say, a space invader or a Greek character set.

Before trying to program characters it is necessary to
understand how the normal character set is stored in memory.

A character is made up of 64 dots, eight dots across by eight
dots down. Each dot is a bit of computer memory and as eight
bits are one byte a character takes up 8 * 1 byte which means
that each character needs eight bytes to store.

Here is how the letter ‘A’ is stored in memory. Each bit can
have one of two values 1 or . The bits are then added together
to get a decimal number for each of the eight rows. For the A
they are as follows:

24

60
102
126
102
102
102

Sosssssse
[P R G e N =
L= I R R T T |
cCeee S -
eSO -
L I e e T R =
L I R R Y =~)
(SR SR SR SRS S S

The data for an A is therefore 24,60,102,126,102,102,102,0.

57

Once the data for a character has been calculated it needs to be
put into memory. There are 65 1K blocks set aside for this
purpose. However, not all of these can be used for this
purpose. They start at @ and go up to 65536 but the first
sensible one to use is 8192 (the eighth 1K block). This allows
6K of BASIC to be before your characters. If you need more
than 6K then must move your characters to a higher block. So,
if you need 16K then start your characters at 18432 (decimal).

The video chip can only ‘see’ 16K at one time. Therefore a way
is needed to allow it to ‘see’ the whole of the 64’s memory. This
method is called ‘Banking’. It is controlled by location 56576.

To change banks type the following in direct mode orina
program. ..

POKE 56576,(PEEK(56576)AND 254)0R A

Where A has the value from the following table.

Value | Bits | Bank Starting Video Chip Range
of A Location

] 00 3 49152 ($ CO00—$ FFFF)

1 01 2 32768 ($ 8000—$ BFFF)

2 10 1 16384 ($ 4000—$ 7FFF)

3 1 0 0 ($ 0000— 3FFFF)
(DEFAULT VALUE)
(Normal)

The screen memory is the first 1000 bytes in each bank, oris the
colour memory in high resolution.

For the A character we put it into memory as follows (the A
starts at 8200 as the @ character is from 8192 to 8199):

58

18 FORA=BTOY

20 READB:POKE8200+A ,B

38 NEXTA

49 DATA 24,60,102,126,102,102,102,0

Run this program. Then press the A key. You just get a normal
A. In order to see our programmed character we need to tell
the computer where to look for its character data. For data
starting at 8192 type

POKE 53272,24.

The screen will now go strange. Press the A key. You should
see a normal A. But if you press any other key or list the
program, you will see lines. This is because only the A has been
programmed to look like something that you want. Address
53272 is the screen/character memory pointer. If you want to
have your character data higher up memory, then add one to
24 for every 1K that you move your data up memory. Then
POKE this number into address 53272. So, if you want to start
your data at 16384 (16K) type

POKE 53272,32 (24 + 8)

To program different characters you need to utilise the screen
character codes in Appendix 10, ie. C=3. The formula for
calculating the starting position for a specific character is as
follows. | will use 8192 as my starting position.

Character data address = 8192 + (screen code * 8) to 8192
+ (screen code * 8) +7.

To program more than one character, put all the data together
and then use one or more FOR NEXT Loops to POKE the data
in. The following program produces three characters re-
programmed.

10 FORA=BTO023
20 READB:POKEB1392+A,B:NEXT
30 POKES3272,24

59

40 PRINT"1lell1AB"

5@ DATA 123,189,165,255,126,36,66,36,0,2
,15,25,57,255,24,24,0,64,240,152,164,235
68 DATA12,12

Sometimes you may want most, some or all of the standard
characters in your new character set. Instead of programming
each one by hand there is a quick and efficient method which
can program some, most or all of the character set into RAM.
The following program copies all the character set into RAM. If
you want less than the whole set in RAM then adjust the FOR
NEXT loop in line 30.

10 POKES6334 ,PEEK (56334 JAND254

20 POKE1,PEEK(1JAND251

38 FORA=BT02048: POKES132+A,PEEK(53248+A)
:NEXT)

40 POKE1,PEEK (1)OR4

50 POKES6334 ,PEEK (56334 JOR1

60 POKES3272,24

There are a few important things in this program which are
hard to understand due to the architecture of the Commodore
64. Here is a line by line breakdown of the program.

Line 10: This command disables the interrupt. This allows the
character ROM to be used.

Line 20: This pages in the character ROM on top of the video
chip.

Line 3@: This copies the character ROM to RAM.

Line 40: This resets the interrupt.

Line 5@: This pages the video chip back in and the character
ROM out.

Line 6@: This puts the 64 into ‘programmed character mode’.

DOUBLE CHARACTERS

Unluckily thereis no simple way to create and use double height
characters on the 64, but it is still possible. The method
* involves POKEing the data into two consecutive bytes.

60

For example, a normal height A looks like this:

(SRR SRS S SR S
| = P WNECET e RN S]
S ed el e e D
SO RS -
ISR SIS S S G
Q= e e e i
L B R e T = =
S eS

>
5
a

a double height A looks like this:

IS Y NN N NN =R
IS Y = J QNN NN NN NN =)
eSS0 OO = aaa
©E® R aasamaaaaaae®
S S P S N NN =R =)
SR R N S R R o R R R R R RS)

(SRSRSRSRESRSRSR SR SR SIS SRS SR S
ISRESRSR SR SRS SR SRR P S~ R R e

In other words each byte of the normal height character is
repeated.

In the following program a double height A is programmed.

19 FORA=BTO15STEP2: READB: POKES192+A,B: PO
KE8193+A,B: NEXT

280 PRINT"g@" ¢ PRINT"A"

30 POKES3272,24

40 DATA24,60,192,126,102,102,102,8

61

You will now see a double height A in the top left-hand corner
of the screen. One double height character takes two normal
height characters to display. Because of this it is really only
useful to use double height characters in something like the title
of a program.

The following program programmes the entire character set
(up to code 128) to double height characters. The characters
are made up in the same way as the previous program except
that instead of data the character ROM is being used.

18 POKESB334, PEEK(56334JHND254

20 POKE1,PEEK(1)AND251

38 FORA= @T0S12STEP2: PUKE8192+H PEEK (5324
8+A2):POKEB193+A,PEEK(53248+A/2)

48 NEXT

58 POKES86334 ,PEEK(56334 JOR1

68 POKE1,PEEK(1)OR4

70 POKES3272,24

88 PRINT"s@]BIDIFIHIJILINIPIRITIVIX]IZ"
90 PRINT"AICIEIGITIKIMIOIQISIVIWIYIL "

MULTICOLOUR CHARACTERS

So far we have only programmed characters in one colour.
However, they can be multicolour having four colours out of 16
in each eight by eight character.

The procedure for creating these characters is basically the
same as characters in one colour but there are some
differences.

The horizontal resolution of the characters is half that of one
colour characters but the extra colour makes this sacrifice
worthwhile. The colour resolution of the characters is still as
high as on the arcade machines. The dot is double the width
because the method used to programme the dots in more than
one colour involves bit pairs. Instead of an ‘on’ dot being a one

62

and an ‘off’ dot being zero there are four different combinations
foron/off. Theseare 01, 10, 11, and ®. So, instead of putting
aonewhere you wantan ‘on’ dotyouputan11oran®1 ora10
depending on which colour you want the dot to be. For an ‘off’
dot you put a 00.

These ‘bit pairs’ (pair of binary bits) stand for:
BIT PAIR MEANING

00 Screen colour
11 Character colour
01 Multicolour 1

10 Multicolour 2

To design your multicoloured character you need a four by
eight grid. But the four across are all two bits in size.

bits 76543210

In multicoloured character mode a man could look like:

63

The binary data for this character is:

00111100, 00011000, 11011011, 00011000, 00111100,
00100100, 00100100, 11000011.

And the decimal data is:
60,24,219,24,60,36,36,195

You just POKE the data into memory as if the characters were
normal characters using the same locations (8192, for
example). Once you have done this you enter the
programmable character mode with:

POKE 53272,24 (or any number you have already specified
by the position of your character data).

Then you have put the 64 into a multicolour mode. Thisis done
with:

POKE 53270,152

If your cursor colour is betwen black and yellow (codes @ to 7)
then you will notice no difference. Press the C= key and 1.
Now type something. See the characters are now in four
colours. You will notice that the characters are almost
unreadable. This is because multicolour characters depend on
the various ‘bit pairs’, and normal characters are programmed
to look good in one colour. Therefore, multicolour is really only
useful for user-defined (or programmed) characters. We are
not limited to the colours you see now. All of the three
character colours are individually programmable. Each location
controls a different ‘bit pair' combination.

The character colour or the colour screen POKE are controlled
by printing in a colour code that is greater than seven (orange)
by PRINT CHR$ (or POKEing location 646 or POKEing the
screen colour POKE). This colours the dots with bit pairs of 11.
Multicolour 1 is controlled by POKEing location 53282. This is

64

POKEd with a number between @and 255. This location control
the colour of ‘bit pairs’.

CODE 01

Muiticolour 2 is controlled by location 53283. It is POKEd with
numbers between 0 and 255. This location controls ‘bit pairs’
with code 10. The fourth colour is the background or screen
colour and can only be altered by changing the screen colour
with location 53281.

This is a program which programs a ghost in four colours and
moves it about the screen.

5 PRINT"g”

19 POKES3270,152:POKES3282,7: POKES3283,2
:POKES3281,0: POKES3280,08: POKES3272,24

28 FORA=BTO31:READB:POKEB192+A ,B:NEXT:FO
RA=BTO/: POKE8192+32%8+A,B: NEXT

38 FORA=BT039:POKESS5296+A,13: POKESS237+A
»13: POKES5336+A, 13: POKES5337+A, 13

48 POKE1@24+RA,0:POKE1B25+A,1:POKE1864+A,
2:POKE1065+A,3

580 POKE18223+A,32:POKE1863+A,32

68 NEXT

70 POKE1183,32:POKE1104,32: GOTO30

2008 DATAB,3,15,63,255,253,253,253,0,192
,248,252,255,112,182,117,255,255,255,255
2810 DATA25S5,255,51,51,255,255,255,255,2
55,255,51.51

It can therefore be seen that when you are designing your
characters you need to use ‘bit pairs’ to get the desired effect.

EXTENDED COLOUR MODE

This mode allows you to colour the background as well as the
foreground of a character that you can display on the screen. it
is turned on with the command,

POKE 53265,91.
65

For the first 64 characters the background colour {(which can be
from 0 to 16) the screen forms the background. For the second
64 (65— 127) location 53282 controls the colour. For the third
64 (128—191) location 53283 controls the colour. For the
fourth 64 (192—255) location 53284 controls the colour. As
can be seen, only characters with a code greater than 64 can
have their background individually controlled. Thus, it is really
only useful in a program. Warning — do not use this mode in
conjunction with the multicolour character mode as it does not
work. To turn off the extended colour mode, type

POKE 53265,27.

The following short program demonstrates the use of such
characters:

io pok953265,912poke53281,8:poke53282,5:
pok653283,2:poke53284,8:print”5:

20 print "s999oaescnot extended colour mo
de”

30 print "ag9.acaarextended colour mode i
em Just type letters

40 pr int "999.000cENTENDED COLOUR MODE":sre
m type letters with the shift key presse
4"

50 print " 999.c0ear ENTENDED COLOUR MODE":r
am type letters with the shift key press
ed”

66

SECTION 1.6

SPRITES

This is probably the most useful and effective graphic capability
on the Commodore 64. The sprites are far better than any on
any other computer that have this feature. Their quality is as
good as, or better than, arcade video games.

A sprite is an object that is 24 dots across by 21 down. It can be
coloured in any four of 16 colours at once. It is moveable one
pixel (dot) at a time and automatically detects collisions with
other sprites or screen characters and informs the video
processor that it has done so.

Sprites are generated by and controlled by the POKE
command. A spriteis created ona24 by 21 dotgrid (three bytes
across by 21 down). You add up the ‘on’ bits just as you would
in programmable characters, except that there are three bytes
across (instead of one) and 21 down (instead of eight) ie. 21
groups of three bytes.

You add the bits together for each byte, going across then
down. So you do row 1s three bytes then row 2s, etc.

| will create a sprite in one colour to start with.

To turn this picture into a strawberry (or any sprite) you add up
the bits and form a list of 63 bits of data.

67

1234567812345678123456738

So the data is as follows:

igP® DATA 3,0,192,3,129,192,3,231,128,1,
231,128,9,24,0,7,219,0,15,219,224

1910 DATA 15,255,240,31,255,240,57,255,1
56,63,1568,252,83,255,252,21,243,248,15
1820 DATA 255,240,15,153,208,3,255,192,3
.221,192,1,255,128,0,255,8,08,126,0,0,24,
%)

Right. Now sprites have to be stored in memory like
programmable characters. Each one is stored in a block of
memory that is 64 bytes long. These blocks start at location 0
and go up to 16320. However, the first block that can safely be
used is 13, ie address 832 onwards. Addresses 1024 to 2047

68

are also unuseable as the screen is there. So you can use
locations 2048 to 16320. To calculate what the blocks starting
address is, use this simple formula: address = block * 64.
Blocks up to 255 can be used. For example, block 250 starts at
location 16000. So using the data above we POKE the datainto
a block. | will use 13 (832 —) so our program looks like this.

180 FORA=BTOB2

20 READB:POKEB32+A,B:REM PUT SPRITE DATA
INTO MEMORY

30 NEXT

1ev8 DATA 3,0,182,3,129,192,3,231,128,1,

231,128,0,24,0.7,219,0,13,219,224

1018 DATA 15,255,240,31,255,240,57,255,1

56,63,156,252,63,255,252,21,243,248, 15
1028 DATA 255,240,15,159,208,3,255,192,3
»221,182,1,255,128,0,255,0,0,126,0,0,24,

(%]

Now our sprite is created but we can’t see it. There are two
reasons for this — itis not turned on and it is off the screen. For
this we need to go to the video chip which starts at location
53248.

To make the numbers easier to remember | will assign the
beginning of the video chip to a variable, ie V = 53248.

| will refer to registers in the video chip as the variable plus a
number, ieV + 4.

NOTE

When POKEing the variables make sure that V is set at 53248.
Otherwise the examples will not work and the computer might
crash (go into an endless loop).

To turn on a sprite we use register V + 21. Each sprite is turned
on by its respective bit:

69

Sprite @ = bit 1

Sprite 1 = bit 2
and so on to:
Sprite 7 = bit8

Each bit has its own specific value.

sprite number 7 6 5 4 3 2 1 0

bit number 8 7 6 5 4 3 2 1

value 12864 32 16 8 4 2 1

For example, Sprite @ is turned on with POKE V+21,1 (or
POKE 53269, 1). To turn on more than one sprite at a time you
add their ‘bit values’ together.

eg.
To turn on sprites®,1,2and 7, add 1 +2+4+128 =135 so
type POKE V +21,135.

Now we have to tell the video chip where ta find the data for our
sprite. This is handled by eight locations which are just before
BASIC RAM (where BASIC or machine code programs are
written). You POKE the respective location with the block
number in which the sprite data is stored. The addresses are as
follows:

Sprite @ 2040
Sprite 1 2041
Sprite 2 2042
Sprite 3 2043
Sprite 4 2044
Sprite 5 2045
Sprite 6 2046
Sprite 7 2047

70

eg.
To tell the video chip that the data for sprite 2 is in block
(13(832 —) type:

POKE 2042,13

If the data for sprites 3 and 5 are in block 13 then type:
POKE 2043,13:POKE 2045,13

Now turn on sprite 2 with POKE V + 21,4. To tell the video chip
that the data for our strawberry is in block 13, type POKE
2042,13 (I am making the sprite 2 the strawberry).

However, we still cannot see our sprite. We need to position
the sprite onto the sceen. Each sprite has an X co-ordinate and
a 'Y co-ordinate. These are controlled by two registers for each
sprite. For sprite 2, the X co-ordinate register is V + 4, (or
53252). It can be POKEd from @ to 255. Try POKE V +4,100.

We still cannot see our sprite. This is because the sprite is still,
above the screen. The register for the Y co-ordinateis V + 5. It
can be POKEd with @ to 255. Try POKE V + 5,100. There it is.

If you can’t see the sprite then it is probably the same colour as
the screen. Try changing the screen colour or the sprite colour

The registers to change the sprite’s colour are V+39 to V + 46
for sprites 0 to 7 respectively. To change the colour of a sprite,
POKE the respective register with a number from@ to 15. (The
colour codes for sprites are the same as the screen or character
codes.) So, to change the colour of the strawberry to red type
POKE V +41,2 (or 10 if you want a light red strawberry.)

Using the horizontal(X) and/or vertical{Y) registers, we can
move the sprite anywhere on the screen. | know a strawberry
does not fly but anyway here goes.

71

18 FORA=QTO6G2

20 READB:POKE832+A,B:REM PUT SPRITE DATA
INTO MEMORY

38 NEXT

4P POKE20942,13:PRINT"g":U=53248:POKEU+21
,4: POKEU+41,2: POKES3281,0: POKES3288,0

50 POKEU+5,200:FORX=0T0255: POKEU+4 ,X:NEX

T

60 FORY=200TO@STEP-1:POKEU+5,Y:NEXT

79 POKEU+4,0:G0T058

19@@ DATA 3,0,192,3,129,192,3,231,128,1,
231,128,0,24,0,7,219,0,15,219,224

1812 DATA 15,255,248,31,255,240,57,253,1
56,63,156,252,63,255,252,21,243,248,15
1920 DATA 255,240,15,159,208,3,255,192,3
,221,192,1,255,128,0,255,0,0,126,0,0,24,

)

In this programitis lines 5@ and 60 that do the work. Theyusea
loop to POKE the co-ordinates into the X and Y registers. But
wait!!11l Why is the sprite not going all the way across the
screen???

This is because the Commodore 64's screen is 320 dots across
by 200 dots down and a register can only hold a number
between 0 and 255. To get around this problem the 64 has a
special register which allows us to use the rest of the screen. It
moves the sprite to the 256th dot across. Then you use the X
co-ordinate register (V +4) to move the sprite. The register is
V +16. You POKE this register with the bit value for the sprite
that you want to go to the end of the screen. For example,
POKE V + 16,129 puts sprites @ and 7 to the 256th dot. When
your sprite is finished in this part of the screen you must put it
back by resetting V+ 16 to zero (or the value contained in
V + 16 minus the bit value for the sprite you are removing). For
example, if if contained 129 and you remove only sprite 7 then
you would POKEV + 16, 1. To make the last program make the
sprite move to the end of the screen change line 50 to:

72

580 POKEU+5,280:FORX=8T0255: POKEU+4 ,X:NEX
T:POKEU+16,4: FORX=BT063: POKEU+4 ,X: NEXT

And line 60 to:

60 FORY=200TOBSTEP-1:POKEU+5,Y:NEXT:POKE
U+16,0

A sprite does not have to remain 24 dots across by 21 dots
down. It can be doubled in width, height orboth, by two simple
commands.

The sprite is created normally and can then be expanded at will.
The resolution of dot is halved (ie the dot becomes double the
dimensions).

The register for horizontal expansion is V+29(53277). You
POKE V + 29 with the bit value for the sprite/s that you want to
expand. To return the sprite to normal, you POKE V + 23 with
zero or the value in the register minus the sprites bit value.

Stop the sprite program with the strawberry on the screen.
Type POKE V + 29,4 and you should see that your sprite has
now doubled in width.

Theregister for vertical expansionis V +23(53271). You POKE
this register with the sprite’s bit value just as you did for
horizontal expansion. To return your sprite to normal you type
POKE V +23,0 (or the total in the register minus the sprites bit
value). Try POKE V + 23,4 and you should find that the sprite
has now doubled in height.

The vertical and horizontal registers can be used separately or
together. So you can have normal, double width, double
height and both double height and width sprites on the screen
at once.

73

Now back to the old program. But do not turn the 64 off. Type
in the following program. .. and run it.

1 PRINT"g":POKES3281,0: POKES3280,0

10 POKE2048 ,13: POKE2041,13: POKE2842,13:P
OKE2043,13

20 U=53248: POKEU+21 ,255: POKEU+33,2: POKEV
+4@ ,3: POKEU+41,10: POKEU+42,12

30 POKEUV198=POKEU+2,288:POKEU+4,1@@:POK
EU+6,2080

40 POKEU+1,100:POKEU+3,188:POKEU+5,1@@:P
OKEU+?,200

5@ POKEU+23,6:POKEU+23,3

60 FORR=@T0200@:NEXT:REM REST

70 POKEU+23,1:POKEVU+29,4

80 FORR=BT0200:NEXT

998 GOTO58

Stop the program. Clear the screen and list the program. Notice
that the sprites cover the characters. Sprites can be made to go
under text or graphics. The register V +27 controls this. As
with other control registers, you POKE it with the respective bit
values for each sprite. Type POKE V +27,3. See the sprites go
behind the characters. When you want the characters to go
back in front of the characters you can, for example, reset this
register with POKE V +27,0.

A sprite can detect collisions with other sprites or with screen
characters. There are two registers which control this.

Firstly sprite/sprite collision. Thisis register V +30(53278). Ifa
sprite hite another sprite then the two sprites bits are set.

eg.
If sprite @ hits sprite 2 then register V + 30 would contain five,
ie with bits set.

74

bit 8 7 6 5 4

Sprite 7 6 5 4 3 2 1 0

Value 4 1

If all eight sprites were in collision then all eight bits would be
set and V + 30 would contain 255.

8 7 6 5 4 3 2 1

New the old program but do not turn the machine off. (This is
because you will need the sprite data.) Try this program using
two strawberries.

18 FORA=OTO24:PRINT"1
17 :NEXT
20 POKE2042,13:P0OKE2040,13:U=53248
30 POKEU+21,5:POKEU+41,10:POKEU+33,5"
40 POKEU+1,1080:POKEU+5,100:D=1
58 POKEU,X+38:POKEU+4,255-X: X=X+D
55 IFPEEKCU+31)=40RPEEK(U+31)=5THEND=1
60 IFPEEK(U+38)=5THEND=-1
70 GOTO50

There is a register which detects whether a sprite has hit a
background character — it is V +31. This location has the
sprites respective bit set if that sprite hits a character. For
example, if both sprites 1 and 2 hit the background then V + 31
would contain six.

Unluckily there is no simple way of telling which character the
sprite has hit. The only way is to use a subroutine like the one
below.

75

10920 C=INT(10924+(PEEK(SPRITE Y REGJJ}/B+
(PEEK(SPRITE X REGJJ)8)

19010 IFPEEK(U+18)=SPRITE'S BIT THENC=C+
32

19020 CH=C

19839 REM CHARACTER IS IN CH

MULTICOLOUR SPRITES

Muticolour mode allows each sprite to have four coloursinits at
once.

The principal for programming them is basically the same as
multicolour characters in that they have half the horizontal
resolution and the use of bit pairs determines their colours.

For multicolour sprites the following bit pairs control these
colours:

@9 Screen colour

10 Sprite foreground colour
- 11 multicolour 2

91 multicolour 1

When you have created your sprite and coloured it in
multicolour, it retains its colours unless you change them or
press RUN/STOP and RESTORE.

To create a multicolour sprite we first need to turn on
multicolour mode. This is done by register V + 28. Each spriteis
put into multicolour mode by POKEing V + 28 with the sprites
respective bit. For example, to put sprites ® and 2 into
multicolour add 1 + 4=5.

So POKEV +28,5.
There are certain registers for controlling the colour of each
sprite. The foreground (10 bit pair) is controlled by registers

V + 39 to V + 486, for sprites @ to 7 respectively. For example,
POKE V + 41,2 makes the foreground of sprite 2 red.

76

The register V + 37 controls the colour (multicolour 1) with bit
pair @1. This register controls the multicolour 1 for all eight
sprites. So, if yo type POKE V + 37,2 any multicoloured sprite
that is on will have any 001 bit pairs coloured red.

The register V + 38 controls the colour (multicolour 2) with bit
pair 11. This register controls the multicolour for all eight
sprites. So, if you type POKE V + 38,5 any multicoloured sprite
that is on will have any 11 bit pairs coloured green.

So you design a sprite with bit pairs as follows. | will design a
strawberry.

24

76543210(76543210]76543210

[
Bit Pairs

I J

The above strawberry will be red, have yellow pips and green
leaves. Therefore, the red will be bit pair 11, the yellow 10 and
the green 01.

77

Now the data for the above sprite is added up an POKEd into
memory.

19 FORA=BTO062:READB: POKEB32+A,B:NEXT

192 DATA ©,0,0,0,0,0,20,0,80,21,1,80,5,6
9,64,5,69,64,!,69,0,0,68,0,3,87,8,15,255
112 DATA 192,59,251,176,255,255,252,254,
239,188,255,255,252,239,251,236,255,255

128 DATA 252,63,190,240,63,255,240,15,18
7,192,3,255,0,0,204,0

Now we need to turn on our sprite (I will use sprite 2):
POKEV +21,4

Now turn on multicolour mode for sprite 2:
POKEV +28,4

Put the sprite onto the screen:
POKE V +4,100:POKE V+5,100

Now we colour the sprite — to colour the sprite strawberry red:
POKE V +38,2

Now we make the leaves green:
POKEV+37,5

Now we make the pips yellow:
POKEV+41,7

Now we have a sprite in four colours (the background being the
fourth).

The following program generates all eight sprites in four
colours and moves them about the screen.

78

S5 PRINT s

1@ U=53248:POKEU+21,255: POKEU+28,255: POK
EU+33,0: POKEU+32,0

20 FORA=0T062:READB: POKES32+A,B:NEXT:FOR
A=BT07: POKE2840+A , 13: NEXT

22 POKEU+37,5:POKEU+38,2:FORA=3T0108: POKE
U+39+A-2,A:NEXT

25 POKEU+1,50:POKEU+5,188:POKEU+9,150: PO
KEU+13,280

30 FORX=0T0255:POKEU,X: POKEU+4,X: POKEU+8
» X POKEU+12,X

4@ POKEU+2,50:POKEV+6,100:POKEV+10,150:P
OKEU+14,200

50 POKEU+3,X:POKEU+?,X: POKEU+11,X:POKEU+
15,%

68 NEXT

70 GOTO022

198 DATA®,0,0,0,0,8,20,0,80,5,69,64,5,69
,64,1,69,08,0,68,0,3,87,8,15,235

118 DATA192,59,251,176,255,255,252,254,2
39,188,255,255,252,239,251,236,255,255
120 DATA252,63,190,240,63,255,240,15,187
.192,3,255,0,0,204,0,0,08,9

79

SECTION 1.7

HIGH RESOLUTION GRAPHICS

High resolution graphics without ‘Simon’s Basic' is easy on the
Commodore 64. In order to do this section you must under-
stand exactly how programmable characters work. This is
because the individual dots are programmed by their
respective bits.

The high resolution screen on the Commodore 64 is 320 dots
across by 209 dots down. That is a total of 64,000 individually
controllable dots. You can have up to 16 colours on the screen
at once, but more of that later.

Firstly we need to put the 64 into high resolution mode. When
we do this it makes each line of eight bits (dots) across the
screen as one byte, so that if you typed POKE 1024,1 you
would get a single dot, not an ‘A’. Therefore, instead of 40
bytes across by 25 down (which makes 1000), we have 40
bytes across by 200 down, making a 320 bit by 200 byte
screen. This occupies 8K, so we need to move the screen
upwards in memory to accommodate this. The following
program does just that:

18 A=56576:B=53248:POKEA ,PEEK(A JAND254: P
OKEB+24 ,8:POKEB+17 ,PEEK(B+17JOR32

Screen memory now starts at 24K (24576) and the colour
memory at 16K (16384). If you type in the above program and
run it, you will notice that the screen is scattered with unusual
shapes of random colours. Obviously we need to clear the
screen and make it a single colour (white). This program takes

81

a long time, so be patient.

S50 FORX=0T01008:POKE16384+A,1:NEXT
60 FORX=8T08000:POKE24576+A,8: NEXT

Now we have our high resolution screen set up, we need a
routine to actually plot a point on the screen. The following
subroutine does just that:

1008 Y1=INT(Y/8:¥Y2=Y-Y1X8

1210 X1=INT(X/8):X2=X-X1X8

1020 CH=(Y1x328)+(X1x8)+Y2:BI =21(/7-X2]
19390 POKE24576+CH,PEEK (24576 JORBI

1240 RETURN

The above routine depends on another routine to provide the X
and Y values to this routine.

The following program combines all done so far with a routine
to provide X and Y values for drawing a circle:

19 A=56576:U=53248

28 POKEA ,PEEK(ABIAND2Z54

30 POKEU+24,8

4@ POKEU+17,PEEK(U+17 JOR32

50 FORX=0T01080:POKE16384+X,1: NEXT

60 FORX=08T088080:POKE24576+X,0: NEXT

78 C=110:D=100

82 FORS=QT06.5STEPB.01:X=CxSIN(SI+160:Y=
DxCOS(S J)+108

99 X=INT(X+.5):Y=INT(Y+.5]:GOSUB1000
108 NEXT

1000 Y1=INT(Y/8J:Y2=Y-Y1x8

1910 X1=INT(X/83:X2=X-X1x8

1020 CH=(Y1x320)+(X1x8)+Y2:BI=21(7-X2)
1939 POKE24576+CH,PEEK (24576 JORBI

1049 RETURN

Of course, the routine in lines 70 to 100 can be changed to
whatever you want.

82

To draw a vertical line change lines 70 to 100:

70 D=1008

80 FORS=0TO3STEPB.81:X=160:Y=SxD

90 X=INT(X+.35J):Y=INT(Y+.5):GOSUB1000
1080 NEXT

Or to draw a diagonal line:

78 C=160:D=180

80 FORS=0T02.23STEPB.BO1:X=5xC:Y=5xD
90 X=INT(X+.5J):Y=INTC(Y+.5):G0SUB1980A
109 NEXT

Finally, the following program draws a sine curve:

18 A=56576:U=53248

20 POKEA,PEEKC(AJAND254

38 POKEU+24,8

40 POKEU+17,PEEK(U+17 JOR32

58 FORX=0T01000:POKE16384+X,1:NEXT
60 FORX=0T080020: POKE24576+X,8: NEXT
62 C=160:D=100

63 FORS=0T01.993STEPR.21:X=SxC:Y=100
64 X=INT(X+.5):Y=INT(Y+.5):G0SUB1008
65 NEXT

66 D=1009

67 FORS=0BT02STEP®.01:X=30:Y=5xD

B8 X=INT(X+.5J):Y=INT(Y+.5):G0SUB1000
69 NEXT

7’8 C=168:D=100

880 FORS=3T012STEPB.0Q1:X=SxC/5-65:Y=SIN(S
)xD1.3+87

90 X=INT(X+.53:Y=INT(Y+.52):G0OSUB1000
188 NEXT

208 STOP

1908 Y1=INT(Y/8J:Y2=Y-Y1xX8

1818 X1=INT(X/8)J:X2=X-X1x8

1020 CH=(Y1x320)+(X1x8J)+Y2:BI=29+(7-X2)
18380 POKE24576+CH,PEEK(24576+CH JORBI
12482 RETURN

83

It would be pretty useless if we could only draw lines etc. in one
colour, on one colour of background. The addresses 16384 to
17383 in the previous example control the colour of the lines
and the background. The background in each 8 by 8 dot
square can be controlled as well as the line or foreground
colour. The value to poke for the colours are calculated by the
following formula:

NUMBER = (16*foreground colour) + background colour.

The colours are the same as for the characters.

e.g. To colour the background black and the line white
POKE the addresses with 16..

FOR A=16384 TO 17383 : POKE A, 16 :NEXT

Multicolour is controlled the same as it is in BASIC......
POKE 53265,PEEK(53265) OR 16
Every dot you plot will be two dots in width. Just follow the

same rules as you would in multicolour programmable
characters.

84

SECTION 1.8

OTHER COMPUTERS’ BASICS

This section is for people who like the look of programs in
magazines and want to type them in but find that they are not
for their machine. 1 will cover conversion of programs in ZX81,
ZX Spectrum, VIC 20 and Commodore Pet BASIC to
Commodore 64 BASIC.

For screen displays you need to take account of screen size and
adjust the variables accordingly. ZX81 and Spectrum
programs contain frequent PRINT AT X,Y: statements. This
command contrary to popular belief is possible on the
Commodore 64. If a program has PRINT AT 21,2;HELLO"”
(ZX computers) then enter the following on the 64:

POKE 781,21:POKE 782,2:SYS 65520:PRINT“HELLO"”

781 is the location to POKE for the column and 782 for the
row. SYS65520 is an inbuilt routine for positioning the cursor.

If you do not adjust the scaling of the variables the program will
just use part of the screen.

The following table contains various pieces of information
about the four machines listed above, and what they are on the
Commodore 64.

85

FUNCTION/ ZX8t SPECTRUM VIC20 PET COMMODORE
MACHINE 64
Screen non-
locations standard, 7680 8185 32768 — 1024-2023
but 16384 to {4096 — 4605 33767
22528 with 8K
pixels expansion)
approxi-
mately.
Size of .
screen 32*22 32*22 22*23 40*25 40*25
Colour — Uses PRINT 38400 - — 55296 —
screen AT X,Y; 38906 56295
memory INK colour (37888 —
38393 with
8K
expansion)
BASIC 16524 — 22528 4096 —7679 1024 — 2048 —
memory (32768 if approxi- but anything 40959 (for
16K) mately from 1024 - BASIC)
32767
Start for — Uses POKE 4096/ - 2048 —
program- USR“A” to 5120/ {standard
mable POKE 6144/ 8192)
characters USR”Q" 7168

86

SECTION 1.9

THE PERIPHERALS
This section is divided into four stibsections:

1. Cassette file handling
2. Joysticks and paddles
3. Printer

4. Disc Drive

CASSETTE FILE HANDLING

The cassette can be used to store data files (streams of data). It
does this in a serial fashion, i.e. it puts data onto the tape in a
‘one after the other’ way.

in order to write a file to the tape we need to open a channel to
the tape. This is done with the OPEN command:

OPEN 1,1,2,"“name” (or a string)

The second number of this command must be a one as this is
the device number for the cassette recorder.

To put data onto the tape the PRINT #1 command is used.
Usually this is done in a loop.

The following program copies the screen onto tape. As can be
seen from the program you must close the file when you are
finished. This is done with CLOSE 1.

1@ OPEN1,1,2, "SCREEN SAUE"

20 FORA=1024T02023:B=PEEK(A): C=PEEK(A+54

272)

30 PRINT#1,B:PRINT#1,C:NEXT

40 CLOSE1

87

However, the above routine is pointless uniess we can retrieve
the information from the tape. The INPUT #1 and the GET 41
commands do this. Their function is basically the same, but
GET #1 is used where one character is wanted at a time.

To get the saved screen off the tape (saved with the previous
program) use the following program:

i@ OPEN1,1,8, "SCREEN SAUE"

20 FORA=1024T02023: INPUT#1,B: INPUT#1 ,C
30 POKEA,B:POKEA+54272,C:NEXT

48 CLOSE1

As the cassette has to ‘run through’ to find data, it is not really
practicable to store a lot of data onto the tape, but if speed is
not required then it is ideal if used with a C90 cassette. The
above method works for any data. You can use any variable or
characters in quotes.

JOYSTICKS

You can use two joysticks on your Commodore 64. They plug
into the ports on the right-hand side of your computer. To read
the joysticks (find out their position) you need to PEEK certain
addresses. | will start with Joystick @ which plugs into the port
nearest the front of the computer.

To read the joystick you PEEK address 56321. These are the
values obtained.

Sets bit X to @

normal (nomovement).................... 255 no bits

Jeft . ot 251 three

HOht. e 247 four

3+ J P 254 one

QOWN . oot e 253 two

1= 7O 239 five

up/left. ..o 250 one and three
up/right ... 246 one and four
down/left.o 249 two and three
down/right oo 245 two and four

However, if the fire button is pressed when the joystick is not
at ‘normal’ position the above values will not hold. So the
result should be ANDed. For example, to check if fire has been
pressed:

IF PEEK{56321)AND 239 =239 THEN GOSUB fire routine.
IF PEEK(56321)AND 16 =0 THEN GOSUB fire routine.

Now for Joystick 1. To read this joystick (which plugs into the
port at the back of the computer) PEEK ADDRESS 56320.

The values obtained when address 56320 is PEEKed are as
follows:

Setsbit Xto 0
normal {(nomovement).................... 127 nobits
left. . e 123 three
rght. ... 119 four
U e e 126 one
QOWN . e 125 two
fire. . 111 five
up/right 118 one and three
up/left. ... 122 one and four
down/left....... ..., 117 two and three
down/right L. 121 two and four

As with joystick @ the value should be ANDed to obtain a true
value. For example, to move left:

IF PEEK (56320) AND 123 =123 THEN GOSUB left routine.

This is because the AND command effectively filters out any
outside values.

THE PRINTER

This section will deal with the basics of using a printer. This is
mainly for people who have access to one, and for people who
own a printer but don’t want or need to know how to do
amazing things with it. The following information works on the
VIC 1515 printer and the Seikosha GP 100 VC printer, but it
may well work with others.

89

The printer has a switch on the backthathas 4 5 T onit.
If you put this switch to T’ and switch on the printer, the
printer will self test. If you see any malformed characters,
check the paper feed and the ribbon. if the problem still
persists your printer may need attention. The positions ‘4’ and
5" are the device number for the printer. This means that you
can have two printers connected to your Commodore 64. The
normal number for this switch is ‘4’ and itis at this position that
all of the following programs will work.

If you have written a program and you want a listing (copy on
paper) type:

OPEN4,4:CMD 4 : LIST

You can use any of the formats for LIST, i.e. LIST 1 00—200 as
if it was on the screen. When the listing is complete you need
to CLOSE the channel to the printer. There is a special way to
do this:

PRINT #4: CLOSE 4

If you do not do it this way the channel will not be properly
closed and could cause problems later.

You can print directly onto a printer or under program control. |
will do it in a program as if this is not done, the word READY is
printed when the printer is finished.

Instead of printing onto the printer by using the CMD
command (which sends a/f output to the printer you can
selectively choose whether you want the information on the
screen or the printer. This command is PRINT #4.

There are various control characters which change the output
from the printer. They are as follows:

CHR$ (10) Line feed after printing (carriage
return).

CHRS$ (13) Line feed after printing (carriage
‘ return).

90

CHR$ (14) Double width characters.

CHR$(8) Graphic mode command.
CHR$ (15) Normal width characters.
CHR$ (16) PRINT start position addressing.
CHR$ (27) When followed by CHR$ (16), it

is used to specify a start position
according to the dot address.

CHRS$ (26) Repeat graphic select command.

CHR$ (145) Cursor up mode command.

CHRS$ (17) Cursor down mode command.

CHR$ (18) Reverse field characters.

CHR$ (146) Reverse field off (normal
characters).

For example, to print in double width characters type one of
the following:

OPEN 4,4:CMD 4 :PRINT CHRS$ (14)
OPEN 4,4:PRINT 44,CHRS$ (14)

THE DISC DRIVE

This is a short section that lets you use VIC 1540 disc drive with
the Commodore 64. This drive is not normally useable with the
64 but it can be done.

Before LOADing, SAVEing or VERIFYing, the following
command must be typed:
POKE 53265,11

For example, to load the disc directory:
POKE 53265,11:LOAD “$" , 8

As this blanks the screen you need to bring the screen back.
This is done by either pressing RUN/STOP and RESTORE or
typing POKE 53265,27.

To format a disc (essential before using a disc for the first time)
type:

91

OPEN 15,8,15 : PRINT %15, ““NEW :disc name, 10"
Then type:
PRINT #15,“INITIALISE 10,disc name,10”

To save a program, type:
POKE 53265,11 :SAVE “ @:program name, number
between 0 and 255", 8 :POKE 53265,27
To verify the program, type:
POKE 53265,11:VERIFY”@:program name”’,8:POKE
53265,27
To load the program back in, type:
POKE 53265,11:LOAD"0:name”,8
Then when the red light on the drive goes out, type POKE
53265,27 or press RUN/STOP and RESTORE.

If you have a 1541 disc drive, the commands are exactly the
same except that you miss out the POKE 53265,11 and POKE
53265,27 commands.

92

SECTION 1.10

SPEEDING UP BASIC

Even though the BASIC on the Commodore 64 is fast for
BASIC itis still relatively slow. This section will tell you how you
can speed up your BASIC programs to their limit.

1. If you use variables instead of lots of numbers you save a
considerable amount of time. Each variable used saves approx
five to ten milliseconds. This may not sound alot but if there are
lots of loops where numbers are constantly handled, as in
games or mathematical programs, the time saving is
considerable.

2. When FOR NEXT loops do not put a variable after the
NEXT. This also saves quite a lot of time.

3. Put all frequently used subroutines at the beginning of a
program. This is because BASIC starts at the beginning of &
program to look for a routine. So, if your subroutine is at the
end of your program, every time you use your subroutine it has
to wait until BASIC gets to it. If it is at the beginning then
BASIC hardly has to look and so saves time.

4. Use FOR NEXT loops where possible in preference to
loop like this:

10A = A + 1:IFA< 21 THEN 10

5. Use single letter variables instead of double or more.

6. Try to use low line numbers (10 is better than 10,000).
Finally, if you want really fast programs use machine code.

93

SECTION 2.1

MACHINE CODE

Now that you have passed BASIC and into the realms of
machine code, you may be asking “Well, what is machine
code?”’. Quite simply it is the language that the microprocessor
understands. In the Commodore 64 the microprocessor is a
6510 which is an upgraded 6502. Therefore, the 64 runs 6502
machine code.

Before we start, let us look at a program in BASIC and
machine code:

186 A=1:B=10
20 C=A+B
30 PRINTC

That is pretty straightforward. Now look at its machine code
counterpart.

.+ 1C00 A9 B1 B39 BA 8D BB B4 AS
.»1CB8 91 8D BV D8 6B FF FF FF

Well, this is pretty unintelligable isn't it. As this is so unread-
able there is such a thing as assembly language. This is really
just the human version of machine code. This assembly
language allows us to write relatively readable programs but
that run at machine code speed. Here is the above program in
assembly language:

1CoB AS 01 LDA #$01
1CB2 639 BA ADC #%40A
1Ce4 8D BB B4 STA $8408
1CB? AS 1l LDA #$081

95

1C23 8D B8 D8 STA +D800O
iceC 60 RTS

This, though strange at first, is far easier to read and
understand than the previous machine code program.

This section will teach assembly language and will finish by
explaining how assembly language can be directly changedinto
machine code for entering into the 64.

Asinsection 1 (BASIC), | will not go through the commands in
alphabetical order but in the order of simplest to hardest to
understand. If you don’t understand itimmediately then read it
again and again. It will eventually become clear and you will be
writing machine code without a second thought. The
commands will be listed in a tabular form with all the variations
of each command in one block. Good reading and good luck!

The 6510 registers

The 6510 has what is known as registers which do all the work.
They can be thought of as a kind of memory location which
controls the running of any program.

Accumulator

The accumulator is the most important register in the 6510. Itis
where all arithmetic functions are done. It is an eight bit register
and therefore can hold only a value between zero and 255.

X Register (or X Index)

This is one of the secondary registers in the 6510. It is also an
eight bit register and can only hold a number up to 255. It does
not allow arithmetic functions but its contents can be
transferred to and from the accumulator.

Y Register (or Y Index)

This is pretty well identical in working to the X register and can
perform nearly all the same functions.

96

The Status Register

This register consists of eight flags; a flag is something that
indicates that something has or has not occurred.

The Program Counter

This is the only 16 bit register in the 6510. It contains the
address of the current machine language instruction being
executed. It is therefore always changing.

The Stack Pointer

This register contains the location of the top empty space on
the stack. The stack is used for temporary storage by machine
language programs and by the computer’s operating system.

NUMBERING SYSTEMS

Hexadecimal numbers

Hexadecimal is the normal numeric system used in machine
code. Unlike the decimal system it is not in base 10 but in base
16. If you find it hard to grasp then keep trying as it makes
machine code programming a lot easier.

In decimal the base is 10 therefore there are 10 different digits.
These are the numbers zero to nine. In hexadecimal the base is
16 and as there are only 10 numerals we need six more. The first
six letters of the alphabet are used for this (A to F).

DECIMAL HEXADECIMAL

00
01
02
03
04
05
06
07
08
9

97

CoNOCUOI_AWN—,S

10 DA

11 0B
12 ocC .
13 oD
14 QE
15 oF
16 10
andsoon....

In decimal as you move left the powers of 10 increase by one
each time. For example, 4096 is (4 *1000) + (0 * 100) + (9*10)
+ 6. In hexadecimal (Hex) itis the powers of 16 that increase by
one each time. For example, 1ED2 is (1*4096) + (14 * 256) +
(13* 76) +(2). In decimal the range of addressable locations is
0 to 65535, so in Hex they are 0000 to FFFF.

To distinguish these numbers from base 10 the Hex numbers
are usually prefixed with a dollar sign ($). For example, 7680 in
decimal is $ 1E0Q in Hex.

Addressing Modes

There are various addressing modes that the 651 @ uses. They
will be explained now to avoid confusion later.

Absolute Addressing
This is the mode where a number is taken from a memory
location for use by the processor.

eg.
LDA $1000

Immediate Addressing
This is the mode in which you load a number directly into a
register.

eg.
LDA 4$10

98

The hash (4) sign tells the assembler (program which converts
assembly language into machine code) that this is a direct
command.

Zero Page Addressing

This is an addressing mode that allows you to address locations
0 to 255 (0 to F) only. The reason for this is speed. It is faster to
go to a one byte number than a two byte number.

Indexed Addressing

This is the most useful mode in the 6510. It allows the addition
of a number to a base address to go to higher addresses, i.e.
4096 + 250. It always involves the accumulator and the X or Y
register.

eg.
LDA $ 1EMQ,X (if X contained 12 then the address would be
1E12)

From now on | will work in Hex. | will refer to the accumulator as
A, the X register as X and the Y register as Y.

In order to enter the programs you will need an assembler or
use the hexadecimal loader at the back of the book. You type
the Hex numbers which are beside most of the programs into
this loader and run/stop restore it to stop. Then type SYS (the
starting address) to run your program.

Machine Code Instructions
The instructions will be covered in the following order:

LDA Load A with memory or number.

LDX Load X with memory or number.

LDY Load Y with memory or number.

STA Store number in memory location (from A).
STX Store number in memory location (from X).
STY Store number in memory location (from Y).
TAY Transfer contents of A into Y.

99

TAX
TYA
TXA

NOP

JMP
JSR
RTS

INC
INX
INY

DEC
DEX
DEY

CMP
CPX
CPY

BEQ
BNE
BCC
BCS
BVC
BVS
BPL
BMI
BRK

PHA
PHP
PLA
PLP

XS
TSX

AND
ORA
EOR
BIT

Transfer contents of A into X.
Transfer contents of Y into A.
Transfer contents of X into A.

No operation (used to reserve memory).

Jump to address.
Jump to subroutine at address.
Return from subroutine.

Increment (add one to) memory
Increment value in X.
Increment value in Y.

Decrement (subtract one from) memory.
Decrement value in X.
Decrement value in Y.

Compare A with memory/number.
Compare X with memory/number.
Compare Y with memory/ number.

Branch if value equal to.

Branch if value not equal to.
Branch if carry clear (less than).
Branch if carry set (greater than).
Branch if overflow.

Branch if no overflow.

Branch on plus.

Branch on minus.

Break (stop).

Put value in A onto stack.

Put processor statut onto stack.
Take top of stack and put in A.
Take processor status off stack.
Transfer X to stack pointer.
Transfer stack pointer to X.

AND A with memory.

OR A with memory.

Exclusive OR A with memory.
Test bits with memory.

100

ADC Add memory to A with carry.

SBC Subtract memory from A with carry.

SEC Set carry bit.

CLC Clear carry bit.

SED Set decimal bit.

CLD Clear decimal bit.

SEl Set interrupt disable bit.

CLl Clear interrupt disable bit.

RTI Return from interrupt routine.

CLv Clear overflow bit.

ROR Rotate memory one bit right.

ROL Rotate memory one bit left.

ASL Shift memory one bit left.

LSR Shift memory right one bit.

COMMAND

HEX/DECIMAL

LDA #$00 Loads the accumulator with hexademical 09.

A9 169

LDA $00 Loads the accumulator from zero page

A5 165 location 00 (maximum FF).

LDA $00,X Loads the accumulator from zero page

B5 181 location (00+X) (maximum FF). If X
contained FO then it would load from location
00+ FO = FQ.

LDA $0000 Loads accumulator from location 0000

AD 173 (maximum FFFF).

LDA $0000,X Loads A from location (0000 + X) (maximum

BD 189 FFFF). If X contained FF then it would load
from location 0000 + FF = 0OFF.

LDA $0000,Y Loads A from location (0000 + Y) (maximum

B9 185 FFFF). If Y contained DE then it would load

101

STA $00
85 133

STA $00,X
95 149

STA $0000
8D 141

STA $0000,X
9D 157

STA $0000,Y
99 153

STX $00
86 134

STX $00,Y
96 150

STX $0000
8E 142

STY $00
84 132

LDX 4 $00
A2 162

LDX $00
A6 166

LDX $00,Y
B6 182

LDX $0000
AE 174

from location 0000 + DE = 0ADE.

Stores value in A in location 00 (maximum
FF).

Stores value in A in location (00 + X)

(maximum FF).

Stores the value of A in location 0000
(maximum FFFF).

Stores the value in A in location (0000 + X)
(maximum FFFF).

Stores the value of A in location (0000 +Y)
(maximum FFFF).

Stores the value in X in location 00 {(maximum
FF).

Stores the value in X in location 00+Y)
(maximum FF).

Stores the value in X in location 0000
(maximum FFFF).

Stores the valuein Y in location 00 {(maximum
FF).

Loads X with hexadecimal 00.

Loads X with value in Hexadecimal 00.
(maximum FF).

Loads X with value in 0+ Y (maximum FF).

Loads X with value in 0000 (maximum FFFF).
102

LDX $0000,Y
BE 190
LDY #3500
AD 160
LDY $00

A4 164
LDY $00,X
B4 180
LDY $0000
AC 172
LDY $0000,Y
BC 188
STY $00,X
94 148
STY $0000
8C 140
TAY

A8 168
TAX

AA 170
TYA

98 152
TXA

8A 138
NOP

EA 234

Loads X with value in 0000+ Y.

Load Y with hexadecimal 00.

Load Y with value in 8@ (maximum FF).

Load Y with value in location 40(0+X
{maximum FF).

Load Y with value in 0000 {maximum FFFF).
Load Y with value in 0000+ X (maximum

FFFF).

Stores the value in Y in location (00 + X)
(maximum FF).

Stores the value in Y in location 0000
(maximum FFFF).

Transfers the contents of A into Y.
Transfers the contents of A into X.
Transfers the contents of Y into A.

Transfers the contents of X into A.

No operation. This command is the
equivalent command to REM in BASIC in that
it is passed by the processor. It is used to

103

JMP $0000
AC 76
JSR $0000
20 32
RTS

60 96
INC $00

E6 230
INC $00,X
F6 246
INC $0000
EE 238
INC $0000, X
FE 254
INX

E8 132
INY

C8 200
DEC $00

Cc6 198
DEC $00,X
D6 214

reserve spaces in memory in case you want to
insert instructions later.

Jumps to location 0000 (maximum FFFF).
Like GOTO in BASIC.

Jumps to a subroutine beginning at location
0000 (maximum FFFF) and remembers where
you came from. Like GOSUB in BASIC.

Returns from a subroutine. Similar to return
in BASIC.

Increments (adds one to) the value in location
00 (maximum FF). If location 00 contained 47
it would contain 48 after this command.

Increments the value contained in location
(00 +X) (maximum FF). If X contained 0A
then locaiton 00 + 0A would be incremented.

Increments the value contained in location
0000 (maximum FFFF).

Increments the value contained in location
(0000 + X) (maximum FFFF).

Increments the value contained in the X
register.

Increments the value contained in the Y
register.

Decrements (subtract by one) the value in
location 00 (maximum FF).

Decrements the value contained (00+ X)
{maximum FF).

104

DEC $0000
CE 206

CMP 4500
Cc9 201
CMP $00

C5 197

CMP $00,X
D5 213

CMP $0000
CD 205

CMP $0000,X
DD 221

CMP $0000,Y
D9 217

CPX 4500
0 224

CPX $00
E4 228

CPX $0000
EC 236

CPY 4$00
coe 192

CPY $00
C4 196

CPY $0000
CcC 204

Decrements the value in 0000 (maximum
FFFF).

Compares the value in §0 with the value in A
(maximum FF). For example IF A=1 in
BASIC.

Compares the value in 00 with the value in A
(maximum FF).

Compares the value in (00 + X) with the value
in A (maximum FF).

Compares the value in 0000 with the value in
A (maximum FFFF).

Compares the value in (0000 + X) with the
value in A (maximum FFFF).

Compares the value in (0000 +Y) with the
value in A {maximum FFFF).

Compares the value @ with the value in X
(maximum FF).

Compares the value in @0 with the value in X
(maximum FF).

Compares the value in 0000 with the value in
X (maximum FFFF).

Compares the value 00 with the value in Y
(maximum FF).

Compares the value in 00 with the value in Y
(maximum FF).

Compares the value in 0000 with the value in
Y (maximum FFFF).

105

BEQ $1C1B

FO 240
BNE $1C1B

DO 208
BCC$1C1B

90 144
BCS $1C1B

B0 176
BVC $1C1B

50 80
BVS $1C1B

70 112
BPL$1C1B

10 16
BMI $1C1B

30 48
BRK

00 0

If the value compares (above) is equal to the
value then branch (ie GOTO address). You
can jump 127 bytes forward and 128 bytes
backward. So, in the example, the command
is at address 1C6B and it is told to branch
back to 1C1B which is 101(dec) backwards).
The number after the ‘S’ sign has to be
converted into a one byte decimal number by
subtracting 1C1B from 1C6B (after
converting to decimal).

As above except that if value is not equal then
branch forward/back.

Branches forward/backward if carry clear, ie
if value is less than one checked for. Has same
format as BEQ.

Branches forward/backward on carry set, ie
if value is more then one checked for. Has
same format as BEQ.

Branches forward/backward if the overflow
flag(V) is clear (V=0).

Branches forward/backward if the overflow
flagis set (V=1).

Branches forward/backward if the N Flag (N)
is clear (N=0), ie result is plus.

Branches forward/backward if the N flag is
set (N=1), ie result is minus.

interrupt program. If returning to BASIC then
the screen will clear and change to blue with a
light blue border and characters. Same as
after run/stop restore keys.

106

PHA

48 72
PLA

68 104
PHP

08 8
PLP

28 140
TSX

BA 186
TXS

9A 154
AND # $00
25 41
AND $00

25 37
AND $00,X
35 53
AND $0000
2D 45
AND $0000,X
3D 61

Stores the value in A on top of the stack
(storage pile 256 bytes long with ‘last in-first
out’ working).

Takes the value off top of stack and puts it
into A.

Stores the processor status at top of the
stack.

Takes the processor status off top of the
stack.

Transfers the stack pointer to X.

Transfers the value in X to the stack pointer.

Performs a logical AND (same as in BASIC)
with the value in A and Hex 00 and puts a new
value in A.

Performs a logical AND with the value in A
and the value in location @ (maximum FF)
and puts a new value in A.

Performs a logical AND with the value in A
and location 00 + X (maximum FF) and puts a
new value in A.

Performs a logical AND with the value in A
and location 9000 (maximum FFFF) and puts
a new value in A.

Performs a logical AND with the value in A

and location 0000 + X (maximum FFFF) and
puts a new value in A.

107

AND $0000,Y
39 57

ORA 4 $00
09 9

ORA $00
05 5

ORA $00,X
15 21

ORA $0000
oD 13

ORA $0000, X
1D 29

ORA $0000,Y
19 25

EOR #$00
49 73

EOR $00

Performs a logical AND with the value in A
and location 0000+ Y (maximum FFFF) and
puts a new value in A.

Performs a logical OR (same as in BASIC)
with the value in A and Hex 00 and puts a new
value in A.

Performs a logical OR with the value in A and
the value in location 09 (maximum FF) and
puts a new value in A.

Performs a logical OR with the value in A and
the value in location @0+ X (maximum FF)
and puts a new value in A.

Performs a logical OR with the value in A and
the value in location 0000 (maximum FFFF)
and puts a new value in A.

Performs a logical OR with the value in A and
the value in location @00+ X (maximum
FFFF) and puts a new value in A.

Performs a logical OR with the value in A and
the value in location 0000 +Y (maximum
FFFF) and puts a new value in A.

Performs an exclusive OR with the value in A
and Hex 00 and stores the new value in A. An
exclusive OR is similar to an OR except that if
and only if one of the binary numbers has a
one then a one will be passed on (not both).

Value1 10010011
Value2 11100111
Final 01110100 = 116 (decimal)

Performs an exclusive OR with the valuein A
108

45 69

EOR $00,X
55 85

EOR $0000
4D 77

EOR $0000, X
5D 93

EOR $0000,Y
59 89

BIT $00
24 36

BIT $0000
2C 44

ADC #$00
69 105

ADC $00
65 101

ADC $00,X

and the value in location 8 Hex and puts a
new value in A (maximum FF).

Performs an exclusive OR with the value in A
and the value in location 80+ X and puts a
new value in A (maximum FF).

Performs an exclusive OR with the value in A
and the value in location 0000 (Hex) and puts
a new value in A (maximum FFFF).

Performs an exclusive OR with the value in A
and the value in location 0000 + X and puts a
new value in A (maximum FFFF).

Performs an exclusive OR on the value in A
and the value in location 0080+ Y and puts
the new value in A (maximum FFFF).

Tests (by performing a logical AND) the value
in A with the value in. location @0(hex)
(maximum FF) but leaves the value in A
intact. Changes the values in flags. If A AND
memory =0 then the Z flag is set to one
otherwise zero.

Tests the value in A with the value in 0000
(Hex) (maximum FFFF) and adjusts the flags
accordingly (as above).

Takes the value in A and adds it to Hex 00 and
puts the new value in A. (If the value exceeds
255 (FF) then A will contain the value — 255.

Takes the value in A and adds it to the value in
location @0(Hex) (maximum FF) and puts the
new value in A.

Takes the value in A and adds it to the value in
109

75 117

ADC $0000
6D 109

ADC $0000, X
7D 125

ADC $0000,Y
79 121

SBC 4$00
E9 233
SBC $00

E5 229

SBC $00,X
F5 245

SBC $0000
ED 237

SBC $0000,X
FD 253

SBC $0000,Y
F9 249

Hex 00 + X (maximum FF) and puts the new
value in A.

Takes the value in A and adds it to the valuein
location @000(maximum FFFF) and puts new
value in A.

Takes the value in A and adds it to the value in
location @000 + X (maximum FFFF) and puts
the new value in A.

Takes the valuein A and adds it to the valuein
Hex 0000+ Y (maximum FFFF) and puts the
new value in A.

Takes the value in A and subtracts Hex 00
from it and puts the new value in A.

Takes the value in A and subtracts the value in
location @@ from it (maximum FF) and puts
the new value in A.

Takes the value in A and subtracts the value in
location @0+ X (maximum FF) from it and
puts new value in A.

Takes the value in A and subtracts the value in
location 000Q (maximum FFFF) from it and
puts the new value in A.

Take the value in A and subtracts the value in
location 0000+ X (maximum FFFF) from it
and puts the new value in A.

Takes the value in A and subtracts the valuein

location 00D+ Y (maximum FFFF) from it
and puts the new value in A.

110

SEC

38 56
CLC

SED

F8 248
CLD

D8 216
SEl

78 120
CLI

58 88
RTI

40 64
CLV

B8 184
ROR

6A 106
ROR $00

66 102
ROR $00,X
76 118

Sets the carry flag, ie puts the carry flag to one
(C=1). '

Clears the carry flag, ie puts the carry flag to
value zero (C=0).

Sets the decimal mode, ie puts the D flag
equal
toone (D=1).

Clears the decimal mode, ie puts the D flag
equal to zero (D=0).

Sets the interrupt disable status and turns off
all unnecessary interrupts (I=1) — see the
interrupts section.

Clears the interrupt disable status, ie turns of
all the interrupts again — see the interrupts
section.

Returns from an interrupt. Used instead of
RTS when returning from an interrupt.

Clears the overfiow flag (V =0).

Rotates the bits in the accumulator right by
one bit:
C765432190

So: 10000001
would become: 11000000

Rotates the bits of location 00(Hex)
{maximum FF) right by one bit.

Rotates the bits of location 00 + X (maximum
FF) right by one bit.

111

ROR $0000
6E 110
ROR $0000, X
7E 126
ROL

2A 42
ROL $00

26 38
ROL $00,X
36 54
ROL $0000
2E 46
ROL $0000,X
3E 62
ASL

0A 10
ASL $00

06 6
ASL $00,X
16 22

Rotates the bits of location 9000 (maximum
FFFF) right by one bit.

Rotates the bits of location 0000+ X
(maximum FFFF) right by one bit.

Rotates the bits in the accumulator left by one
bit:
76543210 C

So: 10000001
would become: 00000011

Rotates the bits of location 00(Hex)
(maximum FF) left by one bit.

Rotates the bits of location 8 + X (maximum
FF) left by one bit.

Rotates the bits in location 0000 (maximum
FFFF) left by one bit.

Rotates the bits in location 0000+ X
(maximum FFFF) left by one bit.

Shifts the contents of A left by one bit and
puts the bit knocked off onto carry and puts a
zero in at the right.

C 76543210 0

11000001
would go to: 10000010

Shifts the contents of @ (maximum FF) left
by one bit and puts a zero on at the right.

Shifts the contents of @0+ X (maximum FF)
left by one bit and puts a zero on at the right.

112

ASL $0000
03 14
ASL $0000,X
1E 30
LSR

4A 74
LSR $00

46 70
LSR $00,X
56 86
LSR $0000
4E 78
LSR $0000, X
5E 94

Shift the contents of location 0000 (maximum
FFFF) left by one bit and puts a zero on at the
right.

Shifts the contents of location 0000 + X left
by one and puts a zero on at the right
(maximum FFFF).

Shifts the contents of A right by one bit and
puts a zero on at the left and puts the bit
knocked off onto carry.

O 76543210 C

eg. 0 100000001 C
would be: 01000000

Shifts the contents of location @9 right by one
bit and puts a zero on at the left (maximum
FF).

Shifts the contents of location 00+ X
(maximum FF) right by one bit and puts a
zero on at the left.

Shifts the contents of location 0000
(maximum FFFF) right by one bit and puts a
zero on at the left.

Shifts the contents of location 0000 + X right
by one bit and puts a zero on at the left
(maximum FFFF).

CONVERTING ASSEMBLY LANGUAGE TO MACHINE

CODE

As assembly language is far easier to use than machine code, if
you don't have an assembler you should write assembly
language programs and change them into Hex for entering with
the Hex loader at the back of the book. This is how to do

113

the conversion and how to start or stop your machine code
programs.

In the table (at the beginning of section 2.1) | gave the
assembly language form, and its Hex and decimal equivalent.
These numbers are the value for the mnemonic (three letter
word),, the operand (# $ 00, for example, has to be
calculated. The following will deal with hex numbers. If the
operand goes up to FF then it will occupy one byte so you just
keep the operand to POKE directly into memory (or using the
Hex loader). But if it goes up to FFFF then it is a two byte
operand and has a different format. The 6510 works in low
byte/high byte order. The low byte of the two byte address is
the second two Hex digits and the high byte is the first two.

eg.
To change LDA $ 01FE into machine code:

The value for LDA$ is AD (or 173), the second two Hex digits
are FE, and the first two are @1. So you enter the numbers into
the Hex loader in the order AD,FE,01. (Or POKE into
memory. ...173, 254, 1).

In the following sections, the programs are listed in assembly
language and in a Hex dump. This is a list of the Hex numbers
to enter into the loader. You only enter the first two byte
number as it is the starting address, then you enter all the Hex
numbers.

To start the assembly language programs type G starting
address into your assembler or SYS starting address. To start
the Hex dump versions type SYS starting address. For
example to start either program (starting address is 7168)

SYS 7168

114

SECTION 2.2

COLOUR IN MACHINE CODE
In matching code there are three ways of colou ring characters:

1. Put the colour value into the accumulator and transfer it to
location 646 (as in BASIC).

eg.
To make characters orange:

1080 A9 OB LDA #4098
iCP2 8D 86 82 STA $0286
1C05 60 RTS

2. Put CHRS$ (value for the colour — see Appendix 4) into the
accumulator and then JSR to the PRINT subroutine at location
65490 (FFD2;).

eg.
To make the characters orange:

1Cev A9 31 LDA #$31
1CB2 29 D2 FF JSR $FFD2
iCo5 69 RTS

3. To colour individual characters on the screen (like POKEing
colour) character by character.

egd.
To colour the top line of the screen orange:

115

1C88 A8 ©8 LDA #3808

1CP2 A2 VY LDX #%$00
1C24 38D 00 D& STA $D800, X
ico” E8 INX

1Co8 EB 28 CPX #$28
1CoA DB F8 BNE $1C04
iceC €9 RTS

The screen and border colours are controlled in the same way as
they are in BASIC, by using locations 53280 and 53281.

eg.
To change the screen colour to black:

1Co8 A9 v LDA #$00
1Ce2 8D 21 DO STA $DB21
1CoS 60 RTS

Or to change the border to red:

1CBy A9 B2 LDA #$02
1C92 8D 20 DO STA $DB28
1CBS 60 RTS

116

SECTION 2.3

SOUND IN MACHINE CODE

Sound will not be covered in such depth as in the BASIC
section as all the values and tables and POKEs are identical, and
they have already been covered.

To produce sound in machine code you load the accumulator
(orthe X or the Y register) with the value for the waveform, note
low or high frequency, attack/decay, etc. Then you store this
value in the respective register.

eg.
To create a sawtooth waveform on voice 1:

1Cop A9 21 LDA #$21
1Ce2 8D B4 D4 STA $D404
1CB5 68 RTS

In machine code sound needs a delay loop to make the sound
slow enough to sound correct.

The following routine has a sound effect (a red alert) without a
delay, and the second one is the same with a delay:

1CBB A9 21 LBA #$21
1CB2 8D 84 D4 STA $D404
1CBS A9 8. LDA #480

1Ce” 8D 85 D4 STA $D4B85S
1CoA 8D B6 D4 STA $D406

1CeD A8 @A LDA #$8A
1COF 8D 18 D4 STA $D418
1C12 A2 EB LDX #$E6

117

1Ci4 8D 8@ D4 STA $D409
iC17 8E B1 D4 STX $D401

1C1Aa CA DEX
1C1B EQ 64 CPX #$64
1C1D DB FS BNE $1Ci4

1CiF 4C 12 1C JMP $1C12

For those without an assembler, use the Hex loader at the back
of the book and type in the following numbers (the first is the
Hex starting address):

Bx
PC SR AC XR YR S%
.397FE 32 920 909 00 F6

.+ 1C8@ AS 21 8D 84 D4 AS 80 8D
.51C08 85 D4 8D 86 D4 A3 VA 8D
.21C10 18 D4 A2 E6B 8D 8@ D4 BE
.51C18 @1 D4 CA E@ 64 DB FS 4C
.21C2@8 12 1C 59 08 08 80 B9 0O

1CoB A9 21 LDA #%21
1Co2 8D B4 D4 STA $D404
iCBS A9 B8O LDA #$80

iC8? 8D B5 D4 STA $D485
1CoA 8D 86 D4 STA $D406

iCBD A3 @A - LDA #$0A
1CeF 8D 18 D4 STA $D418
1C12 A2 EB LDX #$E6

iC14 8E @B D4 STX $D400
iC1? 8E B1 D4 STX $D401

1C1A CA DEX

iCiB 20 308 1C JSR $1C30
iCiE EB 64 CPX #$64
1C28 DB F3 BNE $1C17
iC22 A8 ©o LDA #4200

i1C24 8D ©@ D4 STA $D400
1C27 8D 01 D4 STA $D401

118

1C2A 20 308 1C JSR $1C39
1C2D 4C 12 1C JMP $1C12

1C38 AB 08 LDY #$00
1C32 C8 INY
1C33 DB FD BNE $1C32
1C35 60 RTS

And here are the Hex numbers:

Bx

PC SR AC XR YR S%
.+97FE 32 90 20 0@ F6
.+1C8BB A9 21 8D B4 D4 A9 88 8D
.+ 1C08 B35 D4 8D 06 D4 A9 BA 8D
.:1C19 18 D4 A2 E6 S8E 8@ D4 SE
.21C18 81 D4 CA 28 30 1C EO 64
.:1C20 DB FS A9 80 8D 088 D4 8D
.+ 1C28 91 D4 20 3@ 1C 4C 12 1C
.+ 1C38 AR 88 C8 DB FD 68 SB 31

The above routine forms the basis for all sound effects in
machine code.

To play tunes, instead of using data statements, you POKE the
notes into a spare part of memory and LDA $ value, X for the
tune.

The following program uses this method to play a scale. The
first part of the program is in BASIC and it POKEs the note
values into memory.

19 FORA=0T016:READB: POKEB32+A,B: NEXT

20 SYS’168

30 DATA 25,34,126,38,52,43,198,45,97,51,
122,57,188,64,143,68,0,0

119

Bx
PC SR AC XR YR S%
.397FE 32 90 90 80 F6

1CO8 A9 21 LDA 2321

1Ce2 8D ©4 D4 STA $D404
1CBS AS 8@ LDA #$80

1Ce”7 8D B5 D4 STA $D485
1C8n 8D 96 D4 STA $D486

1CeB A3 @A LDA #$0A
iCeF 8D 18 D4 STA $D0418
1C12 A2 @09 LDX #$00

iCi4 BD 3C @3 LDA $833C,X
iC1”7 8D BB D4 STA $D400
1CiA BD 3D @83 LDA $8330,%
iCiD 8D @1 D4 STA $D401
iC28 28 2C 1C JSR $1C2C

1C23 E8 INX

1C24 E8B INX

1C25 EB 14 CPX #%14
iC27 D@ EB BNE $1C14
1C29 4C 12 1C JMP $1C12
1C2C 8A T™=A

1C2D 48 PHA

1C2E A2 00 LDX #4009
1C30 N8 @9 LDY #$00
1C32 C8 INY

1C33 DY FD BNE $1C32
iC35 EB TNX

1C36 DB FA BNE $1C32
1C38 68 PLA

1C33 AA TAX

1C3A 61 RTS

And here is the Hex dump for the program:

,:1CP8 A3 21 8D B4 D4 A3 88 8D
.:1ce8 ©5 D4 8D 86 D4 A3 @A 8D
,:1C18 18 D4 A2 88 BD 3C 83 8D

120

.2 1C18
.2 1C28
.+ 1C28
:1C39

.2 1C38

0B D4
28 2C
EB 4C
A 89
68 AA

BD 3D 83
1C EB E8
12 1C 8A
C8 DB FD
68 41 20

121

8D 81
EB 14
48 A2
E8 DO
85 98

D4
Do
8o
FA
4)%)

SECTION 2.4

ANIMATION IN MACHINE CODE

The principles in animation are basically the same as in BASIC.
When you are moving a character you must erase its previous
position before moving to a new one. However, in machine
code you need to slow the action down to see it. For example,
to move a ball across the screen in BASIC:

5 X=0
18 POKE1024+X,81:POKES5296+X,1:X=X+1:POK
E1023+X,32: IFX=408THENEND

280 GOTO10

Would be the following in machine code:
1CoB A2 90 LDX #$00
1CB2 A9 31 LDA #$51
1Ce4 9D 08 94 STA $0400,X
ice? A9 a1 LDA #4091
1C83 39D BY D8 STA $D808, X
iCeC A9 29 LDA #$20
1CBE 39D FF 83 STA $03FF ,X
iCi11 ES INX
1C12 ED 28 CPX #4$28
iCl14 DO EC BNE $1C02
iC16 69 RTS

And here is the Hex dump:

.»1CO0 A2 B8 AS 51 9D 98 B4 A9
.:1C@28 @1 8D @8 D8 AS 20 3D FF

.+1C19 83 E8 EOQ 28 D8 EC 60 8D
?

123

However, you would need to slow this routine down as it is too
fast to see. You would need a routine like this:

1C12
iC18
1C1B
1CiC
iC1E
1C1F
ic21

And here is the hex dump:

A2
21%)
c8
Do
E8
Do
60

51%)
5%

FD
FA

LDX
LDy
INY
BNE
INX
BNE
RTS

#$00
#$00

$1C1B

$1C1B

"11C17 A2 20 AR 28 C8 D@ FD ES
":1C1F DO FA 60 IC ES E8 EQ 14

The main routine uses the X register as well as the delay so we
need to store its value on the stack thus:

1C127
icie
1C19
1CiB
1CiD
1C1E
iC20
1Cc21
ic23
1C24
1Cc25

8A

%1%]

FD
F8

TXA
PHA
LDX
LDy
INY
BNE
INX
BNE
PLA
TAX
RTS

#$00
#$00

$1C1D
$1CIB

.21C17 8A 48 A2 80 AR @8 C8 DO
.:1C1F FD £€8 DO F8 68 AA 60 14

So the completed routine looks like this:

1CO0 A2 00
1092 A9 51

LOX #%$00
LDA #%51

124

1Co4 SD
iCB”? A3
iCe3 3D
icec A9
ICOE 3D
IC11 EB
1C12 20
1C13 EO
117 Do
IC19 60
iIC1Aa 8A
ICiB 48
IC1C A2
IC1E A0
IC28 C8
1C21 Do
IC23 E8
I1C24 Do
IC26 68
1C27 AA
1C28 60

.+ 1CPoo
.+ 1C08
.5 1C102
.+ 1C18
.+ 1C20
.+ 1C28

To start type SYS START. If this seems slow for machine code
remember that the computer is counting to 65536 every time it
moves the ball (as a delay). Imagine that in BASIC — it would

take hours.

Animation, therefore, depends on indexed (or added to)

addressing.

0B 04
01
Qo 08
20
FE 83

1a IC

28
ES

515}

FD

FA

STA
LbA
5TA
LDA
STA
INX
JSR
CPX
BNE
RTS
™A
PHA
LDX
LBY
INY
BNE
INX
BNE
PLA
TAX
RTS

31
08
1A
48
E8
9]%)

38D
A3
1c
A2
8]
%1%

125

$0400,X
#$01
$08003, X
#4220
$03FF , X

$1C1A

#$28
$1Ca2

#$00
#$00

$1C20

$1C20

o 04
20 39D

B0 Ao
FA 68
B 06

But we now come upon a problem. If we can only add 255 to
our base (STA $, for example) how do we cover the whole
screen as it is 1,000 locations in length?

Well, there are two ways. One s to actually change the program
asitis running; and the other is to have different loops toadd up
to 1,000. For the first method to move a ball through every
location we would need the following routine:

iCov A2 @0 LDX #4$00
iCB2 AS 81 LDA #$81
1CB4 SD 90 04 STA $84008,X%
iCB”? A3 20 LDA #$20
1C83 39D FF B3 STA $03FF ,x
iceC EB INX

iCeD Dv F3 BNE $1C02
1CoF AC 86 1C LDY $1C@86
IC12 C8 INY

1C1i3 8D 86 1C STA $1C06
1C16 AC 8B 1C LDY $1C@B

1C19 C8 INY
i1CiAa 8C @B 1C STy $1CeB
iCiD Co @7 CPY %07
iCiF D@ E1 BNE $1C02
1C21 60 RTS

.+ 1CO0 A2 B8 AS 81 9D BB B4 AJ
.21CP8 20 9D FF B3 E8 DB F3 AC
.21C198 96 1C C8 8D 86 1C AC 9B
.»1C18 1C C8 8C ©B 1C CB 07 DO
.2 1C20 E1 6@ FD E8 DB FA B8 AA

The second method would be:

1CO0 A2 20 LDX #$00

iCe2 A9 81 LDA #$81
iCe4 9D 0B 04 STA $8400,X
1Co” A9 91 LDA #4091

126

1C08 3D 90 D8 STA $0880,X

1CeC E8 ITNX

1CeDb DB F3 BNE $1C02
1CeF A9 81 LDA #$81
1C11 9D FF 04 STA $04FF ,X
i1C14 A8 91 LDA #$01
1C16 SD FF D8 STA $D8FF ,X
iC19 E8 TNX

1Cin DO F3 BNE $1COBF
1C1iC A9 81 LDA #$81
1C1E 9D FE @5 STA $05FE,X
1C21 AS @1 LDA #4091
1C23 9D FE D9 STA $DIFE,X
1C26 EB INX

1C27 DB F3 BNE $1C1C
1C28 AS 81 LDA #481
1C2B SD FD ©6 STA $B6FD,X .
1C2E A8 B1 LDA #4891
1C38 3D FD DA STA $DAFD,X
1C33 E8 INX

1C34 Do F3 BNE $1C28
1C36 60 RTS

And here is the Hex dump:

.= 1C08 A2 BB AS 81 3D BB B4 A3
.- 1CB8 @1 39D 90 D8 E8 DB F3 AS
:1C10 81 3D FF ©4 AS @1 8D FF
:1C18 D8 E8 D@ F3 AS 81 9D FE
:1C20 85 A9 @1 39D FE D9 E8 DO
:1C28 F3 A9 81 39D FD 86 AS @1
:1C30 38D FD DA E8 DB F3 60 90

« 8 ¥ 8 =

As you can see, the first method is far more efficient. However,
if the program is to be stored on a ROM cartridge then the
second method would have to be used.

If you want user interaction, ie movement because of a joystick
or keyboard input, you would load the accumulator with the

127

respective address (197 for keyboard) and compare this with
the various numbers and then jump to the respective routine.

eg.

The following program moves a character left and right along
the bottom line of the screen according to keyboard input. The
‘Z' key moves the character left and the ‘M’ key moves it right.

1CeB A2 14 LDX #%$14

1CB2 AB 14 LDY #%14

1C24 AD C5 @9 LDA $09CS
1CO” C39 24 CMP #%$24

1CPS FO B85 BEQ 41C10
1CeB C39 @C CMP #$8C

iCeD FB @9 BEQ $¢1C18
1COF 60 RTS

iC1e E@ 27 CPX #$2/

1C12 F@ FB BEQ $1CBF
1C14 ES8 TNX

1C15 4C 23 1C JMP $1C23
iCi8 EB 00 CPX #4009

1C1A FO@ F3 BEQ ¢$1CoF
1CiC CaA DEX

1C1D 4C 23 1C JMP $1C23
1C20 4C @F 1C JMP $1CBF
1C23 A8 @1 LDA #4081
1C25 38D Ce @~ STA $87CA8,X
1C28 39D C@ DB STA $DBCB,X

1C2B CnA DEX

1C2C A9 20 LDA #$20
1C2E 9D Ce @7 STA $87C8,X
1C31 E8 INX

1C32 E8 TNX

1C33 39D CB @7 STA $87C0,X
1C36 CA DEX

1C37 4C OF 1C JMP $1COF

71008 A2 14 AB 14 AD C5 8@ C9
".1CP8 24 FO @5 C9 @C FO 23 60

128

.2 1C19 EB 27 F@ FB E8 4C 23 1C
.2 1C18 EOQ 98 FB F3 CA 4C 23 1C
.21C28 4C @OF 1C A9 B1 S0 CV B2
.:1C28 9D CO DB CA AS 28 9D CO
.:1C30 87 E8 E8 9D C@ 87 CA 4C
.:1C38 @F 1C 90 99 22 08 8V 09

Rather than making the above program run so fast that you
cannot see, it will jump to it from BASIC.

18 Sysr168
20 SYS212722:G0T028

Line 10 sets up the registers and line 20 goes to the machine
code until you press RUN/STOP.

If you follow the rules of animation in BASIC and translate them
to machine code you can write machine code animation
without any problems.

If your program does not work first time don’t worry, few
machine code programs work first time. Check it again and
change anything that you see necessary, and you wil/
eventually succeed.

129

SECTION 2.5

PROGRAMMABE CHARACTERS IN MACHINE CODE

It is not practicable to create these characters in machine code
as it would require a minimum of 40 bytes to create over and
above the eight bytes needed to store them. However, the
occasional one could be created by the following method:

LDA row 1 value
STA 8192 +row1 + (character code*8) ¢
LDA row 2 value

torow 7.

The second method would involve indexed addressing (ie
adding to) as in the following example:

1CO2 A2 99 LDX #4080
1CO2 BD @9 18 LDA $1999,X
1CBS 90 @8 28 STA $2008 .X

1Co8 ES8 INX
1Ce39 E0 @27 CPX #$97
1CeB D@ FsS BNE $1C@2
1CeD 60 RTS

The above routine would require the data for the ‘@’ already
stored in locations 1000 to 1007 Hex.

However, using programmable characters in machine code is
very useful. In animation, all you do is write a program which

131

uses normal characters and then program the characters that
you want. Have the first part of your program as follows:

LDA =%$24
STA $D@18

This puts the computer into the programmed character mode.
Y our program will still run normally and PEEKing the characters
still gives the same results, but it looks much better for you.

If you want the full character set copied into RAM rather than
POKE each character into RAM, you could use the following
routine:

iCev 78 SEI

1Co1 AS B1 LDA ¢$081
1CB3 29 FB AND #$FB
1CeS 85 81 STA 461
1CB7 A2 98 LDX #4080

1Co9 BD 28 DB LDA $DB0D , X
1CBC 9D 89 28 STA $2000,X
1COF EB TNX

iC1e D@ F7 BNE $1C83
1iC12 BD FF D@ LDA $DOFF ,X
1C15 9D FF 20 STA $28FF ,X

1C18 EB INX

1C19 DB F? BNE $1C12
1C1B AS B1 LDA $81
1C1D 09 94 ORA #4$084
1C1F 85 01 STA 401
1C21 38 CLI

1C22 A9 18 LDA #4$18
1C24 8D 18 D6 STA $DB18
1C27 60 RTS

.:1Ces 78 A5 @81 239 FB 85 @1 A2
:1CcP8 @8 BD 92 DB 9D 88 20 E8
:1C10@ D@ F? BD FF D@ 9D FF 20
1 1C18 E8 DO F? AS 0@} 89 @84 85
:1C20 81 58 A9 18 8D 18 DO 60

132

You will notice that the cursor looks odd. This is because only
the first 64 characters have been re-programmed.

The first four lines and the last four lines are for paging out the
ROM as it is ‘hidden’ behind the I/0Q. The first four page the
character ROM in the last four page it out. (Not the RTS.)

To get multicolour characters you simply create the characters
in BASIC (as you would do in BASIC) and then POKE the
values of the colours as in BASIC into locations 53282 and
53283 (plus the character colour).

The following program changes the colours of the characters to
red, white and orange:

1CoB A3 98 LDA #%98
1Co2 8D 16 DO STA $DB16
1C8S AS 28 LDA #3928
1CB? 8D 86 B2 STA 48286
1CéA AS B2 LDA #$02
1CoC 8D 22 D@ STA $D922
1CBF A9 @1 LDA #3091
1C11 8D 23 D@ STA $D823
1C14 68 RTS

::1688 AS 98 8D 16 DB A9 B8 8D
-:1CO8 86 B2 A9 @2 8D 22 DB A9
.+1C10 @1 8D 23 DP 60 9D FF 29

This program also puts the 64 into multicolour mode.

133

SECTION 2.6

SPRITES IN MACHINE CODE

Using sprites in machine code is identical to using them in
BASIC. Itis easier to create them in BASIC but they can still be
saved and used as part of a machine code program.

eg.
Instead of typing POKE V + 21,4 type:

1Ce8 AS 24 LDA #$04
iCe2 8D 15 Do STA $DB1S
1CoS 68 RTS

The following programs move a sprite over the bottom of the
screen. The sprite will be a square block. The programs wiill
show you that all you do to literally convert the POKEs to LDAs
and STAs.

10 FORA=BT062: POKES32+A,255: NEXT
20 POKES3269,4 :POKE2042,13

30 IFPEEK(197)=4THEN1Q®

40 IFPEEK (197)=3THEN200

S50 IFPEEK(197)=10THEN300

60 IFPEEK(197)=18THEN40@

70 GOTO3.

100 IFPEEK (53253 1>46THENY =Y-1
118 POKES3253,Y

120 GOTO>9

200 IFPEEK(S3253)<225THENY =Y+1
210 POKES3253,Y

220 GOT0709

300 IFPEEK (53252)>30ANDPEEK (53264)=8THEN

135

X =X—1:G0OT0310

305 IFPEEK[53264J=4HNDPEEK(532523>@THENX
=X-1

307 IFPEEK(53264J=4HNDPEEK[53253J=@THENP
OKES3264 ,0: X=2355

31@ POKES3252,X

320 GOT0Y0

499 IFPEEK(53252)<255THENX=X+1

410 IFPEEK[53252J=255THENPOKE53264,4=X=@
420 IFPEEKE53264J=4HNDPEEKE53252J=78THEN
440

430 POKES3252,X

449 GOTOY8

And in machine code.

Use the BASIC program to run this machine code. If you type
RUN 20 then you will see the speed of machine code.

i FURH=0T062:POKE832+H,255:NEXT:POKE2842
,13:POKES3263,4

19 SYS2168:G0T010

28 SYS7152

1BF@ 20 99 1C JSR 4$1C006
1BF3 4C F@ 1B JMP $1BF0O

1BF6 EA NOP

1BF? EA NOP

1BF8 EA NOP

1BF3 EA NGP

1BFA EA NOP

1BFB EA NOP

1BFC EA NOP

1BFD 4C A3 1C JMP $1CA3
1Ce8 AS CS LDA $CS
1C82 C9 49 CMP #$40
1Ce4 FO 14 BEQ $1C1A
1Ce6 C9 12 CMP #$12
1Ce8 FO 11 BEQ $1C1B

136

icen
1coc
1COE
1C10
1C12
1C14
1C16
1C18
iC1A
1C1B
1C1C
1C1F
1C21
1C23
1C25
1C28
1C26A
1C2C
102D
1C30
1C31
1C34
1C37
1C39
1C3B
1C3C
1C3F
1C40
1C43
1C46
1048
1C4B
1C4D
1C50
1C51
1C54
1C55
1CS8
1C5A
1C5C

BA
46
g4
/B
@3
E”
@b
79

19
04
84
oF

De

Do

Do

1C
Do

Do

1C
Do

Do

Do

Do

CMP #$0A

BEQ $1C54
CMP #$04

BEQ ¢$1C8D
CMP #$03

BEQ $1BFD
CMP #$8D

BEQ $1C33
RTS

TAY

LDA $DB19
AND #$04

CMP #$84

BEQ $1C34
LDX $Do0e4
CPX #$FF

BEQ $1C43
INX

STX $D004
TYA

JMP $1C16
LDX $Doo4
CPX #4$3F

BEQ $1C3F
INX

STX $D004
TYA

JMP $1C16
LDA $DB10
ORA #%04

SThA $D010
LDX #4080

STX $D004

TYA

JMP $1C16
TAY

LDA $DO10
AND #$84
CMP #$04
BEQ $1C6D

137

1C3E
1C61
1C63
1C65
1C66
1C69
1C6A
1C6éD
1C70
1C72
1C74
1C75
1C78
1C29
1C7C
1C7F
1C81
1C84
1C86
1C83
1C8aA
icsD
1C90
1C92
1C94
1C97
1C98
1C3B
1CSD
1CSE
1CA1
1CA2
1CAS
1CA6
1CAS
1CAC
1CAE
iCBO
1CB3
1CBS

24
16
P4
04

16
04

28

B]%}

D9

1C
8]%)

Do

1C
Do

Do
Do
1C
Do

De

1C
Do
icC
Do

Do

LDX
CPX
BEQ
DEX
STX
TYA
JMP
LDX
CPX
BEQ
DEX
STX
TYA
JMP
LDA
AND
STA
LDX
STX
TYA
JMP
LDX
CPX
BEQ
LDA
AND
CMP
BNE
TYA
JMP
DEX
STX
TYA
JMP
LDX
CPX
BEQ
LDA
AND
CMP

$0004
#$16
$1C63

+D004

$1C16
$D0R4
#$00

$1C2C

$D0B4

$1C16
$+D0106
#$FB
+D010
#$FF
+D00o4

$1C16
$08085
#$2F
$1CAS
$DB1E
#4004
#$04
$1CAl

$1C16
$D005

$1C16
$0805
#$ED
$1CBD
$001E
#$04
#$04

138

1CB?
1CB3 E8
1CBA
1CBD 98
1CBE

.+ 1BF@
.: 1BF8
.2 1C00
.2 1C08
.:1C10
.+ 1C18
.2 1C20
.+ 1C28
.+ 1C30
.2 1C38
:1C40
.5 1C48
.:1C50
.+ 1CS8
.+ 1C60
.- 1C68
.- 1C70
. 1C78
.+ 1C80
.- 1C88
.+ 1C3@
.+ 1C88
.2 1ChB
.+ 1CA8
.+ 1CB@
.- 1CB8
:1CC@o

Fo 04

8E 85 DO

4C 16 1C

BEQG +1CBD
INX
STX $0885
TYA
JMP $1C16

4C
EA
40
9A
23
A8
Fo
12
1C

- EB

AD
A2
1C

Fo
EA
Fo
Foe
Fo
AD
oF
E8
AE
8E
10
%1%
A8
Fo

139

18
4C
14
46
EZ
10
AE
8E
04
24
08
8E
AD
oF

EA
AS
CS
C3
Ccs
Do
04
04
Do
Do
23
04
10
AE
8E
04

SECTION 2.7

COMMODORE 64 ARCHITECTURE AND INTERRUPTS

The memory layout in the Commodore 64 is strange to say the
least. Its microprocessor (the 6510) can directly address 64K of
memory but the 64 has a total of 84K of memory. How??? Well,
the 6510 has a special port built in for switching in and out
blocks of memory. It is controlled by address one.

The 64 has 64K of RAM. But without INPUT/OUTPUT
facilities itis useless. As the full 64K is already filled we will have
to put the other things on top. In the 64, the 1/0 is from
addresses DO0B(53248) to DFFF (57343). This covers some
RAM but we can flip the |/ O out to expose the underlying RAM.
The 1/0 consists of two CIA chips for external communication
(cassette, keyboard, RS232, etc), the SID sound chip and the
video chip.

Now we need an operating system, as acomputer does nothing
without one. In the 64 it is called the KERNAL and it is located
from location EQ®® (57344) to FFF (65535) on top of the RAM.
This can also be removed to expose the underlying RAM.

We now need a language. This language is BASIC. Itis located
from locations AGDD(40906) to BFFF (49152).

The computer will now work — or will it? Yes it will, but we will
have no characters to display on the screen. Therefore, we
need another chip. This is called the character ROM or the
character generator. It stores the ‘bit patterns’ for the
characters which can be displayed on the screen. It is stored
from location DOPQ (53248) to DFFF (57343). Wait a

141

minute. the 1/Q is stored there. Never mind, we will just
put the character ROM under it. The video chip has special
circuitary to enable it to use the character ROM at all times.

The picture of the memory is very strange. It looks like this:

Commodore 64 Memory

Addresses shown in hexadecimal.

This type of memory organisation is extremely flexible, and it
allows us to tailor the system to our needs.

Firstly, in the programmable characters section, we used this
facility to page in the character ROM (put it on top of the pile so
that it can be PEEKed):

1 POKES6334,128:POKE1,51: X=PEEK{53248):P
OKE1,55:POKES6334, 123: PRINTX

Typing the above would give a result of 60 (the first value in the
character ROM).

When you have paged something in you must return the
computer to its normal mode by paging out what was paged in.

142

When paging occurs at certain places the interrupts must be
turned off. This is only when you page out the operating system
(KERNAL) or the /0. This is done with POKE 56334,128 (or
SEl in machine code). When you have finished with the paged
locations you must page it out again and reset the interrupt.
This is done with POKE 56334,129. As can be seen from the
above, address one is the address which controls paging and
that 55 is the normal value in that address.

We can remove the 0S (operating system) by clearing bit one
{mask two) of address one. This is done with POKE 1,53.
However, as the computer cannot last for more than a few
microseconds without it this is not a wise thing to do, but you
can write your own and substitute it if you want. To switch the
0S back in type POKE 1,PEEK(1) OR 2.

Flipping out the KERNAL also switches out BASIC, so bit one
switches out both ROMs. BASIC can, however, be switched
out onits own by clearing bit zero of address one. Flip it outand
we have 8K more for our machne code programs. This is very
useful if we have an all machine code program and therefore
don’t need BASIC.

We can copy BASIC into RAM. This lets us change BASIC if
wedon‘tlikeit. The following program copies BASIC into RAM
behind the BASIC ROM.

10 FORA=40960T043152
20 POKEA,PEEK(A)
30 NEXT

Line 20 may look a little stupid, but if you POKE a ROM on the
64 the value is put in the RAM directly behind the ROM. Run
the program. It will take a minute or so. Now the BASIC
language is in RAM, and ROM. Let’s switch to RAM BASIC.
Type POKE 1,54. If the cursor is still flashing then everything is
OK. If not, turn the computer off and on then re-type and run
the program. Now BASIC is in RAM, we can now adjust and

143

change BASIC to our needs. BASIC on the Commodore 64 has
abug in it. Let’s correct it.

If you type PRINT ASC ("'} the 64 will give you an error
message:

? ILLEGAL QUANTITY ERROR.

The value returned should be a zero. To correct the bug, type
POKE 46991,5. This slightly changes the ASC function to give
azero. Everything else (including other ASC values) will workin
exactly the same way.

PRINT ASC (“")
Answer... 0

If you want you can change BASIC commands to say what you
want you can. For example, to change the BASIC command
LIST to BUST, type the following:

POKE 41230,85 : POKE 41229,66

If you now type LIST you will get a syntax error, but if you type
BUST the program will be listed. The BASIC commands are
stored from locations 41118 to 41864 inclusive. To change any
command, find the relevant address and POKE the ASC value
for the letters you wish to change. The following program lets
you see what character is at what address so that you know
which address to POKE to change the respective command.

1@ FORA=48360T049152
20 POKEA,PEEKCA)
30 NEXT

To return to ROM BASIC at any time POKE 1,55.
In the Commodore 64 there are various interrupt vectors. These

are two bypte vectors which hold the low and high byte values
for subroutines which are called every sixtieth of a second by

144

the operating system. The one that we will use is at locations
788 and 789. All of these vectors can be changed to
accommodate your own machine code routine.

eg.

The vector at locations 768/769 can be changed to allow you
to add new commands to BASIC. (It is the error vector so you
intercept the error and do things accordingly.)

Location 788 contains the low byte and 789 the high byte.

788 normally contains 49 and 789 contains 234. You can
disable the BREAK key by POKE 788,52.

The high byte is the most significant byte of the address/256.
So the MSB address for this vector is 234 * 256 = 59904. As
788 contains 49, the routine which is done every sixtieth of a
second is at address 49 + 59904 which is 59953.

This routine is essential for the proper running of the 64, so
when your routine is finished it must always jump to 17. To
change this vector for your routine change the starting address
of your routine into Hex. Then take the second two Hex digits.
Change the Hex number into decimal and POKE this number
into location 788. Then take the first two Hex digits and change
them into decimal and POKE this number into 789. However,
before doing the above you need to disable the interrupts with
either POKE 56334,128 in BASIC or SEl in machine code.
Then, when the two numbers are POKEd into memory, type (in
aprogram) POKE56334,129 in BASIC or CLIin machine code.

Function Keys

There are three ways of making these keys do something
useful:

1. Use the CHR$ codes. This is only useful in programs
where you say ‘PRESS F1 to PLAY’, for example. See
Appendix 3 for codes.

145

eg.

1@ IFA$="g THENGOTO...:REM F1 KEY
20 IFA$=CHR$(133)THEN...:REM ALSC F1 KEY

2. PEEK the keyboard (locations 197 or 203). This returns a
number according to which key was pressed. (For the function
keys the number is between three and six.)

3. The same as above only in machine code (an interrupt
routine). The routine checks the keyboard (197) to see which
function key has been pressed, and then sees if the SHIFT key
has been pressed. It then prints the characters associated with
each key.

The following program does just that. First is a disassembly,
then a BASIC program which enters the code and the
characters to be printed. The ASCli codes for the characters are
stored from locations 49409 to 49473 inclusive (C101 to c141
Hex).

Cove 78 SEI

Cer1l A9 10 LDA #3410
Cee3 8D 14 @3 STA $0314
Covt A9 CO LDA #$CA
Coes 8D 15 @3 STA $0315
CevB 58 CLI

CeaC 60 RTS

€D EA NOP

COBE EA NOP

CROF EA NOP

Co1Q 48 PHA

Co11 8A TXA

Co12 48 PHA

CB13 398 TYA

Co14 48 PHA

Co15 AS CS LDA $C3
Ce1? CS FB CMP $FB

146

Ce19
ce1B
Ca1D
Ca1F
Ce21
€823
Cez26
C|B2s
cezB
(81%)48]
Ca2F
Ce32
Ce35
ce3”
€33
Ce3B
Ce3E
Ce41
Ce43
Co45
Coe4?
Co4n
Co4D
CR4F
Ces51
Ces54
CR56
Ces59
CesB
CoO5E
81%]o31
Co64
Ce65
Co66
Co68
Coe6A
cesC
CeeD
Ce6E
CB6F

C1
C1
C1
92

TAX
147

$CO6C
$FB
#$03
$C0238
#$30
$C1908
$CO4A
#$04
$CO35
#$00
$C108
$C0P4A
#$05
$C0P41
#$10
$C1069
$CR4A
#$06
$CO6C
#$20
$Ci00
$928D
#3901
$C059
$C100
#$08
$C100
#3000
$C100
$Ci1@81,vY
$0277 ,X

#4008
$CBSE
$C6

Ca’9 68 PLA
Co”’1 4C 31 EA JMP $EA31

Just type in the following BASIC program and runiit. When the
computer says ‘READY’ the function keys are programmed:

19 datal28,168,16,14%1,28,3,169,192,141,2
1,3,88,96,234.234,234,72,138,72,152,72
15 datal85,197,197,251,248,81,133,251,20
1.3.288,8,169.48.141.8.193.76.74,192

20 data291,4,208,8,169,0,141,8,193,76,74
,192,281,5,208,8.169.16,141,0,193,76,74
25 datal92,201,6,208,39,169,32,141,0,193
,173.141.2,201.1.288.8,173.@,193.185.8
39 dataldl,p,193,162,0,172,0,193,185,1,1
93,157.119,2.232.280,224.8,208.244.134
35 datal98,104,168,104,170,104,76,49,234
42 fora=49152t049267:readbipokea,binext
50 fora=BtoY:readk$: forb=1to8:l=ascllmid
$(ks,b,13)):ifl=95thenl =13

55 ifl=285thenl =4

60 poked9403+(ax8)+b,linext:next:ipoked34
99,4:5ys48152

70 data"list-MMM”

80 data”run-MMMM"

99 data"printMMM”

190 data"thenMMMM”

110 data"loadMMMM”

120 data”saveMMMM”

130 data“verifyMm™

149 data"gotoMMMM”

Notes on the above program:

Lines 10—35 contain the machine code for the routine.

Line 40 POKEs in the machine code into memory. This is a 4K
block of RAM which is useable in BASIC so you are still left with
the full memory capacity for BASIC programs

Lines 50— 60 poke the data for what will be printed when the

148

keys are pressed (F1—F8). The ‘M’ signs are needed to fill the
data up to eight characters per key, but they are changed to
characters which print nothing in order to make the routine
work correctly. The maximum number of characters which can
be in the quotes is eight (per key).

149

SECTION 2.8

SIMILARITIES BETWEEN MACHINE CODE AND BASIC

Some BASIC commands can be directly changed into machine
code. They are as follows:

POKE number, value LDA value: STA number.
LDX value: STX number.
LDY value: STY number.

AND number/variable AND number / variable.
OR number/variable DRA number / variable.
IF variable = CMP accumulator with.

CPXX register with.
CPYY register with.

THEN BNE branch if not equal.
BEQ branch if equal.
?

SYS address JSR address.

151

SECTION 2.9

PROGRAMS TO TRY

Here is a hexadecimal loader program. It allows you to write
machine code in Hex and type the Hex in. It also allows you to
run the machine code, save or load it onto tape and is used to
enter the Hex machine code programs in this book.

5 A$="0123456783ABCDEF"

19 PRINT"g”

15 POKE138,0

20 INPUT"LOAD PROGRAM“:L$: IFLEFT$(L$,1)=
"Y " THENGOSUB1008: GOT040

30 INPUT"SAUVE PROGRAM";S$: IFLEFT$(L$,1)=
"Y " THENGOSUB2008

49 INPUT"STARTING LOCATION";SL

50 PRINTSL;::INPUT"HEX(2) DIGITS":H$

60 IFH$="END"THEN2080

78 FORA=1TO16:B=A-1:IFLEFT$(H$,1)=MID%(A
$,A,1)THENSO

73 NEXT

77 GOTOS8

80 DE=Bx16

198 FORA=1T016:B=A-1: IFRIGHT$(H$,1)=MID$%
(A%$,A,1I)THEN120

118 NEXT:GOTOS0

120 DE=DE+B

139 POKESL ,DE:SL=SL+1:DE=@:H$="":G0TO50
209 INPUT"RUN MC.";R$:IFLEFT$(R$,1)="Y"T
HEN220

2190 RUN

228 INPUT"STARTING LOCATION";SL:SYS(SL)

153

1992 INPUT"ADDRESS TO START AT";AS: INPUT
“NAME OF PROGRAM";N$

1985 INPUT"FINISHING ADDRESS":FA

191@ OPEN1,1,8,N$

1828 FORX=SATOFA: INPUT#1,Y:POKEX,Y:NEXT
1930 CLOSE!

1948 RETURN

2980 INPUT"ADDRESS TO START AT":AS: INPUT
"NAME OF PROGRAM”;N$

290085 INPUT"FINISHING ADDRESS";FA

2010 OPEN1,1,2,N%

20290 FORX=SATOFA:Y=PEEK(XJ:PRINT#1,Y::NE
XT

2039 CLOSE1

2040 RETURN

Following are a Hex to decimal converter, a decimal to Hex
converter and a binary to decimal converter.

10 INPUT"HEX":H$

20 A$="0123456783ABCDEF "

30 FORA=1TO16:B=A-1:IFLEFT$(H$,1)=MID¢CA
$,A,1)ITHENS®O

49 NEXT

58 DE=Bx16

60 FORM=1TO016:B=A~1:IFRIGHT$(H$,1)=MID%C
A%$,A,1ITHENS®

70 NEXT

88 DE=DE+B:PRINTDE

S A$="0123456789ABCDEF"

19 INPUT"DECIMAL NOCMAX 255)":DE

20 C=INT(DE,/16):D=(DE/16-CJ)x16

30 H$=MID$(A%$,C+1,1)+MID$(A%,D+1,1)
40 PRINTH$

58 GOTO010

154

i@ INPUT"BINARY(8 BIT)";BN$

20 IFLENCBN$)>8THENPRINT"TOO LONG":GOTO1
%]

39 DE=0:A=0

4@ FORX=8TO1STEP-1:A=A+1:IFUAL(MID$(BNS,
A,1))>1THENPRINT"ERROR": GOTO10 .

5@ DE=DE+UAL(MID$(BN$,A,1))x20(X-1)

B8 NEXT:PRINT"DECIMAL=";DE:GOTO19

Here is a maze game. You have to guide your character around
the maze in the shortest possible time. Some of the lines are
greater than 80 characters in length (which is the maximum
allowed by the Commodore 64). so you will have to use the
keyword abbreviations in order to enter the program correctly.

9 printchr$(142)chr$(8)

1 poke54296,15:poke54277,128:poke542/8,1
28:pokeS54276,33

4 dima$(iBBI:hté=""

5 print " S[a9999 acssdssssnnsancnXdaxzxe "

6 poke53281,15:poke53280,3:print "qouide

your -man around the maze as fast g as po
ssible”s

7 print” using keys"iprint "qq. rzR le
f1 xR right"sprint” agarkR u
p rmR down”

8 print "adacacacrpress a key to play”

3 pokel98,0:waitl198,1

12 fora=8448t08468:pokea ,B:next

11 poke53272,24

12 print 'S :pokeS54296,15

13 rem high res

14 poke53281,0

15 a=8712

16 readb: i fb=388thenl8

17 pokea,b:a=a+1:gotolB

18 fora=8576t08662:readb:pokea,binextipo
ke8199+58x%8,0

20 at$(18)="AAAAAAAAARAAARAAAARAAAA"

155

fora=0t039:a%(al=a$(1B):next

S L EEEEEE LR,

a$(11)="a eCD__

p=1344

a$(12)="A AARAAAAAAAAAAAAAAA
a$(13)="4 A A
a$(14)="A A A AA AR A A
a$(15)="A A A A AR A A
as(16)="A A A AA AR A A
a$(17)="A A A AAAARA A A
a$(18)="A A AA A
a$(19)="A ARAAA AR AAAAA
a$(203="A Af

a$(21)="AAAAAAA A AR A ARAAA
a$(22)="A A A APA AA
a$(23)="AAAAAAI AAAA
a$(24)="AAAAAAM AAARA
a$(25)="A A A A A AAAA
as(26)="AA A AR AR A A
as(22)="AA A A A AA
a$(28)="A A ARPA A A AARA A
a$(29)="A AR AA
a$(30J="A AAAA A A ARAA
as(31)="A A A ARABAARA A A
a$(32)="A A A A A
a$(33)="A A AAAAA ARARA A
a$(34)="A

a$(35)="A ARARAAAAARAAAAARAAAA"
a$(36)="A A A"
a$(37)="ARAA ARARAARAARRRAA A"
a$(38)="4 AAAAA A"
a$(339)="A AR A"
a$(40)="AARAAAAA AAAA ARAAAA"
a$(41)="A AR AR AA
a$(42)="A AAA AA AR AAA
a$(43)="A A AA AA A
a$(44)="A A A A A
a$(45)="A A AARAAAAAAAAAARA A
a$(46)="a A A
a$(47)="A AAAAA A A ARAAA
a$(48)="A A ARAAAA A

S EEEEE L,

156

61 a$(439)J)="AAAAA AA AAAARA"

62 fora=0t049:a%(58+a J=a$(49-a]

B3 next

85 a+(88)J)="A A"

66 goto’2

67 data255,129,255,129,255,129,255,129
68 datal129,90,36,126,255,60,36,195,255,1
27,63,31,15,7,3,1,128,192,224,240,248

63 data252,254,255,0,126,24,24,24,24,24,
24,0,60,24,24,24,24,24,60

7P data@,126,64,64,126,64,64,126,0,66,10
2,98,66,66,66,66,0

71 data300

72 a=86:x=20:11$="000000"

7?3 print "sqqqag’’

74 forb=atoa+4

75 printtab(8Jsas(b)

/86 next

77 ifpeek(p+xJI<>32then88

78 pokep+54272+x,5:pokeptx,66

79 print"se949999999999999 andassssssacal
FHG: "imid$(t1$,3,2) s "sright$Cti1$,2; " _
80 e=peek(197):ife=64then”3

81 poke54272,108:poke54273,100

82 | fe=36thena=a+lim=1

83 {fe=37thena=a~-1im=2

84 pokeS54272,0:poke54273,0

85 1fe=12thenx=x-1:m=3

86 tfe=23thenx=x+1:m=4

87 goto’3

88 ifm=1ithena=a-1

89 ifpeek(p+x)=6P0rpeek(p+x)=68then96

30 poke54272,100:pokeS4273,100

91 ifm=2thena=a+l

92 {fm=3thenx=xt1

93 i fm=4thenx=x-1 L

94 poke54272,0:pokeS54273,0

95 goto’3

96 fora=255to0@step-4:forb=5to1Sstep3

97 poke54296,b:poke54272,200:poke54273,a

157

93 nextb,a:poke54272,0:poke54273,8:poke>S
3272,21 ’

1P@ print"Seragqaganyour time was "imid$
(t1$,3,2):" minutes "3right$(ti$,2);" se
conds”

191 print"$9999999999999999999 AAISADLLAL
teany key to restart_”

182 ifpeek(19731<>64thenl1Bd2

193 {fpeek(187)=64thenl1B3:print"Q’

194 t 1$="0BOGGA"

186 restore

187 print "sg9qgq9g99999999’

188 run

119 datad,126,78,74,82,98,126,8,0,56,24,
24,24 ,24,126,0,0,126,66,4,120,98,126,9
112 datad,126,2,62,6,6,126,0,0,64,64,64,
96,100,126,4,08,126,64,64,126,6,126,0

114 datad,96,96,126,98,98,126,0,0,126,2,
2,6,6,6,0,0,126,66,126,66,66,126,0

116 data®,126,66,66,126,6,6,8,0,0,24,08,0
,24,0,0,0

118 data®,126,24,24,24,24,24,24,0

Here is an adventure program that takes place in the
underground caves of Marple.

I printchr$(14)chr$(8lipoked3288,2:poked
3281,0

18 pript"St :dimal(425)

20 printiprint

38 print "Sa_ Treasure Hunt.":f
orhh=1t02508:next

40 printiprint

B8 deffnr(xJ=int (rnd(1JxxJ+1

70 print "SaqThe MARPLE CAUES,located in
Marple-town,are said to have 28"

71 print "Hidden treasures in them.Few ex
plore them,because it is said that”

158

72 print "PIRATES and DRAGONS live there-

-bes ides”

80 print"there are deep pits which many

have fallen into and DIED"

81 print "aqPRESS f1 TO CONTINUE"

3833 getm$.

85 ifm$="E"'then88

86 goto83

88 print "Sqggq’

99 print"YOU,a smart and brave human,and
I a Commodore 64 will explore the ¢

aves "

91 print”and try to find the treasure.
1 will be your eyes and ears”

92 print”and will tell you 1f danger lur

ks ahead.”

180 print

119 print” I hope you brought a map.In

case you didn't,you'll have to”

111 print "make one as we explore”:iprint:

print "qgaPRESS f1 TO CONTINUE."

112 getm$

113 ifm$="E'thenldd

115 gotoll2

140 print"S”

141 fori=1t03

150 n=3+fnr (88)

168 ifalnl<{>Bthenl15H

178 aln)=2

180 next

198 fori=3to09

200 n=3+fnr (88)

21D i faln)<{>Bthen200

220 alnl=i

230 next

240 for 1 =288t0304

258 n=fnr(94)

260 ifalnl)<>Pthen250

278 alnl=i

280 next

159

280
300
310
320
330
340
350
360
400
410

restore

forn=1t023

reada$

next

forn=137t0408

readaln)

next

Ww=P:m=0:b=200:d =0

print "aagaq’

print” Welcome to the Marple Caves w

here you will find MYSTERY"

411 print "TREASURE and ADUVENTURE!"

4208 print

430 g0t0500

479 print S’

480 b=b-1

499 (f{b=0then3740

SP0 tfw=Bthen3140

540 iffnr[280)=2@@thengosub1898

55@ i{finy (208)=200thengosub2120 ,
S60 | fd=Pandalw)=Bandfny (50)=58thengosub
2850 ’
5790 | falw)=Band(fnr(5)=51then35/0

620 ifalw)=2then3440

639 ifalwl=4then28390

640 1falwl=5thengosubl?70

658 ifalwl=’thenprintiprintiprint "There'
s a shy Little elf in here hiding $0
mething.

660 ifalwl=8then2419

700 gosub3350

7218 z=uw

720 gosub4120

730 forn=134t0136

750 printtab(1)'CAVE";aln J;

760 ijfaln)=Bthenprint "~-THE ENTRANCE!";
270 print

780 next

820 ifb>1991hen880

8390 fw<>Pthen880

160

840 input "To explore hitl else 2"
368 ifj=2then3810
878 itj<(>1then840
888 itb=5Bthenprint:print” -1 hope vou b
rought wyour torch batteries”
890 i tb=25thenprintiprint "Your torch is
starting to dim a bit.”
900 ifb=8thenprint:print "Your torch is a
lmost out. Better leave right nowl!
b
910 ifalwl=3thengos22390
950 k=0:1 =0
970 forn=134t0136
988 j=alw)
938 it;<Pthenl190
1900 i14a(j)=5then1030
1018 i1fa(yl>Bandal(Jl<1Bandk=Bthenprint:ik
=1
1020 1fa(j)=2andl =Bthenprint "aalThere are
pits nearby.watch your step.";l =1
1038 i1talj)=3thenprint” CAREFUL- There's
a pirate nearby”
1840 ita(j)=4thenprint” I hear a hungry
dragon nearby-waiting for his SUPP
ER!"
1058 if(j)=6thenprint "There's a sign her
e that says: "print "Saaqaar >>DANGERCCR
o
1060 1taljl=?thenprint "Sounds |l ike someo
ne is singing. Must Be an ELF."
1878 i1 fal(j)=8thenprint "There's a strange
mist in herel”
1280 ifal(j)=9thenprint "RUFF RUFF1!,... 1
can hear a dog barking"”
1990 next
1180 1 +a(131)=Pthen1200
1119 print
11280 print”Ygu're carrying:";as
1140 i+fa(n)<i1@@thenl11390
3158 z=aln)

161

1160
1170
1190
1200
1240
1250
1260
1278
1286
ou?q’
1239
1380
1310
13208
1330
13409
1358
1368
1378
1380
13906
30

1400
1410
ou're
1420
1430
1440
1480
1490
1500 .
1510
1529
1538
w=htg
1540
re fr
15509
1639
1640

gosub4040

printas;

print

i falwl<1@Bthenprint:gotol1440

print

z=alw)

gosub4049

print"alhis cave has"3a%$s "in it"
print"Do you want to take it with v

input (Y orNJ"; %
1f,$="n"then1440
1§53 "y "then1290

i §z=298thengosub 1630
1 $z=290then 1440

i $z=291thenm=1

i §z=294thengosub 1390
ifz=1then1440

i §z=295then 3630
forn=13110133

ifa[n)=0thena[nJ=a[uJ:a[uJ=8:gotol4
next
print aYou can't pick it up now...y

carrying too much.”
got 014406
print “0.K.you'uve got "j;a$"."
i fal(wl=’thena(w)=387
input "which cave next"3h
forn=134t10136
i falnl)=—1then1520
i fh=aln)thenu=h:goto4/0
next
i fm=1andh >=Bandh<=84andint (h)=hthen
oto0470
print"a Sorry,but wyou can't go the
om here.q’
got 01480
forn=13110133
i fa(n)=298then1680

162

1650 next

1660 print"You can't take it—it's too he

auy B”

1678 return

16880 print” The box was too heauy so I o

pened it with your keys.By the way,there
s a”

1881 print"_rubyd in it that vou can tak

e.

1699 alw)l)=308

1700 z=308

1710 gosub4840

1720 return

1760 print"agqgqg”

1778 print” There's a FRUIT MACHINE
in here.”

17880 forn=13110133

17390 italn)=288then1820

1888 next

1818 return _

18280 print”"I'il get some batter i

es with one of your 2G0LDM coins."

1838 b=200

1848 alwl=0

1850 return

1898 forn=1t018

1988 z=3+fnr(88)

1818 g9o0sub3350

1920 next

1939 print “g9aqgqq”

1340 print "Guess what i We'wve Just had
an earthquake ! !But I'm O0.K..."

1950 veturn

1990 forn=131t0133

2008 ifal(n)=293then2P40

2018 next

2020 print” It's stuck in the rocks a
nd can't be pulled out.”

2039 z=1:return

2040 print"” Let me use your magic w

163

and a sec.’:

2058
2060
2070
2080
2099
2120
2130

forz=0102008:next
print"gaAHOCUS.POCUS..,”
forz=D1t02008:next

alwl=310:2z=0

return ,
print"gggggg”:print“"

print” A superbat just flew cave an

d picked wou up.”

2140

1 fa(131)<>Bthenpr int "You dropped al

| your treasures’

2150
2160
2170
2180
21390
2208
2210
2220

forn=13110133

i faln)=Pthen2180
a(@)=a(nJ:a(n)=@=z=8:gosub3858

next

n=fnr(34)

i faln)<>Bthen2130

w=n

print” The bat Just dropped wou int

o cave suw"RBRR”

2230

2231
2233
2240
2250
2290

2300

print"1f you're all right hit a key

geta$:i{a$=""then2231

print"Q’

print g’

return

print "qaalhere was a pirate in here

{ fa(13)<>Bthenprint "HE JUST STOLE A

LL YOUR TREASURES!”

2310
2320
2330
2340
2350
2360
2370
2400
2410
2420

forn=131t0133

alw)l=0

next

Z=uw

gosub33859

print” HE'S GONE NOW?E. "

yeturn

print"S’

print"gaqgga’iprint

print"There's a magician in this ca

164

ve.He says he's lost his magic book."
2421 print"He says he'll give you a 2GOL
DEN HARPO if wou'll tell him where it is

2422 print "agalype in the cave number.
I you don't know then just twype 99.q"
24538 input"Where's his book?":]

2470 itj<Bandj>35then2520

2488 ifalj)<>285then3840

2480 a(w)=383

2500 alj)=0

2519 go0to0470

2520 z=uw

2538 gosub339509

2540 goto470

25808 print "gggggq :iprint

2590 print " The inuisible man is here lo
oking for his invisible dog.He says he'
il give

2595 print"you a $1000 reward if you can
tell him where 1t is.If you don'taa kno

W
2596 "Qooaaal hen guess.g”

2610 input"What cave is it ing'iJj$

2628 print"S”

2632 Jj=int(val(j$))

2640 ifj<Bandj>35andint (jI<>jandalj I<>9t
henreturn

2658 a(w)=385

2668 alj)=0

2670 d=1

2680 return

2720 forn=13110133

2738 ifaln)=281then2770

2740 next

2750 m=0

27680 return

2770 alwl=8

2780 i{fn=133then2830

2798 forj=ntol132

165

28090 aljl=al(j+1)

2810 al(j+1)=0

2820 next

2830 print” PUFFE}E Your magic carpet

Just diappeared.”

2840 m=B:return

2858 rem

2899 forn=13110133

2980 ifalnl=292then23930

2910 next

2920 got 03500

2938 print'gggggaa”iprint "YIKES-there's a
dragon in here.”

295@ print "Glve me your gundaaaas QUICKLE
T

2960 forn=08t02009:next

2979 print"S”

2980 forn=1to05

2980 printtab(5)"aqgqBANGEEE"

3P0 for j=BtoSBB:next:print S

3018 next

3020 printtab(fny (3811 "PUFFEI”

3938 forj=Pto3@P:inext:iprint S’

3040 print "INCREDIBLE ?7??The dragon

Just wvanished when I shot him right bet
ween the”

3041 print a_eyes’

3050 print:print” But look at this-he |
eft his little black book behind~with th

e

3951 print "EUERY BEAUTIFUL PRINCES
S IN PENNSLY-11UANIA."

3052 print "address of every beautiful pr
incess in PENNYSLYUANIAL"

3970 print'gqHit a key when you catch vyo
4y breath”

3071 geta$:ifad=""then3871

3988 alw)=306

39390 b=b+1

31928 go0t0470

166

3140 fa(131)=Pthen3210

3158 forn=131t0133

3168 ifaln)=Pthen3280

3178 ;=96

31808 ifalj)<>Bthenj=j+1:g30103188

3190 al(j)=alw)

3200 next

3218 ifa(86J)=0then3270

3228 print "Se far you've found these tre

asures in the caves:”

3238 forn=86to0139

3248 | faln)=Bihen3279

3258 z=aln l:gosubd4@4B:printas”,";

3268 next

3279 forn=13110133:aln)=0:next

32808 print "qq”

32908 print "agYou're at a cawve entranc

e that leads to:"

33908 b=b+1

33108 goto?18

3350 print "gaaYou're in cave'w'which lea

ds to:”

3360 return

3449 print "agagaqasSorry, but I tried ta
warn you."

3450 print "You fell into a deep pit ...
and _KILLEDO wyourselfllBli"

3468 end

3580 print "aagqqqiprint "

3510 print” Sorry but I tried to tell yo

u about that sound.Supper Is now being s

erved he

3511 print”in the"

3512 print "gDRAGON'S CHAMBER..."

3520 print gt fori=1t025@8:nextiprint "qq
rAND YOU ARE THE gaa SUPPERIIIQ"

3538 end

3578 print "gagggqgqg :print "

3580 print "The roof just fell in and bur
ted you alive. Too bad, I don't have a s

167

hovel ™

3581 printor I'd dig you out.”

36882 print "qSee you iater.”

36108 end

3658 print "sgqgaqggqg’

3678 print”1 don't think you. should

have done thatlThe magician who owns tha

b

3672 print "QacacaaMmagic book”

3675 print “put a spell on it.Anybody tha
t tries to pick it up turns into a gfrog

0.

36808 print

3690 print "Excuse me whiie I look for so

me flies.”

3799 end

3749 print "aggaqqqiprint "

3750 print” Now lLook what wyou did.Your f
iashlight went out ana you fell into a p
it and” -

3751 print "KILLED YOURSELF"

3755 print "TOO BAD! Especially as you we

re doing so well.”

3768 end

3800 print "gagaqgaqThe treasures are yours
to keep FWELL DONERPE”

3810 end

3840 print "eagagg. You've made the magici

an UERY angry.. Cave "3;js "doesn't have a

3858 print “magic bogk in it.”

3860 print “"To punish you,the magicia
'n casts a spell on you and now you're on
Ly"

3861 print "TWO INCHES TALLEIEE"

3870 print "Worse vet,the magician put vyo
g in a small jar.1f you ever get out
“of this”

3871 print "messgll1ILET ME KNOWRED"

3880 end

168

3950 v=3+fnr(88)

3968 ifalyl<>Bthen3950
3978 ity=wandy=zthen3958
3988 alyl=alz)

3990 al(z)=0

4988 return

4840 vestore

40950 forx=0toz—288

4068 reada$

4078 next

40980 return

4128 forx=0to2

4130 al(l134+xJ)=al(137+x+(zx3))]
4140 next

4150 return .

9918 data"” gold coins

89911 data"” some keys

9312 data” a locked box
39913 data” a magic carpet
9314 data” an old gun

9915 data” a magic wand
9916 data” a sword

9917 data” a magic book
9918 data” an old clock
9913 data” some furs

9920 data” a siiver bell
9921 data” a necklace
9322 data".a pearl °

9923 data"” a diamond

9324 data” a g9old watch
93925 data” an emerald

9926 data” some Jeuellry *
9927 data” a _1800 note -
9928 data” a black book
9929 data" some el f food
9930 data” a ruby "

9931 data™ a golden harp
9932 data"” a sword °

10009 datal,94,1,0,2,3,1,4,5,1
,2,10,11,3,12,13,3,14,15,4,186,

169

19981 datas,20,21,5,22,23,6,24,25,6,26,2
>,7,28,29,7,30,31,7,32,33,8,34,35,9,36,3
7

18911 data9,38,39,19,40,41,10,42,43,11 ,4
4,45,11,44,45,11,46,47,12,48.49.12.58,51
18823 data13,52.53,13,54,55,14,56,57,14,
58,59,15,69,61,15,62,63,16,63,64.18,34.6
a

190924 datal?,33,65,172,36,37,18,35,66,18,
38,66,19,37,67,19,48,67,28,38,68.28,42,6
3

19025 data21,41,69,21,44,69,22,43,78,22,
46,78,23,45,71.23,48,71,24,47,72,24,58.7
2
19926 data25,49,73,25,52,73,26,51,74,26,
54,78,74,27,53,75,27,56,75,28.55,76,28,5
8

19027 data’/b ,
19028 data29,57,77,29,60,77,3@,59,78,3@,
62,78,31,61,79,31,32,78,32,33,88,34,35,8
.0 '

10029 data36,37,81.38.39,81,4@,41,82,42,
43,82,44,45,83,46,47,83,48,49,84,58,51,8
.4

10939 data52,53,85,54,55,85,56,57,86,58,
58,86,6@,61,87,62,63,87,64,65.88,66,67,8
8

19931 data68,69,89,70,71,83,72,73,98,74,
75,88,76,77,91.78,79.91,80,81.92,82.83,9
2

170

APPENDICES
APPENDIX 1

Abbreviations for BASIC keywords

Commodore 64 BASIC allows you to abbreviate most of the
BASIC keywords. The usual format for these are the first letter
of the keyword and the second leter shifted. When you LIST
the program the keywords will be listed out in full.

Looks like

Command Abbreviation this on screen
ABS Iy suiFr B8 A [:D
AND I} SHIFT A E
ASC ~EHEs (v

ATN A

T A[I]

i[if
s

CHR$
CLOSE c. BRLUAN o CLD
CLR M suier I cD

[¢]

(¢}
ES
[¢]

CMD

CONT CO CD
DATA OmA D@
DEF DE DE
Dim Dml DB

—
~N
Y

END 3 SHIFT) EZ
ExP I3 SHIFT B3 € |

FOR 4 sHiFT & F
FRE 3} SHIET i F Q
GET « I3 - @ E

cosse oo AR o[V
GOTO SHIFT K¢ GD

INPUT# q sHiFt I |Z
LET W SHIFT N4

-
m r

LEFTS (3 SHIFT K3

-

LIST L

-

LOAD (W SHIFT K¢

E S

MIDS ¥ sHiFT K

NEXT

2z

©
[o]

O 00 00or0nna

o

g
=
z
[o]
Zz

OPEN

PEEK P E r
POKE P o P
PRINT ? ?
PRINT# P R P
READ A E R E

restore Re QRLIUANE S aelzl
RETURN 4 SHIFT Ry ne[]:]

RIGHTS (R SHIFT & A E]
RND R N 2] Z

172

RUN R
SAVE S A
SGN S G

SHIFT I

[:4
4
(7]

SaR s mo
STEP ST E
STOP S T
sTRS sT A
SYs s IRLUAN v

TAB T A

THEN I8 SHIFT K

USR U

SHIFT K

VAL v LI A

VERIFY v IRLIIM &

WAIT w

A

173

APPENDIX 2

Screen display codes

The following table lists all the characters which can be
displayed on the screen along with their respective number to
POKE. For example, POKE 1024,1 puts an A in the top left
corner of the screen. There are two character sets available to
you. They cannot be used together but can be switched by
hand by pressing the SHIFT and Commodore keys together, or
typing POKE 53272,21 to switch to upper case (set 1) mode
and POKE 53272,22 switches to lower case mode.

SET1 SET2 POKE M m 13
@ 0 N n 14
A a 1 0] o 15
B b 2 PP 16
o] c 3 Q q 17
D d 4 R r 18
E e 5 S s 19
F f 6 T t 20
G g 7 U u 21
H h 8 \' v 22
| i 9 woow
J] 10 X X 24
K K 11 Y y 25
L 0 12 Z z 26

175

55

56
57

28

29

30

59
60

61

Y

62

34

® o
83 886833 RRNRLEIRRRERRESS
<CODOOWUWUOI->X¥XJI3IZO0QaocC

- 8gDDDaOcoEnnON0O0sd

176

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

i~ O v NN M T W0 O

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

N B
NOBSEOEOCHBREIMODI0EME

n o N ™
%“88 99%

87
88
89
90
8s
96
97
98
99
100
101
102
103
104

>
»w - 2> 2 X > N E&

@DB@U?W@EE@@BWUGDDD@DQ

Codes 128—255 are reversed images of code 0—127.

177

APPENDIX 3

ASCIl and CHRS$ codes

This table shows you what character will be displayed if you
type PRINT CHRS$ (X). it also has the values you will obtain if
you type PRINT ASC (““X") where X is any character you can
type. The CHRS$ codes also change case (lower to upper, etc),
change colours control the printer, etc. ..

PRINTS CHRS$ PRINTS CHRS$ PRINTS CHRS$ PRINTS CHRS

0 17 “ 34 3 51

1 B 18 # 35 4 52

2 19| $ 36 5 53

3 20| % 37 6 54

4 21 & 38 7 55

J wir) 5 22 . 39 8 56
6 23 (40 9 57

7 24) 41 : 58

oisasces FUIER (98 25 . 42 ; 59
enasies (SRR (Q 9 26 + 43 < 60
10 27 , 44 = 61

" g 28 - 45 > 62

12 (ose 29 . 46 ? 63

13| B 30 / 47 @ 64
14 | M | o 4| A 65
15 32 1 49 B 66

16 i 33 2 50 c 67

179

PRINTS CHRS | PRINTS CHRS | PRINTS CHRS$ [PRINTS CHR$
D 68 97 |] 126 | GREY3 155
E 69 | [IJ 98 | (N 12z | A 156
F 70 | H 99 128 | BB 157
G 71 | 3 100 [oranGE 129 | [158
H 72 [10 130 | BB 159
T & T O = T 131 160
J 74 | [J 103 132 |] 6t
K 75 | [104 [f 133 | [162
L 76 | K] 105 | 3 134 | [] 163
M 7 | [Y 106 | fs 138 | [164
N 7 [Pl w7 w 13| [J 1es
o 79 |LJ 18| 13| B 166
P g0 | N 109 | 14 138] 167
a 8 |[/] 10l w6 139| k& 168
R 82 | [m 8 140 | AIRT:
s 83 |1 112 x4 | (B 170
T 84 113 12| [H 17
u e | [14 143 | (W 172
v 86 | (Y 115 | A 4| (B 1
w e [[] 1. 145 | Rl 174
X 88 |4 17 | BB we| L 15
Y s | DJ 118 1wz | (D 176
z) 119 e | HH 1m
[91 120 | grown 149 | F 178
£ 92 | [121 | rreptso | H] 179
] o3 | (8 122 | grevi 1m:1 | [0 180
1 9¢ | HH 123 | grev2 152 | [0 18t

180

- 95 | B1 124 |itern. 153 | [182
= 9% | [0 125 {irBu 154 | [T 183
™ 18a | [J 186 | (™ 188 | @] 190
e 165 | @] w7 | H] 189 | B e
CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

181

APPENDIX 4

Screen and colour memory maps

The following charts show what number to POKE to put a
character on the screen and colour it in any of the 16 available
colours.

SCREEN MEMORY MAP

COLUMN
0 10 20 30 39

1063
t

1024 ———o- 0
1064
1104
1144
1184
1224
1764
1304
1344
1384
1424

1464 . 10
1504
1544
1584
1624
1664
1704
1744
1784 1
1824 i

1864 T
1904 i
1944 1
1984 T

L]

20

W N

24

2023

183

COLOR MEMORY MAP

COLUMN
0 10 20 30 39

55333

55296 —e 0
55336 :

55376 i
55416
55456
55496
55536 }
55576 ; .
55616 H
55656 : o
55696] 102
55736 I
$5776 N
55816 M
55856 H
55896 :
55936 !
55976 T
56016 1
56056
56096 20
56136

56176
56216
56256 2

PR

t
56295

The values to POKE into the above colour map are as follows:

BLACK® BLUE® Light RED 10 Light BLUE 14
WHITE1 YELLOW7 GRAY 111 GRAY 3 15
RED 3 ORANGE8 GRAY 212

PURPLE4 BROWNSY Light GREEN 13

GREEN 5

184

APPENDIXb5

Deriving mathematical functions

Functions which are not standard in Commodore 64 BASIC
can be calculated as follows:

FUNCTION BASIC EQUIVALENT
SECANT SEC(X)=1/COS(X)
COSECANT CSC(X)= H/SIN(X)
COTANGENT COT(X)=1/TAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SQR(—X*X+1))
INVERSE COSINE ARCCOS(X)=—ATN(X/SQR
(—X*X +1)) +m/2
INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X*X—1))
INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X~1))
+(SGN(X)—1*7r/2
INVERSE COTANGENT ARCOT(X)=ATN(X)+ /2
HYPERBOLIC SINE SINH(X)=(EXP(X)~ EXP(— X)V2
HYPERBOLIC COSINE COSH(X)= (EXP(X)+EXP(—X))/2
HYPERBOLIC TANGENT TANH(X)=EXP(— X}/ (EXP(x)+EXP
(—X)*2+1
HYPERBOLIC SECANT SECH(X)==2/(EXP(X)+ EXP(— X))
HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)—EXP(—X))
HYPERBOLIC COTANGENT COTH(X)=EXP(— XW(EXP(X)
—EXP(—X)*2+1
INVERSE HYPERBOLIC SINE ARCSINH(X)=LOG(X+SQR(X*X+1))
INVERSE HYPERBOLIC COSINE ARCCOSH(X)=LOG(X+SQR(X*X—1))
INVERSE HYPERBOLIC TANGENT ARCTANH(X)=LOG((1 + X)/(1 —~ X))/2
INVERSE HYPERBOLIC SECANT ARCSECH(X)=LOG((SQR
(—=X*X+ N+ 1/X)
INVERSE HYPERBOLIC COSECANT ARCCSCH(X)=LOG{(SGN(X)*SQR
(X*X+1/x)
INVERSE HYPERBOLIC COTAN- ARCCOTH(X)=LOG((X+ 1)/ (x—1))/2
GENT

185

APPENDIX 6

Pinouts for Input/Output devices
The following charts show what can be connected to your

Commodore 64 and where.
1) Game 1/O

2) Cartridge Slot
3) Audio/Video

Control Port 1

4) Serial /O (Disk/Printer)
5) Modulator Output

6) Cassette

7) User Port

Pin Type Note
JOYAQ
JOYAL
JOYA2
JOYA3
POT AY

BUTTON A/LP

+5Vv
GND
POT AX

MAX. 50mA

OV O®NO>OEWN

Control Port 2

-
™
|

@0
~ O
o
© O

Pin Type Note
JOYBO
.JOYBI
JOYB2
Joye3
POT BY
BUTTON B
+5Vv
GND
POT BX

MAX. 50mA

VWO NOLAMEGLN

187

Cartridge Expansion Slot

Pin Type Pin Type
22 GND 11 ROML
2 cDo 10 o2
20 c; ® EXROM
19 cD2 & GAME
18 cos 7 1/01
7 CD4 & Dot Clock
16 cos 5 CRIW
15 co6 4 IRQ
14 co7 3 +5v
13 DMA 2 +5v
12 BA 1 GND
Pin Type Pin Type
z GND M CA10
Y CAO t CAlI
X CAl K CA12
w CA2 J CAI3
v CA3 H CAl4
U CA4 F CAl5
T CAS 3 502
s CA6 D “NME
R CA7 C RESET
P CA8 B ROMH
N CA9 A GND

12345878 010111213141510171819202122

ABCDEFHJKLMNPRSTUVWXY2Z

Audio/Video
Pin Type Note
1 LUMINANCE
2 GND
3 AUDIO OUT
4 VIDEO OUT
5 AUDIO IN

188

Serial 1/O

Pin Type
] SERIAL SRQIN
2 GND
3 SERIAL ATN IN/OUT
4 SERIAL CLK IN/OUT
5 SERIAL DATA IN/OUT
6 RESET
Cassette
Pin Type
A-1 GND
B-2 +5V
c-3 CASSETTE MOTOR
D-4 CASSETTE READ
E-5 CASSETTE WRITE
F-6 CASSETTE SENSE
User /O
Pin Type Note
1 GND
2 +5V MAX. 100 mA
3 RESET
4 CNT1
5 sP1
6 CNT2
7 sP2
8 ‘PC2
9 SER. ATN IN
10 9 VAC MAX. 100 mA
N 9 VAC MAX. 100 mA
12 GND

189

12 3 456

ABCDETF

Pin Type Note
A GND
B FLAG2
Cc PBO
D PB1
E PB2
F PB3
H PB4
J PBS
K PB6
L PB7
M PA2
N GND

1 2 3 4567 8 9 101112
—A R RN EENRRBREN

W W W W W
ABCDEFHUJIKLMN

190

APPENDIX 7

Error message

This appendix contains a list of all the error messages generated
by the Commodore 64 and the reasons that they occur.

BAD DATA String data was received from an open file, but the
program was expecting numeric data.

BAD SUBSCRIPT The program was trying to reference an
element of an array whose number is outside of the range
specified in the DIM statement.

CAN'T CONTINUE The CONT command will not work, either
because the program was never RUN, there has been an error
or a line has been edited.

DEVICE NOT PRESENT The required 1/0 device was not
available for an OPEN, CLOSE, CMD, PRINT #, INPUT # or
GET #.

DIVISION BY ZERO Division by zero is a mathematical oddity
and not allowed.

EXTRA IGNORED Too many items of data were typed in
response to an INPUT statement. Only the first few items were
accepted.

FILE NOT FOUND If you were looking for a file on tape and an
‘END-OF-TAPE’ marker was found. If you were looking on
disc, and no file with that name exists.

FILENOT OPEN The file specifiedina CLOSE, CMD, PRINT #,
INPUT # or GET #, must first be OPENed.

FILE OPEN An attempt was made to open a file using the
number of an already open file.

191

FORMULA TOO COMPLEX The string expression being
evaluated should be split into at least two parts for the system
to work with or a formula has too many parenthesises.

ILLEGAL DIRECT The INPUT statement can only be used
within a program, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a
function or statement is out of the allowable range.

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR This is caused by either incorrectly
nesting loops or having a variable name in a NEXT statement
which doesn’t correspond with one in a FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data
from a file which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a
file which was specified as input only.

OUT OF DATA A READ statement was executed but there is
no data left unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for
program or variables. This may also occur when too many FOR
loops have been nested, or when there are too many GOSUBs
in effect.

OVERFLOW The result of a computation is larger than the
largest number allowed, which is 1.70141884E + 38.

REDIM’D ARRAY An array may only be DIMensioned once. If
an array variable is used before that array is DIM'd, an
automatic DIM operation is performed on that array setting the
number of elements to ten, and any subsequent DIMs will
cause this error.

REDO FROM START Character data was typed in during an
INPUT statement when numeric data was expected. Just re-
type the entry so that itis correct, and the program will continue
by itself.

192

RETURN WITHOUT GOSUB A RETURN statement was
encountered, and no GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.

?SYNTAX ERROR A statement is unrecognizable by the
Commodore 64. A missing or extra parenthesis, mlsspelled
keywords, etc.

TYPE MISMATCH This error occurs when a number is used in
place of a string, or vice versa.

UNDEF'D FUNCTION A user defined function was referenced,
but it has never been defined using the DEF FN statement.

UNDEF'D STATEMENT An attempt was made to GOTO or
GOSUB or RUN a line number which doesn’t exist.

VERIFY The program on tape or disc does not match the
program currently in memory.

193

APPENDIX 8

Music note values

The following table contains a list of all the notes, their sharps
and octaves and the respective numbers to POKE in order to
obtain the notes. (POKE into the low and high frequency
registers of the sound chip.)

Note Note—Octave Hi Freq Llow Freq
0o Cc-0 1 18
1 C#-0 1 35
2 D-0 1 52
3 D#-0 1 70
4 E-0 1 90
5 F-0 1 1o
6 F#-0 1 132
7 G-0 1 155
8 G#-0 1 179
9 A-0) 205
10 A#-0 ! -233
n B-0 2 6
12 C-1 2 37
13 C#-1 2 69
4 D-1 2 104
15 D#-1 2 140
16 E~-1 2 179
17 F—1 2 220
18 F#-1 3 8
19 G-1 3 54
20 G#-1 3 103
21 A-1 3 155
22 A#-1 3 210
23 B-1 4 12
24 Cc-2 4 73
25 C#-2 4 139
26 D-2 4 208

195

27
28
29
30
31

32
33
34
35
36
37
38
39
40
141

42
43

44

45

46

47

48

49

50
51

52

53

54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

D#-2

OO mM® NN OO0 O

196

25
103
185

16
108
206

53
163

23
147

21
159

60
205
114

32

216
156
107

70

47
37
42
63
100
154
227

63
177

56
214
141

94

75

85
126
200

52
198
127

97
m
172
126
188

72 C-6 68 149

73 C#-6 72 169
74 D-6 76 252
75 D#-6 81 161
76 E-6 86 105
77 F6 91 140
78 F#-6 96 254
79 G-6 102 194
80 G#-6 108 223
81 A-6 115 88
82 A# -6 122 52
83 B-6 129 120
84 Cc-7 137 43
85 C#-7 145 a3
86 D-7 153 247
87 D#-7 163 31
88 E-7 172 210
89 F-7 183 25
90 F#-7 193 252
1 G-7 205 133
92 G#-7 217 189
93 A-7 230 176
94 A#-7 244 103
MEMORY MAP

HEX DECIMAL DESCRIPTION
0000 0 Chip directional register.
0001 1 Chip 1/0: memory paging and

tape control.

00030004 3-4 Float-fixed vector.

0005—0006 5-6 Fixed float vector.

0007 7 Search character.

0008 8 Scan quotes flag.

0009 9 TAB column save (temporary).

OD0A 10 0=LOAD, 1 = VERIFY.

0008 1 Input buffer pointer / #
subscript.

000C 12 Default DIM flag.

000D 13 Type : FF = string, 00 =
numeric.

197

OORE
000F

0010
0011

0012

0013
0014—0015
0016

0017 -0018
00190021

0022 - 0025
0026 —002A
002B—-002C

002D —002E
002F—0030
0031 —0032
0033 -0034

0035 —0036
0037 —0038

0039 —-0A3A
003B—-003C
003D —003E

003 F—0040
0041 —0042
0043 — 0044
(0045 — 0046
0047 —0048
0049 -004A

14
15

16
17

18

19
20-21
22

23-24
25-33
34-37
38-42
43-44

45-46
47-48
49-50
51-52

53-54
55—-56

5758
59-60
61-62

63-64
65—66
67-68
69-70
71-72
73-74

Type : 80 = integer , 00 =
floating point.

DATA scan/LIST
quote/memory flag.
Subscript/FNx flag.

® = INPUT, 40 = GET, 98 =
READ (Hex).

ATN sign/comparison
evaluation flag.

Current 1/0 prompt flag.
Integer value.

Pointer : temporary string
stack.

Last temporary string vector.
Stack for temporary strings.
Utility pointer area.

Product area for multiplication.
Pointer. . .start of BASIC in
low/ high byte order.
Pointer. . .start of variables.
Pointer. . .start of arrays.
Pointer. . .end of arrays.
Pointer. . .string storage
{moving down).

Utility string pointer.

Pointer. . .limit of memory (top
of the memory for BASIC).
Current BASIC line number.
Previous BASIC line number.
Pointer. . .BASIC statement
for CONT.

Current DATA line number.
Current DATA address.
INPUT vector.

Current variable name.
Current variable address.
Variable pointer for FOR
NEXT.

198

004B—-004C
004D
OD4E—0053

0054 — 0056
0057 — 0060

0061
0062 — 0065
0066
0067
0068

0069 —POGE

006 F

0070
0071 -0072
0073 —-008A
007 A—-007B
008B —008F
0090
0091
0092

0093
0094

75-76
77
78-83

84-86
87-96

97
98-1M
102
103
104

105—-110

1

112
113-114
115-138
122-123
139-143
144
145
146

147
148

Y save; op-save; BASIC
pointer save.

Comparison symbol
accumulator.
Miscellaneous work area,
pointers, etc.

Jump vector for functions.
Miscellaneous numeric work
area.

Accumulator # 1 :exponent.
Accumulator # 1 :mantissa.
Accumulator # 1 :sign.
Series evaluation constant
pointer.

Accumulator # 1 :hi-order
(overflow).

Accumulator # 2 exponent,
mantissa, sign (as 97 —-102
dec).

Sign comparison,
accumulator # 1 versus
accumulator # 2.
Accumulator # 1 lo-order
(rounding).

Cassette buffer length/series
pointer.

CHRGET subroutine; get
BASIC character.

BASIC pointer (within
CHRGET subroutine).

RND function seed value.
Status word ST.

Keyswitch PIA :STOP and
RVS flags.

Timing constant for tape.
Load = 0, Verify = 1.
Serial output :deferred
character flag.

199

0095 149
0096 150
0097 151
0098 152
0099 153
0D9A 154
0098 155
009C 156
009D 157
OO9E 158
OO9F 159
0DAQ—PDA2 160-162
0OA3 163
00A4 164
ODAS 165
0DA6 166
0OA7 167
0DA8 168
00A9 169
0OAA 170
00AB 171
0BAC—0OPAD 172-173
OOAE—OOAF 174-175
00BO—00B1 176-177
00B2-00B3 178-179

Serial deferred character.
Tape 'End of Tape’ marker
received.

Register save.

How many files open.

Input device; normally zero.
Output CMD device; normally
three.

Tape character parity.
Byte-received flag.

Direct = $ 80/ RUN =0.
Output control.

To pass one error
log/character buffer.

To pass two error log
corrected.

Jiffy clock (high, med, and
low.) Used to set and run TI
and TI$:.

Serial bit count.

Cycle count.

Countdown, tape write bit
count.

Tape buffer pointer.

Tape write leader count/Rd
pass/inbit.

Tape write new byte/Rd
error/inbit count.

Tape start bit/Rd bit/st bit.
Tape scan; cnt; Id; end byte
assy.

Write lead length/read
checksum/parity.

Pointer: tape buffer, scrolling.
Tape ends adds/‘End of
program’ marker.

Tape timing constants.
Pointer: start of tape buffer.

200

00B4
00B5
o0B6
00B7

00B8
00B9
00BA
o0BB—-00BC
®BD

0ABE

00BF
00Co
00C1-00C2
0AC3 —-00C4
00C5

00C6

00C7
00C8
0AC9—0OCA

00CB
oaCC
0aCD
POCE
POCF
o0DO

®0D1—-00D2
o0D3

180
181
182
183

184
185
186
187-188
189

190

191
192
193-194
195-196
197

198

199
200
201 -202

203
204
205
206
207
208

209-210
211

1 = tape timer enabled : bit
count.

Tape ‘End of Tape’'/RS232
next bit to send.

Read character error/outbyte
buffer.

Number of characters in file
name.

Current logical file.

Current secondary address.
Current device.

Pointer to file name.

Write shift word/read input
character.

Number of blocks remaining to
write/read.

Serial word buffer.

Tape motor interlock.

I/0 start address.

KERNAL setup pointer.
Current key pressed (64 if no
key).

Number of characters in
keyboard buffer.

Screen reverse flag.

End of line for input pointer.
Input cursor log (row,
column).

Same as 197.

@ = flash cursor.

Cursor timing countdown.
Character under cursor.
Cursor in blink phase.

Input from screen/from
keyboard.

Pointer to screen line.
Position of cursor on above
line.

201

00D4

o0D5
P0D6
ooD7
ooD8

00D9 —0OF2
0OF3 —00F4
0DF5 —0OF6
0DF7 —0OF8
OF9—0OFA
0DFB—OOFE
0OFF—010A
0100-013E
0100-01FF

0200—0258

0259 —0262
0263-026C
026D-0276
02770280
02810282
02830284
0285

0286

0287
0288
0289

028A
0288

028C
028D

212 0= direct cursor, else
programmed.

213 Current screen line length.

214 Row where cursor lives.

215 Last INKEY /checksum/buffer.

216 Number of INSERTs

outstanding.
217-242 Screen line link table.
243-244 Screen colour pointer.
245-246 Keyboard pointer.
247-248 RS232 Rev pointer.
249-250 RS232 Tx pointer.
251256 Free zero page memory.
256 —-266 Floating to ASCII work area.
256-318 Tape error log.
256511 Processor stack area {the

stack).
512-600 BASIC input buffer.
601-610 Logical file table.
611-620 Device number table.
621-630 Secondary address table.
631-640 Keyboard buffer.
641-642 Start of BASIC memory.
643-644 Top of BASIC memory.

645 Serial bus timeout flag.

646 Current colour code
(characters).

647 Colour under cursor.

648 Screen memory page.

649 Maximum size of keyboard
buffer.

650 Keyboard repeat (128 = repeat
all keys, 127 = none).

651 Repeat speed counter.

652 Repeat delay counter.

653 Keyboard shift/CTRL flag
(PEEKed to find if SHIFT, etc,
pressed.

202

028E
028F—-0290
0291

0292

0293

0294

0295 —-0296
0297

0298

0299 -029A
029B

029C

029D

029E
029F—-02A0
02A1

02A2

02A3

02A4

02A5
02CO0—02FE
03000301
0302 —0303
0304 — 0305
0306 —0307
0308 -0309
030A—-030B
030C

030D
030E

030F
0310—-0311

0314-0315

654
655—-656
657
658
659
660
661—-662
663
664
665—-666
667
668
669
670
671-672
673
674
675
676
677
704766
768-769
770-771
772-773
774-775
776777
778-779
780

781
782

783
784-785

788-789

Last shift pattern.

Keyboard table setup pointer.
Keyboar shift mode.

0 = scroll enable.

RS232 control register.
RS232 command register.
Bit timing.

RS232 status.

Number of bits to send.
RS232 speed/code.

RS232 receive pointer.
RS232 input pointer.

RS232 transmit pointer.
RS232 output pointer.

IRQ save during tape 1/0.
CIA 2 (NMI) interrupt control.
CIA 1 timer A control log.
CIA 1 interrupt log.

CIA 1 timer A enabled flag.
Screen row marker.

Block 11 for sprite data.

Error message link.

BASIC warm start link.
Crunch BASIC tokens link.
PRINT tokens link.

Start new BASIC code link.
Get arithmetic element link.
System temporary storage of
accumulator.

System temporary storage of
the X register.

System temporary storage of
the Y register.

System status register storage.
USR function jump (normal
B248).

Hardware interrupt vector
(IRQ) (normal EA31).

203

0316-0317
0318-0319

031A-031B
031C-031D
031E-031F

0320-0321
0322-0323

0324-0325
03260327
03280329

032A—-032B
032C—-032D

032E—-032F

03300331
0332-0333
033C—-@3FB
0340—037E
0380-03BE
03C0—03FE
0400—07E7
07F8—7FFF
0800—9FFF
AQ0D— BFFF
ADO)— BFFF
8000—9FFF
COP0— CFFF

Dood— DO2E
Dooo
D0a1

790-791
792-793

794-795
796-797
798-799

800—801
802-803

804 805
806 —807
808 —-809

810-811
812-813

814-815

816-817
818-819
828-1019
832-894
896—-958
960—-1022
1024 -2023
20402047

Break interrupt vector (normal
FE66).

NMI interrupt vector (normal
FE47).

OPEN vector {(normal F34A).
CLOSE vector (normal F291).
Set INPUT vector (normal
F20QE).

Set OUTPUT vector (normal
F250).

Restore 1/0 vector (normal
F333).

INPUT vector (normal F157).
Output vector (normal F1CA).
Test STOP vector {(normal
F6ED).

GET vector (normal F13E).
Abort I/0 vector (normal
F32F).

Warm start vector (normal
FE66).

LOAD link (normal F4Ab).
SAVE link (normal F5ED).
Cassette buffer.

Block 13 for sprite data.
Block 14 for sprite data.
Block 15 for sprite data.
Screen memory.

Pointers for sprite data.

2048 —-40959 BASIC RAM memory.
40960—-49151 BASIC ROM.

40960—49151 Paged RAM (behind ROM).
32768 —40959 Alternative ROM plug in area.
49152 -53247 RAM (useable in machine code

only).

53248 —53294 Video Chip.

53248
53249

Sprite ® X component.
Sprite @ Y component.

204

D002
D0g3
Doo4
D005
Doo6
Doa7
Dog8

DOOA
DooB
DoAC
DOOD
DOOE
DOOF
D010

Do11

D012
D013
D014
D015
D016

D017
D018

DO19
DO1A

DO1B
DO1C
DO1D
DO1E
DO1F
D020
D021

Do22

53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264

53265

53266
53267
53268
53269
53270

53271
53272

53273
53274

53275
53276
53277
53278
53279
53280
53281
53282

Sprite 1 X component.
Sprite 1 Y component.
Sprite 2 X component.
Sprite 2 Y component.
Sprite 3 X component.
Sprite 3 Y component.
Sprite 4 X component.
Sprite 4 Y component.
Sprite 5 X component.
Sprite 5 Y component.
Sprite 6 X component.
Sprite 6 Y component.
Sprite 7 X component.
Sprite 7 Y component.

MSB of X co-ordinate (for last
part of screen).

Bit mapped mode and vertical
pixel scrolling.

Raster.

Light pen X component.
Light pen Y component.
Sprite enable (ON/OFF).
Set multicolour character
mode. x scroll (pixel).

Sprite expand Y.

Screen character memory
(change character set pointer).
Interrupt requests.

Interrupt request MASKS
(disable sprite interrupts).
Background/sprite priority.
Multicolour sprite mode.
Sprite expand Y.
Sprite/sprite collision.
Sprite/background collision.
Border colour.

Screen colour.

Mutlticolour 1 for characters

205

D023

D024
D025

D026
D027
D028
D029
DO2A
D@a2B
Do2C
DA2D
DO2E
D400—-D41C
D400
D401
D402
D403
D404
D405
D406
D407

D408
D409

53283

53284
53285

53286
53287
53288
53289
53290
53291
53292
53293
53294

(bit pair 01).

Multicolour 2 for characters
(bit pair 10).

Background 3.

Sprite {all) multicolour 1 (bit
pair 01).

Sprite (all) multicolour 2 (bit
pair 11).

Sprite @ foreground colour (in
multicolour it is bit pair 10).
Sprite 1 foreground colour (in
multicolour it is bit pair 10).
Sprite 2 foreground colour (in
multicolour it is bit pair 10).
Sprite 3 foreground colour (in
multicolour it is bit pair 10).
Sprite 4 foreground colour (in
multicolour it is bit pair 10).
Sprite 5 foreground colour {in
multicolour it is bit pair 10).
Sprite 6 foreground colour (in
multicolour it is bit pair 10).
Sprite 7 foreground colour (in
multicolour it is bit pair 10).

5427254300 Sound chip (SID).

54272
54273
54274

54275

54276
54277
54278
54279
54280
54281

Voice 1 low frequency.
Voice 1 high frequency.
Low pulse (pulse waveform
only) voice 1.

High pulse (pulse waveform
only) voice 1.

Waveform voice 1.
Attack/decay voice 1.
Sustain/release voice 1.
Low frequency voice 2.
High frequency voice 2.
Low pulse (pulse waveform
only) voice 2.

206

D40A

D40B
D40C
D40D
D40E
D40OF
D410

D411
D412
D413
D414
D415
D416

D417

D418

D809—DBFF
D419

D41A

D41B

D41C

54282

54283
54284
54285
54286
54287
54288

54289
54290
54291
54292
54293
54294

54295

54296

High pulse (pulse waveform
only) voice 2.

Waveform voice 2.
Attack/decay voice 2.
Sustain/release voice 2.
Low frequency voice 3.
High frequency voice 3.
Low pulse (pulse waveform
only) voice 3.

High pulse (pulse waveform
only) voice 3.

Waveform voice 3.
Attack/decay voice 3.
Sustain/release voice 3.
Low cutoff frequency (0—7).
High cutoff frequency
(0—255).

Resonance {(bits 4—7).
Filter voice 3 (turn off) bit 2.
Filter voice 2 (bit 1).

Filter voice 1 (bit 0).

High pass filter (bit 6).

Low pass filter (bit 4).

Band pass filter (bit 5).
Master volume control (bits
0—-3 (0—15)).

55296 —56295 Colour (screen) memory.

54297

54298

54299
54300

Read paddle X)

)
Read paddleY)
)} READ
)

ONLY...

Noise (random))
)
Envelope 3)

DC00—DCOF 56320—56335 Interface chip 1{IRQ)(CIA

6526).
(See block diagrams.)

207

DD@0—DDOF 56576—56591 Interface chip 2(NMI)(CIA
6526).
(See block diagrams.)
EQ0D—FFFF 57344—-65535 ROM: operating system
(KERNAL).
EQ0—FFFF 57344—-65535 RAM(paged in).
FF81—-FFF5 65409-65525 Jump table {to KERNAL
subroutines).

KERNAL subroutine (User callable)

ACPTR FFAS5 65445 Input byte from serial port.
CHKIN FFC6 65478 Open channel for input.
CHKOUT FFC9 65481 Open channel for output.
CHRIN FFCF 65487 Input character from channel.
CHROUT FFD2 65490 Output character to channel.
(LDA with ASCII code then
JSR FFD2 to print a character
on the screen in machine
code.)
CIouT FF18 65448 Output byte to serial channel.
CLALL FFE7 65511 Close all channels or files.
CLOSE FFC3 65475 Close specified logical file.
CLRCHN FFCC 65484 Close all input and output

channels.

GETIN FFE4 65512 Get character from keyboard
buffer.

IOBASE FFF3 65523 Returns base address of 1/0
devices.

LISTEN FFB1 65457 Command devices on the
serial bus to listen.

LOAD FFD5 65493 Load RAM from a device.

MEMBOT FF9C 65436 Read/set the bottom of
memory.

MEMTOP FF89 65433 Read/set the top of memory.

OPEN FFCO 65472 Open a logical file.

PLOT FFFO 65520 Read/set X,Y cursor position

Load X with X co-ordinate

208

{(1—40) and Y with Y co-
ordinate then JSR FFF@ (or
65520 in BASIC) by POKE!ing
into781 and 782 (Xand Y
register storage).

RDTIM FFDE 65502 Read real time clock.

READST FFB7 65463 Read status word.

RESTOR FFBA 65415 Restore default /0 vectors.

SAVE FFD8 65496 Save RAM to a device.

SCNKEY FF9F 65439 Scan keyboard.

SCREEN FFED 65517 Returns X,Y organisation of
screen.

SECOND FF93 65427 Send secondary address after
LISTEN.

SETLFS FFBA 65466 Setlogical first and second
addresses.

SETMSG FF90 65424 Control KERNAL messages.

SETNAM FFBD 65469 Set file name.

SETTIM FFDB 65499 Setreal time clock.

SETTMO FFA2 65442 Settimeout on serial bus.

STOP FFE1 65505 Scan stop key.

TALK FFB4 65460 Command serial bus device to
TALK.

TKSA FF96 65430 Second secondary address
after TALK.

UDTIM FFEA 65514 Increment real time clock.

UNLSN FFAB 65454 Command serial bus to
UNLISTEN.

UNTALK FFAB 65451 Command serial bus to
UNTALK.

VECTOR FF84 65412 Read/set vectored /0.

PROCERROR SOUND, CIA 1 AND CIA 2 BLOCK
DIAGRAMS

Following are charts which contain the memory addresses and
functions of the sound chip and the two CAls.

209

vi

D400
D401

D402
D403

SID (6581) Commodore 64
v2 v3 Vi v2 V3
D407 D40E Frequenc 54272 54279 54286
D408 D40F quency 54273 54280 54287
Pulse Width L
ps09 pare | T 54274 54281 54288
D40A D411 ! | | 54275 54282 54289
0 00O :
D40B D412 Voice Type Key | 54276 54283 54290
NSE PUl.ISAW‘TRll) . €y
Auack Ti D Ti
D40C D413 S s 8 see { Srme) 24 see 54277 54284 54291
L 1 L L 1 i
- Release Ti
D40D D414 Sustain Level 6 me . 24 sec 54278 54285 51292
1 1 1 l 1 1 L
Voices
(Write Only)
0O0O0O0OO0 .
D415 | ... 3] 54293
53294
D416 Filter Frequency 9
Filter Voi
D417 Resonance | EXT V3 Ove v | 54295
1 1 L 1 1
, Passband Master
p418 | ¥3 Hi Bd Lo Volume 54296
Of‘ | '} 1 l I L 1
Filter & Volume
(Write Only)
D419 Paddle X 54297
D41A Paddle Y 54298
D41B Noise 3 (Random) 54299
D4IC Envelope 3 54300
Sense
(Read Only)

Special voice features (TEST, RING MOD, SYNC)

are omitted from the above diagram.

210

Processor 1/0 Port (6510)

Commodore 64

$0000 IN | IN Out \ IN ! Out Out i Out y Out | DDR
$0001 Tape Tape Tape |D-ROM EF.RAMAB.RAM| PR

| Motor | Sense | Write | Switch i Switch \ Switch

ClA 1 (IRQ) (6526) Commodore 64

Paddle SEL [Joystick 0
spcoo } A___B R_L__D__U__lpra
Keyboard Row Select (Inverted)
L Joystick 1
SDCO1 r == ===~~~ —-=-4PRB
Keyboard Column Read
$DCO02 $FF - Al Outpul DDRA
$DCO3 $00 — All Input DDRB
$DCO04 . TAL
$DCO5 | Timer A | TAH
$DCO6
—— Timer B —{ TBL
$DCO7 TBH
~ ”~
; Tape Timer Interr.| ,..
SDCOD | 1 Input \ B A ICR
Time N

SDCOE One Out PR Tl!’“el’ CRA

i 1 { | Shot | Modol Out lA Start

Time :

$DCOF One Out Timer| (-

L || Shot Mode, PBT Bsan| “R®

211

0

56320

56321

56322
56323

56324
56325
56326
56327

56333

56334

56335

$DDOo | Serial | Clock ' Serial 'Clock ' ATN 'RS-232
In , In Oul Out \ Out Ou! L L
DSR ICTS DCD” RP DTR RTS [RS-232
$DDOI Out ' Out In
Parallet User Port
IN IN OQut Out OQOut Out Out Out
$DDO2 $IF
$DDO3 $06 For RS-232
:ggg; Timer A —
:gggg Timer B —
~ /
$DDOD RS-ZS# Timer Timer
In B 1 A
Timer
SDDOE 1A Start
DDOF Timer
$ |B Start

CIA 2 (NM]D) (6526)

Commodore 64

*Connected but not used by system.

212

PRA

PRB

DDRA

DDRB

TAL
TAH

TBL
TBH

ICR

CRA

CRB

56576

56577

56578

56579

56580
56581

56582
56583

56589

56590

56591

MASTERING THE
COMMODORE 64
INDEX

Abbreviations to BASIC commands 159
ABS function 28

Accumulator 95

ADC 113-114

Addition 113-114
Addressing modes 97-98
A/D/S/R 51-52

AND 30,110-111

Animation (Basic) 45—49
Animation (MC)

Appendices 159-191
Arithmetic operators 9

Arrays 25

ASC function 18

ASCII character codes 163—164
ASL 118

Assembler 93-94

ATN 27

Attack (See ADSR) 51

Bank selection 56/b
BASIC abbreviations
BASIC commands 9-—
BASIC commands codes
BCC 108

BCS 108

213

BEQ 108

BIT 113

Bit map mode 78

Bit map mode (multicolour) 80/b
BMI 109

BNE 108

BPL 109

Branches and testing 108—-109
BRK 109

BvC 108

BvVS 109

Cassette 83—84

Cassette data files 83—-84

Character (screen PEEKs and POKEs) 160—162
CHRS$ function 18,43

CLC 1156

CLD 115

CLI 116

CLOSE 33

CLR statement 16

CLV 116

CMD statement 33

CMP 106-107

Collision detection

Colour memory charts 48, 165
Colour registers 41—44

Colour screen, border colour 41-—42
Commodore 64 memory map
Converting Basic to machine code 120121
CONT command '
CTRLkey 13,42

COS function 27

cPX 107

CcPY 107

CRSR keys 13

Datasettet™ recorder (see cassette) 83—84
DATA statement 25

214

DEC 106

Decay 51

DEF function 26

DEX 106

DEY 106

DISK DRIVE 89-90

DIM statement 25

Double height characters 58—-60

Editor screen 12-13

END statement 20

EOR 112

Error messages 171-173
Expansion ports 168—-170

EXP function 28

Extended colour mode 63/b—63/c

Files cassette 83-84

Filtering (MUSIC) 54

Fire button (joystick} 84-—86

FOR statement 22

FRE (@) statement 17

FN function 26

Function keys (Mc program) 145-147

Game controls and ports

GET statement 16

GET # statement 35

GOSUB statement 20

GOTO statement 20

Graphics modes 55, 61, 63b, 64, 74, 78, 80/b
Graphics mode, bit mapped 78-80/b

Hexadecimal notation 96-—-97
High resolution graphics 78—-80/b

IF THEN statement 21
INC 105
Indexing 98

215

INPUT statement 15
INPUT $ statement 34
INT function 24

INX 105

INY 106

1/0 guide 168-170

1/0 pinouts 168-170
/O ports 168-170

I/0 registers 190-191
I/O statements see OPEN, CLOSE, INPUT #, PRINT #,
GET #

IRQ interrupts 139-147

Joysticks 84-—-86
JMP 104
JSR 105

KERNAL routines see memory map
Keywords BASIC 159

LDA 102

LDX 103/b

LDY 103/b
LEFT$ 18

LEN statement 19
LET 11

LIST 12

LOAD 14

LOAD from disk 89-90
LOG 28

LSR 119

Machine language 93-148

Mathematical formulae 27-28

Memory maps 176—191

MID$ function 18

MUSIC and SOUND SYNTHESIS 50-54
Multicolour characters 61—63b
Multicolour sprites 74—79

216

NEW command 15
NEXT 22

NOP 104

NOT 31

Numeric variables 8-9

ON GOTO 35-36

ON GOSuB 35-36

OPEN 31

Operating system see kernal
Operators logical see AND, OR, EOR
ORA 111

PEEK 38
Peripherals

PHA 109

PHP 109

Pinouts

PLA 109

PLP 110

POKE 37-38

Ports 168-170
POS 29

PRINT 10

PRINT# 34

Printer 86—88
Program counter 95
Program mode 11
Programmable characters 55-63

Random numbers 23

READ statement 25

Release (see A/D/S/R) b2
Register map CIAs 191
Register map PRocessor 191
Register map SID 190
READ 25

REM 19

RESTORE key

217

Restore command 25
RETURN statement 20
RND 24

RIGHT$ FUNction 18
ROL 117-118
ROMROM

ROR 116-117

RTI 116

RTS 105

RUN command 11-12
RUN/STOP KEY 12

SAVE command 13

SBC 114-1156

SCREEN 16-17

Screen memory 48, 165
SEC 115

SED 115

SEl 115

Serial port 168-170

SGN function 28

SID chip see MUSIC & Sound Synthesis
SID memory map 190

SIN function 27

SPC function 29

Sprites 64-77

Sprites Multicolour 74-77
SQR

STA 102-103

Stack pointer 96

Sprite collisions 72-74
Sprite display priorities 72
Sprite expansion 71

Sprite positioning 68-70
STATUS function 35
STATUS register 95

STEP 22

STOP command 21

STOP key (see RUN/STOP key)

218

String arrays see arrays
STRS function 19

STX 103

STY 103-104

Subroutines see GOSUB/JSR
Subtraction see SBC
Sustain (see A/D/S/R) 52
SYS command 39-40
System architecture 139-147

TAB function 29
TAN funciton 27
TAX 104

TAY 104

THEN statement (see IF/THEN)
Tl 24

TI$ 24

TO statement
TSX 110

TXA 104

XS 110

TYA 104

User port see ports
USR function 39-40

VAL function 19

VERIFY command 14

Voices see MUSIC and sound synthesis
Volume control 50

WAIT statement 38-39
Waveforem 52

X index register 95
Y index register 95

Zero page 98
219

NOTES

