Commodore 64
Assembler
Workshop

ruce Smith

Commodore 64
Assembler
Workshop

Commodore 64
Assembler
Workshop

Bruce Smith

SHIVA PUBLISHING LIMITED
64 Welsh Row, Nantwich, Cheshire CWS5 SES, England

© Bruce Smith, 1984
ISBN 1 85014 004 9

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the Publishers.

This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be resold in the UK below the net price given by
the Publishers in their current price list.

An interface was used to produce this book from a microcomputer
disc, which ensures direct reproduction of error-free program
listings.

Typeset and printed by Devon Print Group, Exeter

Contents

Introduction

1 Opening the Tool Box
Writing Machine Code
Debugging

2 Commodore Command
CHRGET
The Wedge Operating System
The New Commands
Using the WOS

3 ASCII to Binary Conversions
ASCII Hex to Binary Conversion
Four ASCII Digits to Hex
Convert Decimal ASCII String to Binary

4 Binary to Hex ASCII
Print Accumulator
Print a Hexadecimal Address
Binary Signed Number to Signed ASCII Decimal
String
5 String Manipulation
Comparing Strings
Strings Unite
Copy Cat
Insertion

6 Printing Print!
7 A Bubble of Sorts

Software Stack

Binary Ins and Outs
Come In

ONdd NN W =

15

20
20
26
30

38
38
41

42

53
53
58
64
71

78
84

91
98
100

9 Move, Fill and Dump
Move it!
Fill
A Memory Dump

10 Hi-res Graphics

A BASIC Move

Selecting Hi-res

A Clear View
Appendix 1: 6510 Complete Instruction Set
Appendix 2: 6510 Opcodes
Appendix 3: Commodore 64 Memory Map
Appendix 4: Branch Calculators

Index

104
104
111
113

120
121
123
124
129
145
149
150

151

Introduction

The Commodore 64 Assembler Workshop is aimed at those of you
who have been delving into the delights of programming at
machine code level. It is a natural progression from Commodore 64
Assembly Language. but will be invaluable even if you learned
assembler and machine code using any of the other relevant books
available. It provides a bench full of useful assembly language
routines and utilities programs and examines the techniques
involved.

Extensive use of vectored addresses is made throughout the
Commodore’s operation, allowing modifications to be made to the
manner in which the micro operates. Chapter 2 demonstrates how
the CHRGET subroutine can be used to allow new RAM-based
commands to be added to the already extensive facilities provided
by the machine. A short ‘wedge’ interpreter is provided and the
techniques for adding your own commands examined. and to get
you going. three commands come supplied with the wedge inter-
preter: @ CLS, @UPand @LOW.

Conversion between ASCII based numerical character strings
and their two-byte binary equivalents and vice versa is not straight-
forward. Such conversions are fully described in Chapters 3 and 4,
and working routines are listed.

Any program which handles strings of data must be able to
manipulate the strings, whether it is an adventure game or the
latest stock control reports. Routines for comparing, copying.
deleting and inserting strings are included, and Chapter 6 goes on
to show the various ways in which text can be printed to the screen.

Sorting data lists into order is a task which it is often necessary to
perform within a program, so the technique of bubble sorting is
investigated.

Many other processors provide operations that would be useful
to have available when using the 6510. A software stack imple-
mentation similar to that found on the 6809 preocessor is produced
in Chapter 8, allowing up to eight selected registers to be pushed on
to a memory-based stack.

Routines to move., fill and produce a hex and ASCII dump of
memory are then examined and the final chapter provides a few
hi-resolution graphics utilities to speed you along the way.

Many of the chapters suggest projects for you to undertake at
your leisure, while every program has a detailed line-by-line
description of its operation. Program listings are provided using
BASIC loaders so that they can be used directly as they are.
Included in each line is a REM statement giving the mnemonic
representation of the instruction should you be using an assembler.

In fact. all the tools for using the Assembler Workshop are
supplied—assuming of course you have the workbench!

Highbury, November 1984 Bruce Smith

1 Opening the Tool Box

The routines included in this book are designed to make your life
that much easier when writing machine code. Quite often, after
mastering the delights of the Commodore 64’s microprocessor,
programmers become frustrated because the techniques involved
in, say, converting between ASCII characters and their equivalent
binary values are not known. Nor are they readily available in a
published form, so the painful process of sitting down armed with
pencil and paper and working out the conversion through trial and
error begins.

This is just one example of the type of assembler program you
will find within these pages. Wherever possible, they are supplied
in a form that will make them relocatable, the only addresses
requiring alteration being those specified by JSR or JMP.

Each listing is in the form of a BASIC loader program, using a
loop to READ and POKE decimal machine code data into
memory. This will allow those of you who have not yet splashed out
your hard earned cash on a suitable assembler program to get
underway. For those lucky ones among you who do have an as-
sembler, each data statement has been followed by a REM line
containing the standard mnemonic representation of the instruc-
tion (see Appendix 1 for a summary). This can be entered directly
and assembled as required.

Although the programs are typeset they have been spooled
direct as ASCII files and loaded into my word processor so all
should run as they are.

BASIC is used freely to demonstrate the machine code’s oper-
ation—rather than repeating sections of assembler code, BASIC is
often used to shorten the overall listing, and it is left to you to add
further sections of assembler from other programs within the book
or from your own resources. For example, many programs require
you to input a decimal address. In the demonstrations, this is
indicated by means of a one-line INPUT statement. In Chapter 3,
however, there is a routine for inputting a string of five ASCII

decimal characters and converting it into a two-byte binary
number. This can be inserted into the assembler text of the pro-
gram, to go some way to making it a full machine code program
available for use as a completely self-contained section of machine
code.

WRITING MACHINE CODE

You have an idea that you wish to convert into machine code—so
what’s the best way to go about it? Firstly, make some brief notes
about its operation. Willit use the screen? If so, what mode? Will it
require the user to input values from the keyboard? If so, what keys
do you use? What will the screen presentation look like? Will you
want to use sound?...and so on. Once you have decided on the
effects you want, put them down in flowchart form. This need not
be the normal flowchart convention of boxes and diamonds—1I find
it just as easy to write each operation I want the program to
perform in a list and then join the flow of these up afterwards.

Quite often, the next step is to write the program in BASIC! This
may sound crazy, but it allows you to examine various aspects of
the program’s operation in more detail. An obvious example of this
is obtaining the correct screen layout—you might find after run-
ning the routine that the layout does not look particularly good.
Finding this out at an early stage will save you a lot of time later,
avoiding the need to rewrite the screen layout portion of your
machine code—rewriting BASIC is much easier! If you write the
BASIC tester as a series of subroutines, it will greatly simplify the
process of conversion to machine code. Consider the main loop of
such a BASIC tester, which takes the form:

1# GOSUB 2¢@ : REM SET UP VARIABLES
2@ GOSUB 3@@ : REM SET UP SCREEN

39 REM LOOP

4@ GOSUB 4@@ : REM INPUT VALUES

5@ GOSUB 5@@ : REM CONVERT AS NEEDED
6@ GOSUB 6@@ : REM DISPLAY VALUES
7¢ GOSUB 7@@ : REM DO UPDATE

8¢ IF TEST-NOTDONE THEN GOTO 3@

9@ END

Each module can be taken in turn, converted into assembler and
tested. Once performing correctly the next procedure can be
examined. Debugging is made easier because the results of each
module are known having used the BASIC tester. The final main
loop of the assembler might then look something like this:

JSR $C2¢@ : REM SET UP VARIABLES

JSR $C3@@ : REM SET UP SCREEN
REM LOOP

JSR $C4¢@ : REM INPUT VALUES

JSR $C5¢@ : REM CONVERT AS NEEDED

JSR §C6g@ : REM DISPLAY VALUES

JSR $37¢¢ : REM DO UPDATE

BNE LOOP

You might be surprised to learn that this technique of testing
machine code programs by first using BASIC is employed by many
software houses the world over.

DEBUGGING

A word or two about debugging machine code programs that will
not perform as you had hoped: if this happens to you, before
pulling your hair out and throwing the latest copy of Machine Code
Nuclear Astrophysics Weekly in the rubbish bin, a check of the
following points may reveal the bug!

1.

If you are using a commercial assembler, check that your labels
have all been declared and correctly assigned. If you are
assembling ‘by hand’, double-check all your branch displace-
ments and JMP and JSR destination addresses. You can
normally ascertain exactly where the problem is by examining
how much of the program works before the error occurs,
rather than checking it all.

If your program uses immediate addressing, ensure you have
prefixed the mnemonic with a hash (#) to inform the assembler
or, if compiling by hand, check that you have used the correct
opcode. It is all too easy to assemble the coding for LDA $41
when you really want the coding for LDA #$41.

Check that you have set or cleared the Carry flag before
subtraction or addition.

My favourite now—ensure that you save the result of a sub-
traction or an addition. The sequence:

CLC

LDA $FB
ADC #1
BCC OVER
INC $FC
OVER
RTS

is not much good if you don’t save the result of the addition
with:

STA $FB

before the RTS!

5. Does the screen clear to the READY prompt whenever you
perform a SYS call, seemingly without executing any of the
machine code? The bug that often causes this is due to an extra
comma being inserted into a series of DATA statements. For
example the DATA line:

DATA 169,8,,162,255

with an extra comma between the @ and 162, would assemble
the following:

LDA #$dd
BRK
LDX #$FF

as the machine has interpreted ‘,,” as ‘,0,” and assembled the
command which has zero as its opcode—BRK!

6. Does the program ‘hang up’ every time you run it, when you
are quite certain that the data statements are correct? This is
often caused by a full stop instead of a comma being used
between DATA statements, e.g.

DATA 169,6,162.5,96

Here, if a full stop has been used instead of a comma between
the 162 and the 5, the READ command interprets this as a
single number, 162.5, rounds it down to 162, and assembles
this ignoring the 5 and using the 96 (RTS) as the operand, as
follows:

LDA #$g6
LDX #%6d
XXX

When executed, the garbage after the last executable instruc-
tion results in the system hanging up. This error should not
occur if you calculate your loop count correctly, so always
double-check this value before running your program.

If none of these errors is the cause of the problem, then I'm afraid
you must put your thinking cap on. Well-commented assembler
will make debugging very much easier.

2 Commodore Command

One of the disadvantages of using random access memory-based
machine code routines as utilities within a BASIC program is that it
is left to you, the programmer, to remember just where they are
stored, and to use the appropriate SYS call to implement them.
This doesn’t usually pose any problems if only one or two machine
code utilities are present; the problems occur when several are
being used. Normally you would need to keep a written list of these
next to you, looking up the address of each routine as you need it.
Great care must be taken to ensure that the SYS call is made to the
correct address, as a mis-typed or wrongly called address can send
the machine into an infinite internal loop, for which the only cure is
a hard reset, which would destroy all your hard work.

The program offered here provides a useful and exciting solution
to the problem, enabling you to add new commands to your
Commodore 64’s vocabulary. Each of your routines can be given a
command name, and the machine code comprising any command
will be executed by simply entering its command name. The
routine is written so that these new commands can be used either
directly from the keyboard or from within programs.

The trick in ‘teaching’ the Commodore 64 new commands is to
get the machine to recognize them. If an unrecognized command is
entered at the keyboard, the almost immediate response from the
64 is ‘?SYNTAX ERROR’. If you have any expansion cartridges
you’ll know that it is possible to expand the command set, and the
Programmer’s Reference Guide gives a few hints on how to do this,
on pages 307 and 308—the method pursued here is by resetting the
system CHRGET subroutine.

CHRGET

The CHRGET routine is, in fact, a subroutine which is called by
the main BASIC Interpreter. You can think of it as a loop of code,
protruding from the machine, into which we can wedge our own

bits of code, thereby allowing fundamental changes to be made to
the manner in which the Commodore operates. Let’s have a look at
how the normal CHRGET subroutine (which is located in zero
page from $73) operates:

Table 2.1

Address Machine code Assembler
$8073 E6 7A INC $7A
$9875 Dg @2 BNE $@@79
$gg 7T E6 7B INC $7B
$@@79 AD XX XX LDA $xxxx
$@g7C C9 3A CMP #$3A
$I07E Bg @A BCS $g¢@8Aa
$dd8g co 2¢ CMP #%$2d
$0@82 F@ EF BEQ $@@73
$0d84 38 SEC

$9085 E9 3¢ SBC #$3@
$ad87 38 SEC
$0d88 E9 D¢ SBC #$Dgd
$008A 69 RTS

The subroutiné begins by incrementing the byte located at $7A.
This address forms a vector which holds the address of the inter-
preter within the BASIC program that is currently being run. If
there is no carry over into the high byte, which must therefore itself
be incremented, a branch occurs to location $$79. You will notice
that the bytes which have just been incremented lie within the
subroutine itself. These are signified in the above listing by ‘xx xx’,
because they are being updated continually by the routine. The
reason for this should be fairly self-evident: looking at the opcode,
we can see that it is LDA, therefore each byte is, in turn, being
extracted from the program.

The next two bytes at $07C perform a compare, CMP #$3A.
The operand here, $3A, is the ASCII code for a colon, so
CHRGET is checking for a command delimiter. The BCS $008A
will occur if the accumulator contents are greater than $3A, effec
tively returning control back to within the BASIC Interpreter
ROM. The next line, CMP #$20, checks whether a space has been
encountered within the program. If it has, the branch is executed
back to $0073 and the code rerun.

The rest of the coding is checking that the byte is a legitimate

one—it should be an ASCII character code in the range $30 to $39,
that is, a numeric code. If it is, the coding will return to the main
interpreter with the Carry flag clear. If the accumulator contains
less than $30 (it could, of course, have ASCII $20 in it, as we have
already checked for this) then the Carry flag is set.

It is important to understand what is happening here, as we will
need to overwrite part of this code to point it in the direction of our
own ‘wedge’ interpreter. This has to perform the ‘deleted’ tasks
before returning to the main interpreter to ensure the smooth and
correct running of the Commodore 64.

THE WEDGE OPERATING SYSTEM

To distinguish the Wedge Operating System (WOS) commands
from normal commands (and illegal ones!), we must prefix them
with a special character—one which is not used by the Commodore
64. The Programmer’s Reference Guide suggests the use of the
the ‘@’ sign, so that’s what we will use.

Program 1a lists the coding for the WOS. I have chosen to place it
well out of the way, in the free RAM area from 49666 (3C202)

onwards. As we shall see the memory below (bis to 49152 ($C000)
is also used by the WOS.

Program la

14 REM *** WEDGE OPERATING SYSTEM — WOS ***

2@ REM *** WOS INTERPRETER FOR COMMODORE 64 ***
30

4@ CODE-49666

5@ FOR LOOP-g TO 188

6@ READ BYTE

7@ POKE CODE+LOOP,BYTE

8@ NEXT LOOP

og

18@ REM #+ M/C DATA »«

11¢ DATA 169,¢ : REM LDA #$g¢
12¢ DATA 16¢,192 : REM LDY #$Cg
13@ DATA 32,3@,171 : REM JSR $ABlE
14¢ DATA 169,76 : REM LDA #$4C
15 DATA 133,124 : REM STA $7C
164 DATA 169,24 : REM LDA #$18
17¢ DATA 133,125 : REM STA $7D
18¢ DATA 169,194 : REM LDA #$C2

19@ DATA 133,126 : REM STA $7E

20@ DATA 1¢8,2,3 : REM JMP ($pspz)

2095 :: REM WOS STARTS HERE
21¢ DATA 201,64 : REM CMP #$4¢
22¢ DATA 2¢8,68 : REM BNE $44

23@ DATA 165,157 : REM LDA $9D

24@ DATA 244,49 : REM BEQ $28

25¢ DATA 173,4,2 : REM LDA $g20¢
26@ DATA 201,64 : REM CMP #%$4¢
27@ DATA 28,28 : REM BNE $1C

28¢ DATA 32,114,194 : REM JSR $C272
29¢ DATA 16g¢,8 : REM LDY #$¢g
3@@ DATA 177,122 : REM LDA ($7A),Y
319 DATA 2¢1,32 : REM CMP #$2¢
32@ DATA 244,9 : REM BEQ $#9

33@ DATA 23@,122 : REM INC $7A

340 DATA 208,246 : REM BNE $F6

350 DATA 23@,123 : REM INC $7B

360 DATA 56 : REM SEC

37¢ DATA 176,241 : REM BCS $F1

380 DATA 32,116,164 : REM JSR $A474
39¢ DATA 169,¢ : REM LDA #$dg
40@ DATA 56 : REM SEC

41¢ DATA 176,29 : REM BCS $1D

42@ DATA 169,64 : REM LDA #$44
43@ DATA 56 : REM SEC

44@ DATA 176,24 : REM BCS $18

445 :: REM PROGRAM-MODE
45¢ DATA 32,114,194 : REM JSR $C272
46@ DATA 1leg.¢ : REM LDY #$¢¢
47@ DATA 177,122 : REM LDA ($7A),Y
48@¢ DATA 2¢1.¢ : REM CMP #$g¢
49¢ DATA 244,13 : REM BEQ $@D

5¢¢@ DATA 2@1,58 : REM CMP #$3A
519 DATA 24¢,9 : REM BEQ $#9

52¢ DATA 23@,122 : REM INC $7A

53@ DATA 208,242 : REM BNE $F2

54¢ DATA 238,123 - REM INC $7B

550 DATA 56 : REM SEC

56@ DATA 176,237 : REM BCS $ED

(START)

GETBYTE
INCREMENT FROM
INDEXES COMMAND
TABLE

JMPTO
KERNAL

EXECUTION
ADDRESS

INCREMENT JUMP TO
ALL ADDRESS
INDEXES

Figure 2.1 The wedge operating system flowchart

57@ DATA 2@1,58 : REM CMP #$3A
58¢ DATA 176,10 : REM BCS $gA
599 DATA 2g1,32 : REM CMP #$2¢
60@ DATA 244,7 : REM BEQ $@7
61@ DATA 56 . REM SEC

620 DATA 233,48 : REM SBC #$3¢
63@ DATA 56 : REM SEC

64 DATA 233,288 : REM SBC #$Dg
65@ DATA 96 : REM RTS

660 DATA 76,115, : REM JMP $g@73

665 :: REM FIND-EXECUTE

12

DATA
DATA
DATA
DATA
DATA
720 DATA
73@ DATA
74@ DATA
75¢ DATA
76¢ DATA
77@ DATA
78¢ DATA
79¢ DATA
8@@ DATA
81¢ DATA
82@ DATA
83@ DATA
84 DATA
85@ DATA
86@ DATA
87@ DATA
88@ DATA
89¢ DATA
9@@ DATA
91@ DATA
92@ DATA
93¢ DATA
94¢ DATA
95@ DATA
96@ DATA
97@ DATA
98¢ DATA
99¢ DATA
19@@ DATA
1¢1¢ DATA
192 DATA
1¢3@ DATA
1¢4¢ DATA
1¢5¢ DATA
1¢6@ DATA

678
68g
69¢
'y
719

169,98
133,127
169,193
133,128
23@,122
2¢8,2
23¢,133
168,90
162,08
177,127
244,36
2¢9,122
2@8,4
208

56
176,244
177,127
249 .4
208

56
176,248
209

152

24
141,127
133,127
169,49
141,128
133,128
16g,9
232

232

56
176,216

133,128
232

133,129
198,128, 8

: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
: REM
189,804,192 :
: REM
: REM
189,840,192 :
: REM
: REM

REM

REM

LDA
STA
LDA
STA
INC
BNE
INC
LDY
LDX
LDA
BEQ
CMP
BNE
INY
SEC
BCS
LDA
BEQ
INY
SEC
BCS
INY
TYA
CLC
ADC
STA
LDA
ADC
STA
LDY
INX
INX
SEC
BCS
LDA
STA
INX
LDA
STA
JMP

1580
$7F
#$C1
$8¢
$7A
$02
$7B
4 $08
E3:31]
($7F) ., Y
$24
($74),Y
$g4

$F4
($7F) .Y
$g4

$F8

$7F
$7F
1 $99
$8¢
$8g
408

$D8
$CP50 . X
$8g

$Cg5g. X
$81
($2g8d)

1965 :: REM ILLEGAL

1474 DATA 162,11 : REM LDX #$¢B
1¢8@ DATA 1¢8.8,3 : REM JMP ($3¢¢)
1990

11¢# REM =+ SET UP COMMAND TABLE *+
111¢ TABLE-=-494¢8

112¢ FOR LOOP-g TO 1¢

113@ READ BYTE

114¢ POKE TABLE+LOOP,BYTE

1150 NEXT LOOP

116gd

117@ REM %% ASCII COMMAND DATA xx
11874 DATA 67,76,83,8 : REM CLS
119¢ DATA 76,79,87.# : REM LOW
12¢@ DATA 85,80, : REM UP

To enable the WOS to identify a wedge command, it needs a
complete list to which it can compare the one it is interpreting in the
program—this is done with the aid of a command table, which is
formed by the program lines from 1100 to 120¢. This ASCII table is
based at 49408 ($C100) and, as you can see from the listing, three
commands are provided: @ CLS, @ LOW and @ UP. Note that
the @ is omitted from the front of each command in the table—it is
unnecessary at the comparison stage, as by this time it has already
been established that it is a WOS command—and that each com-
mand is terminated by a zero. A table listing the execution address
of each command must also be constructed, but more of this later.

The main program consists of two parts, an initialization routine
and the interpreter proper.

The initialization routine is embodied in lines 110 to 209. Its
function is to reset the CHRGET subroutine investigated earlier.
Lines 110 to 130 issue a heading on the screen indicating that the

49108
“c” | L |"s” lm] |0~ L'w | so9 | v~ | |08 |
The Command Table
49232
o celos calon o4
EXECUTION

ADDRESSOF: CLS Low upP

The Address Table

Figure 2.2 The Command and Address Tables.

13

14

WOS has been initialized. The subroutine at $AB1E, called by line
130, prints out an ASCII string located at the address given by the
index registers. In this instance it is located at §COM) (49152), and is
assembled into memory by the second part of the listing. Lines 140
to 199 poke three bytes into the CHRGET subroutine which effec-
tively assembles the code:

JMP $C218

The address $C218 is the address of the start of the WOS inter-
preter at line 210. Finally, line 200 does an indirect jump through
the IMAN vector at $0302 to perform a warm BASIC start. The
CHRGET subroutine, complete with wedge jump, now looks like
this:

Table 2.2

Address Machine code Assembler
88073 E6 T7A INC $7A
$8075 Dg @2 BNE $@@79
$ggT7 E6 7B INC $7B
$a8d@79 AD XX xx LDA $xxxx
$gag7C 4C 18 C2 JMP $C218

When the WOS is entered, the byte in the accumulator is checked
tosee ifitisan @ (line 210), signifying a wedge command. If it is
not, then a branch to line 570 is performed. As you can see, the
code from line 570 to 650 performs the normal function of the
CHRGET routine, with control returning to the BASIC Inter-
preter.

If the byte is an @ , the interpretation continues. The byte at $9D
is located, to detect whether the command is within a program or
has been issued in direct mode. A zero indicates that the command
has been called from within a program and the branch of line 240 to
line 450 is performed. In both instances the interpretation follows
similar lines—for descriptive purposes, we will assume program
mode and resume the commentary from line 450.

The subroutine at $C272 is the interpreter proper. Starting at
line 665 it locates the command and executes it. The first eight
bytes (lines 670 to 700) set up a zero page vector to point to the
command table at $C10). Lines 710 to 730 update the zero page
bytes at $7A and $7B, which hold the address of the current point
within the program. After initializing both index registers, the first

byte within the command table is located (lines 749 to 760), and
compared to the byte within the program, immediately after the @
(line 780). If the comparison fails, the branch to line 830 is per-
formed, locating the zero and therefore the next command in the
command table. When a comparison is successful (the command is
identified) and the terminating zero located by line 770, the branch
to line 1010 is performed. Lines 1010 to 1060 locate the execution
address of the command from the address table located at $C050.
The X register is used as an offset into this, being incremented by
two each time a command table comparison fails (lines 970 and
980). The two address bytes are loaded to form a zero page vector
and the machine code is executed via an indirect jump.

On completion of the routine, its terminating RTS returns
control to line 460, and the next byte after the command is sought
out. When a zero is found, the branch of line 499 is performed and
the CHRGET routine is completed. control being returned to the
BASIC Interpreter.

THE NEW COMMANDS

Program 1b provides the assembly routines to construct the initial-
ization prompts, the machine code for the new commands and the
address table:

Program 1b

1219 REM x» TITLE MESSAGE DISPLAYED ON SYS
49666 »»

122¢ HEAD-49152

123@ FOR LOOP-g TO 4¢

124¢ READ BYTE

125¢ POKE HEAD+LOOP,BYTE

126¢ NEXT LOOP

1279 -

1284 REM x* ASCII CHARACTER DATA x»

1299 DATA 147,13,32,32,42,42,32,67,54,52,32

13@@ DATA 69,88,84,69,78,68,69,68,32,83,85

12@@ DATA 8@,69,82,32,66,65,83,73,67,32,86,49

1319 DATA 46,48,32,42,42,13,¢

1329 ::

136¢ REM »* SET UP M/C FOR COMMANDS #*

137¢ MC-5@176

138¢ FOR LOOP-g TO 14

139¢ READ BYTE

15

16

14¢@ POKE MC+LOOP,BYTE
141@ NEXT LOOP

1424

1433 REM *» COMMAND M/C x=*

144¢ : : REM CLS

145@ DATA 169, 147 : REM LDA #$93

146@ DATA 76,21@,255 : REM JMP $FFD2
1479 :: REM LOW

148@ DATA 169, 14 : REM LDA #$gE

149@ DATA 76,21%,255 : REM JMF $FFD2
1509 :: REM UP

151@ DATA 169, 142 : REM LDA #$8D

1520 DATA 76,218,255 : REM JMP $FFD2
153g8 ::

1540 REM *» SET UP ADDRESS TABLE #*=*
155@ ADDR=49232

156¢ FOR LOOP=g TO 5

157¢ READ BYTE

1584 POKE ADDR+LOOP,BYTE

159¢ NEXT LOOP

legg

161% REM »» ADDRESS DATA »»

162@ DATA @,196 . REM CLS $C4¢¢
163@ DATA 5,196 : REM LOW $C4¢5
164@ DATA 14,196 : REM UP $C4PA

Each command’s machine code is located from 50176 ($C409). The
three new commands and their functions are:

CLS : clearscreen and home cursor
LOW : select lower case character set
UpP : select upper case character set

Nothing to set the house alight, admittedly, but the techniques
involved are more important at present. These are simple to imple-
ment and, once understood, enable more useful and complex
commands to be added. The code associated with each command is
responsible simply for printing its ASCII code. The final section of
listing (lines 1540 to 1650) pokes the execution address of each
command into memory. The final address points to the code at line
179, and the program jumps to this position if the command is not
found within the command table. This code performs an indirect
jump to the BASIC Interpreter’s error handler.

USING THE WOS

Using the Wedge Operating System is easy: enter the program as
shown, run it to assemble the code into memory, and if all goes
well, save the program. Toinitialize the WOS enter:

SYS 49666

The screen will clear, and the following message be printed across
the top of the screen:

** C64 EXTENDED SUPER BASIC V1.§ =*=

The wedge commands are now available for immediate use. Re-
member that pressing RUN/STOP and RESTORE together will
reset the CHRGET routine to its default value making the WOS
invisible. To relink it, simply execute the SYS 49666 call again.

Line-by-line

A line-by-line description of the WOS now follows, to enable you
to examine its operation in more detail:

line 11 : load accumuator with low byte message address

line 12@ : load accumulator with high byte message address

line 13@ : print start up message

line 148 : reset CHRGET subroutine

line 2@@ : do a BASIC warm start

line 2@5 : main entry for WOS

line 218 : isitan ‘@’ and therefore a WOS command?

line 22@ : no, so branch to line 570 to update

line 23@ : yes, check for direct or program mode

line 24f : if zero, then WOS command is within program,
so branch to line 450

line 25@ : else direct mode so get byte from buffer

line 26@ : recheck that it is a WOS command

line 278 : if error, branch to line 410

line 28@ : find and execute the command else issue
appropriate error message

line 29@ : initialize index

line 3@@ : get byte from buffer

line 31f : is it a space?

line 32@ : yes, so branch to line 380

18

line
line

line
line

line
line
line

line
line
line
line

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

line
line

330
340

350
360

380
390
499

420
438
445
450

460
478
480
490
500
5148
520

538

544
550
579
584
598
640
61¢
624
630
649
650
664

665

674

7108

720 -

increment low byte of address

branch back to line 309 if high byte does not need
to be updated

else increment high byte of address

set Carry flag and do a forced branch back to

line 300

: print ‘READY’ prompt

clear accumulator

set Carry flag and force a branch to line 500 to
'update and return

get ‘@’ into accumulator

set Carry flag and force a branch to line 570
entry point for PROGRAM-MODE

locate and execute command or print appropriate
error message

clear indexing register

get byte from program

is it a @ and therefore end of line?

: yes, branch to line 500
: no, is it the command delimiter :’?

yes, branch to line 570

no, increment low byte of address

if not zero, branch back to line 470 to redo loop
increment high byte of address

set Carry flag and force a branch back to line 470.
is it a command delimiter :’?

if greater than or equal to ‘:’ then branch to line 650
is it a space?

yes, so branch to line 650

set Carry flag

subtract ASCII base code

set Carry flag

subtract token and ASCII set bits

return to BASIC Interpreter

jump to CHRGET

entry for FIND-EXECUTE subroutine

seed address of command table ($C100) into vector
at $7F

increment low byte of command address

branch over if no carry into high byte

line 73@ : else increment high byte of address

line 748 : back together, initialize Y register

line 75@ : and X register

line 76@ : get byte from the command table

line 778 : if zero byte, then command is identified, branch to
line 1010

line 78@ : is it the same as the byte pointed to in the command
table?

line 79@ : no, branch to line 830

line 8@@ : increment index

line 82@ : set Carry flag and force a branch back to line 760

line 83@ : command not identified—seek out zero byte. Get
byte from command table

line 84f : if zero, branch to line 880

line 85@ : increment index

line 86@ : set Carry flag and force a branch to line 830

line 88@ : increment index

line 89@ : transfer into accumulator

line 9@@ : clear Carry flag

line 91f@ : add to low byte of vector address

line 92@ : save result

line 93@ : clear accumulator

line 94@ : add carry to high byte of vectored address

line 95@ : and save the result

line 96@ : initialize index

line 978 : add two to X to move onto next address in the

line 98¢ : command address table

line 99@ : set Carry flag and force a branch to line 760

line 1§18 : get low byte of command execution address

line 1@2@ : save it in a vector

line 183@ : increment index

line 1@4@ : get high byte of command execution address

line 1@5@ : save it in vector

line 1@6@ : jump to vectored address to execute machine code
of identified command

line 1865 : entry for ILLEGAL—unrecognized WOS command

line 1878 : get error code into X register

line 1#8@ : and jump to error handling routine

20

3 ASCIIto Binary
Conversions

An important aspect of interactive machine code is the ability to
convert strings of ASCII characters into their hexadecimal equi-
valents. so that they may be manipulated by the processor. In this
chapter we shall examine, with program examples, how this is
performed. The routines provide the following conversions:

1. Single ASCII hex characters into binary.
2. Four ASCII hex digits into two hex bytes.
3. Signed ASCII decimal string into two signed hex bytes.

ASCIT HEX TO BINARY CONVERSION

This routine converts a hexadecimal ASCII character in the accum-
ulator into its four-bit binary equivalent. For example, if the
accumulator contains $37 (that is, ASC*“7”), the routine will result
in the accumulator holding $7. or 00111 binary. Similarly, if the
accumulator holds $46 (ASC“F”) the routine will return $F. or
OMP1111, in the accumulator.

Conversion is quite simple. and Table 3.1 gives some indication
of what is required.

Table 3.1

Hex Binary value ASCII value ASCII binary
) oJJff ol f $30 28119000
1 po0eeee1 $31 g8110001
2 peeees1s $32 g8119918
3 pPppeslLL $33 gp11pP11
4 po00p 1080 $34 pP118100

Table 3.1 (contd.)

5 2opP8181 $35 gg118191
6 popPe110 $36 #91108110
7 PoPgP111 $37 #g119111
8 0P8 1000 $38 P$09111000
9 28801801 $39 gP111001
A gopp1818 $41 g1980091
B pep31P11 $42 p1090010
C Po0p1108 $43 218980811
D PepB1181 $44 21090100
E P20pP1118 $45 1998181
F PoPP1111 $46 219908110

The conversion of ASCII characters @ to 9 is straightforward. All
we need to do is mask off the high nibble of the character’s ASCII
code. For example ASC “1”is $31or 00110001 binary— masking
the high nibble with AND $OF results in 00000001. Converting
ASCII characters A and F is a little less obvious, however. If the
high nibble of the code is masked off, then the remaining bits are 9
less than the hex required. For example, the ASCII for the letter
‘D’ is $44 or 01000100. Masking the high nibble with AND $OF
gives 4, or 00000100, and adding 9 to this gives:

P08 100
+ 09pP16P1

pppP1181

the binary value for $D.

Program 2

14 REM »x CONVERT ASCII CHARACTER IN #=*
2@ REM =x ACCUMULATOR TO BINARY #*=*

38 REM xx REQUIRES 2@ BYTES OF MEMORY ##*
49

5@ CODE-49152

6@ FOR LOOP-g TO 24

78 READ BYTE

8 POKE CODE+LOOP,BYTE

9@ NEXT LOOP
1498

21

119
128
138
148
158
168
174
18¢
19¢
200
214
220
239
240
250
260
274
28¢
29¢
390
310
320
339
349
350
e {5Y]
37¢
38¢
39¢
499
419
420
438
448
450
460
479
480

494

REM #x M/C DATA ==

CMP
BCC
CMP
BCC
SBC
BCC
CMP
BCS
ZERO-
AND
RETUR
RTS
ILLEG
SEC
RTS

* %

TEST
JSR
BEQ
JSR
BCC
LDA

OVER
STA
RTS

#$30
$aF
#B3A
$48
H$@7
$a7
#9490
$02
NINE
4 $OF
N

AL

$FFE4
$FB
$Cogg
$42
4B$FF

$FB

DATA 2¢1,48 REM
DATA 144,15 REM
DATA 2¢1,58 REM
DATA 144,8 REM
DATA 233,7 REM
DATA 144,7 REM
DATA 2¢1,64 REM
DATA 176,2 REM
D REM
DATA 41,15 REM
- REM
DATA 96 REM
Do REM
DATA 56 REM
DATA 96 REM
REM % TESTING ROUTINE
TEST=49184

FOR LOOP-g TO 14

READ BYTE

POKE TEST+LOOP,BYTE
NEXT LOOP
REM »x M/C TEST DATA ==
N REM
DATA 32,228,255 REM
DATA 24,251 REM
DATA 32,8,192 REM
DATA 144,2 REM
DATA 169,255 REM
D REM
DATA 133,251 REM
DATA 96 REM
PRINT CHR$(147)
PRINT"HIT A HEX CHARACTER KEY, AND ITS

BINARY"
PRINT"EQUIVALENT VALUE WILL BE PRINTED"

SUBTRACT 7 TO
MOVE TO
A-F

Yes

Y

T

SET CARRY
TO DENOTE
ERROR
. MASK HIGH
NIBBLE

ENLD—\—

Figure 3.1 Conversion flowchart

500

514 SYS TEST

520

53@ PRINT "RESULT = "PEEK(251)

A

Program 2 contains a short demonstration, prompting for a hexa-
decimal value key to be pressed (i.e. ® to F) and returning its
hexadecimal code. Thus, pressing the ‘A’ key will produce a result
of 41.

23

24

The ASCII-BINARY routine begins by checking for the legality
of the character, by comparing it with 48 ($30). If the value in the
accumulator is less than ASC*“0”, the Carry flag will be cleared.
signalling an error. If the character is legal, the contents are then
compared with 58 ($3A), which is one greater than the ASCII code
for 9. This part of the routine ascertains whether the accumulator’s
contents are in the range $30 to $39. If they are, the Carry flag will
be cleared and the branch to ZERO-NINE (lines 150 and 120)
pertormed. The high nibble is then masked off to complete the
conversion.

If the branch of line 150 fails, a legality check for the hex
characters A to F is performed. This is done by subtracting 7 from
the accumulator’s contents, which should bring the value it holds
down below 64 ($40), or one less than the ASCII code for the letter
‘A’. At this point the Carry flag is set (it was previously set as the
branch of the previous line was not performed), and the CMP #$40
of line 180 clears it if the contents are higher than 64. The routine
then masks off the high nibble, leaving the correct binary.

The following example shows how the conversion of ASC“F” to
$F works:

Mnemonic Accumulator Carry flag
$46 (ASC"F")

CMP 4#$30 $46 1

BCC ILLEGAL

CMP #$3A $46 1

BCC ZERO-NINE

SBC #7 $3F 1

BCC ILLEGAL

CMP »$40 $3F g

BCS RETURN

AND $@F $oF [

RTS

Note that this routine indicates an error by returning with the Carry
flag set. so any calls to the conversion routine should always check
for this on return. The short test routine does this, and loads the
accumulator with $FF to signal the fact.

Using two calls to this routine would allow two-byte hex values to
be input and converted into a full eight-byte value. On completion
of the first call, the accumulator’s contents would need to be shifted
into the high nibble.

The coding might look like this:

: REM WAIT
JSR GETIN : REM GET FIRST CHARACTER
BEQ WAIT1
JSR ASCII-BINARY : REM CONVERT TO BINARY
BCS REPORT-ERROR : REM NON-HEX IF C-=1
ASL A : REM MOVE INTO HIGHER
NIBBLE
ASL A
ASL A
ASL A
STA HIGH-NIBBLE : REM SAVE RESULT
: REM WAIT2
JSR GETIN : REM GET SECOND CHARACTER
BEQ WAIT2
JSR ASCII-BINARY : REM CONVERT TO BINARY
BCS REPORT-ERROR : REM NON-HEX IF C-=1
ORA HIGH-NIBBLE : REM ADD HIGH NIBBLE
: REM ALL BINARY NOW IN
ACCUMULATOR

Using this routine and entering, say, $FE will return 11111110 in
the accumulator.

Line-by-line
A line-by-line description of Program 2 follows:

line 12@ : isit>= than ASC“0”?

line 13@ : no, branchto ILLEGAL

line 14@ : isitinrange 0-9?

line 15@ : yes, branch to ZERO-NINE to skip A-F
translation.

line 16@ : move onto ASCII codes for A—F

line 178 : branch to ILLEGAL if Carry flag clear

line 18¢ is it higher than ASC*“ @”’?

line 198 : no, branch to ILLEGAL

line 2@@ : entry for ZERO-NINE

line 21@ : clear high nibble

line 22@ : entry for RETURN

25

26

line 23@

line 24¢ :

: return with binary in accumulator

entry for ILLEGAL
line 25@ : set Carry flag to denote an error
line 26@ : return to BASIC
line 378 : entry for TEST
line 388 : read keyboard
line 39¢ : if null string, branch to TEST
line 4@@ : call conversion at SCO00
line 41@ : if no errors, branch OVER
line 42@ : else error, place 255 in accumulator
line 43@ : entry for OVER
line 44@ : save accumulator in $FB
line 45¢@ and return to BASIC
FOUR ASCII DIGITS TO HEX

We can use the ASCII-BINARY routine as the main subroutine in
a piece of coding which will convert four ASCII digits into a
two-byte hexadecimal number, making the routine most useful for
inputting two-byte hexadecimal addresses. For example, the
routine would convert the ASCII string “CAFE” into a two-byte
binary number 11001010 11111110 or SCAFE. Program 3 lists the
entire coding:

Program 3

14
=g
30
49
50
6
78

REM x» CONVERT FOUR ASCII DIGITS INTO #*
REM *x A TWO-BYTE HEXADECIMAL NUMBER x*
CODE=49152
FOR LOOP=0 TO 62

READ BYTE

POKE CODE+LOOP,BYTE
NEXT LOOP

8d

o
199
114
120
134
144

158 ::

REM *x M/C DATA »=*

DATA 168,.¢ : REM LDY #0@
DATA 162,251 : REM LDX #$FB
DATA 148.¢ : REM STY $@8.X
DATA 148,1 : REM STY $41.X
DATA 148,2 : REM STY $#2,.X

REM NEXT-CHARACTER

160
179
18¢
19¢
200
210
220
225
230
244
250
260
278
280
29g
300
310
320
338
340
350
360
378
380
390
400
418
420
430
449
450

468 : .

479
480
4948
508
510
520
530
540

DATA 185,68,3 : REM
DATA 32,422,192 : REM
DATA 176,21 : REM
DATA 18,14 : REM
DATA 14,14 : REM
DATA 148,2 : REM
DATA 168,4 : REM
Dl REM
DATA 14 : REM
DATA 54,8 : REM
DATA 54,1 : REM
DATA 136 : REM
DATA 208,248 : REM
DATA 184,2 : REM
DATA 244 : REM
DATA 288,227 : REM
N REM
DATA 181,2 : REM
DATA 96 : REM

LDA $33C,Y
JSR $cCg2A

BCS $15
ASL A : ASLA
ASL A : ASLA
STY $@2,X

LDY #$04
AGAIN

ASL A

ROL $g4,X

ROL $g1,.X

DEY

BNE $F8

LDY $g2.Y

INY

BNE $E3

ERROR

LDA $@2,X

RTS

REM *#% ASCII-BINARY CONVERSION %%

DATA 201,48 . REM
DATA 144,15 . REM
DATA 201,58 . REM
DATA 144,8 . REM
DATA 233,7 . REM
DATA 144,7 . REM
DATA 2@1,64 : REM
DATA 176,2 . REM
D REM
DATA 41,15 . REM

. REM
DATA 96 . REM
D REM
DATA 56 . REM
DATA 96 . REM

REM «*x+ SET UP A TEST
TEST=49232
FOR LOOP-g TO 34

CMP #$38
BCC $gF
CMP #$3A
BCC $¢8
SBC $47
BCC $47
CMP #$48
BCS $g2
ZERO-NINE
AND $@F
RETURN
RTS
ILLEGAL
SEC

RTS

PROCEDURE ## %

27

28

550 READ BYTE
56@ POKE TEST+LOOP,BYTE
57@ NEXT LOOP

580

59@ REM *% TEST M/C DATA *«

600 DATA 16¢.8 : REM LDY #$g¢
610 DATA 162,4 : REM LDX #$04
6208 :: REM OVER

630 DATA 142,52,3 : REM STX $334
64 DATA 148,53,3 : REM STY $335
658 :: REM INNER

660 DATA 32,228,255 : REM JSR $FFE4
678 DATA 248,251 : REM BEQ $FB
680 DATA 174,52,3 : REM LDX $334
69¢ DATA 172,53,3 : REM LDY $335
788 DATA 153,64,3 : REM STA $33C,Y
71§ DATA 32,21@,255 : REM JSR $FFD2
728 DATA 208 : REM INY

738 DATA 2@2 : REM DEX

740 DATA 2@8,229 : REM BNE $E5
758 DATA 32,8,192 : REM JSR $C@gg
768 DATA 96 : REM RTS

T8

780 PRINT CHR$(147)

79¢ PRINT "INPUT A FOUR DIGIT HEX NUMBER : $";
8@@ SYS TEST

81¢ PRINT

82@ PRINT "THE FIRST BYTE WAS :";PEEK(251)
83@ PRINT "THE SECOND BYTE WAS :";PEEK(252)

The machine code begins by clearing three bytes of zero page RAM
pointed to by the contents of the X register (lines 100 to 140). The
ASCII characters are accessed one by one from a buffer which may
be resident anywhere in memory (line 160), though in this case it is
the four bytes at the start of the cassette buffer. Conversion and
error-detection are performed (lines 179 and 180) ana the four
returned bits shifted into the high four bits of the accumulator. The
buffer index. which keeps track of the character position in the
buffer, is saved in the third of the three bytes cleared.

The loop between lines 250 and 309 is responsible for moving the
four bits through the two zero page bytes which hold the final
result. In fact, with the accumulator, the whole process of the loop
is to perform the operation of a 24-hit <hift recister. Figure 3.2

Accumulator ASL A

o - 0
Carry LA W) WA W, W
Result low byte ROL®. X
SN
Carr ' L)) W\) W)
y
Result high byte ROL 1. X
]
Carry AT

Figure 3.2 Movement of bits through a 3-byte shift register

illustrates the procedure.

The ASL A instruction shuffles the bits in the accumulator one
bit to the left, with the dislodged bit 7 moving across into the Carry
flag bit. This carry bit is then rotated into bit @ of the result address
low byte, which in turn rotates its bit 7 into the Carry flag. The next
ROL instruction repeats this movement on the high byte. The net
effect of all this is that as the process is executed four times, the
returned conversions are shifted through the result address to
reside in the correct place, as Figure 3.3 illustrates.

1,X 0, X Accumulator
Entry 0 DOPDOND 11110000
Ist pass L0 0] 0PM01111 0PN
2nd pass (00,00 11110000 DOPOPND
3rd pass Po001111 OO0 OO
4th pass 11110000 L OO0

Figure 3.3 A 24-bit shift register, showing passage of the bits in the
number 3 Fop0

Error-checking is provided for, the routine aborting when it
encounters an illegal hex character, leaving the accumulator con-
taining the index into the buffer, pointing to the illicit value. In fact,
this method is used to complete the execution of the conversion-
rotate loop, using a RETURN character placed at the end of the

29

30

ASCII hex string.

The test routine (lines 590 to 8) prompts for four hex-based
characters to be input. These are placed in the buffer (line 610) and
printed to the VDU. On completion of the input, the address-
binary routine is called. and the result placed in the first two bytes
of the user area, for printing or manipulation purposes.

Line-by-line
A line-by-line decription of Program 3 follows:

line 1@ : clear indexing register

line 11@ : get byte destination

line 12@ : clear three bytes

line 15@ : entry for NEXT-CHARACTER
line 16@ : get character from buffer

line 17@ : call ASCII-BINARY to convert

line 18@ : branch to ERROR if Carry flag is set
line 19¢ : move low nibble into high nibble
line 21@ : save index into buffer

line 22@ : moving four bits

line 225 : entry for AGAIN

line 23@ : move bit 7 into Carry flag

line 24@ : move carry into bit @ and bit 7 into Carry flag
line 25@ : move carry into bit @ and bit 7 into Carry flag
line 26f@ : decrement bit count

line 278 : and do until four bits done

line 28@ : restore index into buffer

line 29@ : increment it to point to next character
line 3@@ : do branch to NEXT-CHARACTER
line 318 : entry for ERROR

line 32@ : get illegal character

line 33@ : return to calling routine

CONVERT DECIMAL ASCII STRING TO BINARY

This routine takes a signed decimal string of ASCII characters and
transforms it into a two-byte hexadecimal number. For example,
entering —32,678 will return the value $8000), where $8009 is its
signed binary equivalent. Entry requirements to the conversion
routine are obtained by the BASIC text in lines 880 to 940. Note

that in addition to obtaining the characters for insertion into the
string buffer. the number of characters for conversion is required,
this being placed in the first byte of the buffer.

Program 4

1§ REM »» DECIMAL ASCII TO BINARY #x
20 REM ** READ & POKE M/C DATA #=»

3@ CODE=49152

4@ FOR LOOP-g TO 155

50 READ BYTE

6@ POKE CODE+LOOP,BYTE

7@ NEXT LOOP

8g :

9% REM *% M/C DATA *=

148

114 DATA 174,68,3 REM LDX $33C
12¢ DATA 2¢8,3 REM BEQ $83
125 DATA 76,154,192 : REM JMP $C@9A
130 DATA 16¢.8 REM LDY ##
140 DATA 148,55,3 REM STY $337
150 DATA 14§,53,3 REM STY $335
160 DATA 15@,54,3 REM STY $336
170 DATA 200 REM INY

18 DATA 14§,52,3 REM STY $334
199 DATA 185,68,3 REM LDA $33C,Y
2008 DATA 2@1,45 REM CMP #$2D
21¢ DATA 2¢8,14 REM BNE $4E
22¢ DATA 169,255 REM LDA #&FF
23@ DATA 141,55,3 REM STA $337
24@ DATA 238,52,3 REM INC $334
25¢ DATA 2#2 REM DEX

260 DATA 248,113 REM BEQ $71
278 DATA 176,54,192 REM JMP $C@36
280 :: REM POSITIVE
290 DATA 201,43 REM CMP #$2B
30@% DATA 2¢8,12 REM BNE $¢@6
318 DATA 238,52,3 REM INC $334
320 DATA 2#2 REM DEX

330 DATA 24¢,19¢ REM BEQ $64

31

348 REM CONVERT-CHARACTER

358 DATA 172,52,3 REM LDY $334
360 DATA 185,60,3 REM LDA $33C,Y
378 REM CHECK-LEGALITY
380 DATA 2@1,58 REM CMP #$3A
39¢ DATA 16,98 REM BPL $5A
40@ DATA 201,48 REM CMP #$3¢
419 DATA 48,86 REM BMI $56
42 DATA 72 REM PHA

43@ DATA 14,53,3 REM ASL $335
44 DATA 46,54,3 REM ROL $336
45@ DATA 173,53,3 REM LDA $335
46Q DATA 172,53,3 REM LDY $336
47@ DATA 14,53,3 REM ASL $335
48 DATA 46,54,3 REM ROL $336
490 DATA 14,53,3 REM ASL $335
5@@ DATA 46,54,3 REM ROL $336
51% DATA 24 REM CLC

52¢ DATA 1§9,53,3 REM ADC $335
53@ DATA 141,53,3 REM STA $335
54@ DATA 152 REM TYA

550 DATA 1§9,54,3 REM ADC $336
560 DATA 141,54,3 REM STA $336
578 DATA 56 REM SEC

587 DATA 104 REM PLA

590 DATA 233,48 REM SBC #$3¢
600 DATA 24 REM CLC

610 DATA 1¢9,53,3 REM ADC $335
62@ DATA 141,53,3 REM STA $335
630 DATA 144,3 REM BCC $g3
64@ DATA 238,54,3 REM INC $336
658 :: REM NO-CARRY
660 DATA 238,52,3 REM INC $334
670 DATA 282 REM DEX

680 DATA 2¢8,181 REM BNE $B5
69@ DATA 173,55,3 REM LDA $337
780 DATA 16,17 REM BPL $11
718 DATA 56 REM SEC

7208 DATA 169,80 REM LDA 4@

730 DATA 237,53,3 REM SBC $335

START

:

GET
FIRST
CHARACTER

No

GET

No

Yes

SET SIGN
FLAG

\

CALCULATE
ABSOLUTE
ADDRESS

CHARACTER

Yes

CONVERT
TO
BINARY

Y

ROTATE
SHIFT
REGISTERS

Y

UPDATE
INDEXES

No

Yes

END

SET
ERROR
FLAG

Figure 3.4 ASCII string to binary conversion flowchart

33

740 DATA 141,53,3 REM STA $335

750 DATA 169,8 REM LDA #§
760 DATA 237,54,3 REM SBC $336
778 DATA 141,54,3 REM STA $336
78g - REM NO-COMPLEMENT
79¢ DATA 24 REM CLC

8@@ DATA 144,1 REM BCC $1
81¢ :: REM ERROR

82¢ DATA 56 REM SEC

83g :: REM FINISH
84¢ DATA 96 REM RTS

850

860 REM x% SET UP SCREEN AND GET NUMBER **
87@ PRINT CHR$(147)

88 INPUT"NUMBER FOR CONVERSION";A$
89¢ FOR LOOP-1 TO LEN(A$)

og@ TEMP$-MID$(A$,LOOP,1)

91¢ B-=ASC(TEMP$)

92¢ POKE 828+LOOP,B

93@ NEXT LOOP

94f POKE 828,LEN(A$)

958

96@ SYS CODE

97¢

98¢ PRINT"THE TWO BYTES ARE AS FOLLOWS"
99¢@ PRINT"LOW BYTE ";PEEK(821)

1¢@@ PRINT"HIGH BYTE " ;PEEK(822)

Bytes are designated as follows:

820 ($334) : string index

821 ($335) current count

823 ($336) : sign flag

828 ($33C) length of string

829 ($33D) : start of character string

The machine code begins by obtaining the character count from the
X register. An error is signalled if this count is zero, otherwise the

program progresses, clearing the sign flag (used to signal positive or
negative values) and result destination bytes at ‘current’ (lines 130
to 160). Location $70 is used to hold the string index, pointing to
the next character for conversion. This byte is initially loaded with
1 so that it skips over the count byte in the buffer.

The first byte of the string is tested for a ‘+’ or ‘—’ sign, the
former being an optional item in the string, and the sign flag is set
accordingly (lines 199 to 230). The CONVERT-CHARACTER
loop starts by testing the character about to be manipulated to
ensure it is a decimal value, i.e. @ to 9 inclusive. Converting the byte
into binary form is achieved by multiplying the byte by 1. This
multiplication is readily available using four arithmetic shifts and
an addition: 2 *2 *2 +2 = 10.

Because we are dealing with a two-byte result, the arithmetic
shift must be performed on the two bytes, allowing bits to be
transferred from one byte to the other. This is performed by using
an ASL followed by a ROL. As figure 3.5 illustrates, this acts
exactly like a 16-bit ASL. The first pass through this character-
conversion loop has little effect. as it is operating on characters
already converted, of which there are none first time round!

Lines 570 to 620 carry out the conversion of ASCII to binary and
store the result. This is performed, as we know from earlier
examples, by masking off the high nibble. Another technique for
doing this is simply to subtract the ASCII code for ‘9’: $30.

ASL high byte
N W W W W W

Carry

F W W W W W WY N

Carry ROL low byte

Figure 3.5 Al6-bit arithmetic shift

Once all the characters have been processed, the sign flag at $334
(820) is checked for a negative value. If this is indicated (lines 699
and 700), the value of current is subtracted from zero, thereby
converting the absolute value into a signed negative byte (lines 710
to 770). The Carry flag is used to indicate any error conditions—if
it is set an error occurred, and the string index at $334 points to the
illegal character.

35

36

Line-by-line
A line-by-line description of Program 4 now follows:

line 118 : get length of string

line 12@ : branch if not zero

line 125 : else jump to ERROR

line 13@ : clear Y register

line 14@ : sign flag

line 15@ : and store bytes

line 17@ : increment Y

line 18 : set index to first ASCII character
line 19@ : get first character

line 2@@ : is it a minus sign?

line 21 : no, branch to POSITIVE

line 22@ : yes, get negative byte

line 23@ : and set the sign flag

line 24@ : move to next character

line 25@ : decrement length counter

line 26@ : branch to ERROR if zero

line 278 : else jump to CONVERT-CHARACTER
line 288 : entry for POSITIVE

line 29@ : is first character a +?

line 3@@ : no, branch to CHECK-LEGALITY
line 314 : yes, move to next character
line 32@ : decrement length counter

line 33@ : branch to ERROR if zero

line 348 : entry for CONVERT-CHARACTER
line 35@ : restore index

line 36@ : get character from buffer

line 378 : entry for CHECK-LEGALITY
line 38@ : isit <= ASC*“9”?

line 39@ : no, it’s bigger, branch to ERROR
line 4@@ : isit>= ASC“(0’?

line 41@ : no, branch to ERROR

line 42@ : save code on stack

line 43@ : multiply both bytes by two

line 458 : save low byte

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

460

490

520
5308

578

egg

620
630

670
68¢

748
750

8¢¢

820

514

5440 ;
550 :
560

: save high byte
478

multiply by two again (now *4)
and again (now *8)
clear Carry flag

: add low byte *2

and save result

transfer high byte *2
and add to *8 high byte
save it. Now *10

: set Carry flag
584
594 :

restore ASCII code from stack
convert ASCII to binary

: clear Carry flag
619 :

add it to low byte current

. save result

: branch if NO-CARRY
649
650
66g :

else increment high byte
entry for NO-CARRY
move index on to next byte

: decrement length counter

: branch to CONVERT-CHARACTER if not finished
69¢
7808 -
718
728
730 :

completed so get sign flag

if clear branch to NO-COMPLEMENT
else set Carry flag

clear accumulator

and obtain two’s complement

: save low byte result
: clear accumulator

760 :
Tg
784
799

subtract high byte from

and save result

entry for NO-COMPLEMENT
clear Carry flag

: and force branch to FINISH
814

entry for ERROR

: set Carry flag to denote error
830 :
84¢

entry for FINISH
return to BASIC

37

38

4 Binaryto Hex ASCII

This chapter complements the previous one and illustrates how
memory-based hex values can be converted into their ASCII repre-
sentation. The routines provide the following conversions:

1. Print accumulator as two ASCII hex characters.

2. Print two hex bytes as four ASCII hex characters.

3. Print two-byte signed binary number as signed decimal
number.

PRINT ACCUMULATOR

To convert an eight-bit binary number into its ASCII hex equi-
valent characters, the procedure described in Chapter 3 must be
reversed. However, because text is printed on the screen from left
to right, we must deal with the high nibble of the byte first. Program
5 uses the hexprint routine to print the hexadecimal value of any
key pressed at the keyboard.

Program 5

1% REM xx PRINT ACCUMULATOR AS A HEX NUMBER ##
20

3@ CODE=49152
4@ FOR LOOP-g TO 21
58 READ BYTE
6@ POKE CODE+LOOP,BYTE
78 NEXT LOOP
8g

9% REM xx M/C DATA *»
188

110 DATA 72 REM PHA

12¢ DATA 74, 74 REM ASL A : ASLA
13@ DATA 74, 74 REM ASL A : ASLA
140 DATA 32,9,192 REM JSR $Cg@9

150 DATA 184 REM PLA

160 :: REM FIRST $C@@9
17@ DATA 41,15 REM AND #$gF

180 DATA 241,18 REM CMP #$gA

19¢ DATA 144,82 REM BCC $¢@2

2@¢% DATA 1¢5,6 REM ADC #$g6

214 :: REM OVER

22@ DATA 1¢5,48 REM ADC #$3¢

23@ DATA 76,218,255 REM JMP $FFD2

249

250 REM =x SET UP DEMO AT 828 x#*

26¢ REM LDA $FB : JMP $Cggg

278 POKE 828,165 : POKE 829,251

28¢ POKE 83@,76 : POKE 831,48 : POKE 832,192
29¢ "PRINT CHR$(147)

3@@ PRINT "HIT ANY KEY AND ITS HEX VALUE IN"
31@ PRINT "ASCII WILL BE DISPLAYED"

320 GET A$:- IF A$-"" THEN GOTO 32¢

33@ A-ASC(A$)

340 POKE 251,A

350

360 SYS 828

370 REM CALL 'SYS CODE' TO USE DIRECTLY

The hexprint routine is embedded between lines 110 and 230. The
accumulator’s contents are first pushed on to the hardware stack.
This procedure is necessary as it will have to be restored before the
second pass, which calculates the ASCII code for the second char-
acter. The first pass through the routine sets about moving the
upper nibble of the accumulator byte into the lower nibble (lines
120 and 130). The FIRST subroutine ensures that the high nibble is
cleared by logically ANDing it with $0F. This is, of course, surplus
to requirement on the first pass, but is needed on the second pass to
isolate the low nibble. Comparing the accumulator’s contents with
10 will ascertain whether the value is in the range 9to 9 or A to F. If
the Carry flag is clear, it falls in the lower range (9 to 9) and simply
setting bits 4 and 5, by adding $30, will give the required ASCII
code. A further 7 must be added to skip non-hex ASCII codes to
arrive at the ASCII codes for A to F ($41 to $46). You may have

39

noticed that line 200 does not add 7 but in fact adds one less, 6. This
is because. for this section of coding to be executed, the carry must
have been set, and the 6510 addition opcode references the Carry
flag in addition. Therefore, the addition performed is: accumulator
+6+1.

The JMP of line 23Q will return the program back to line 150.
Remember, FIRST was called with a JSR, so the RTS from com-
pletion of the CHROUT call returns control here. The accumu-
lator is restored and the process repeated for the second ASCII
digit. _

A short test routine is established in lines 250 to 34Q. This
requests you to hit a key, the value of which is placed in a free zero
page byte. The ‘hand-POKEd’ routine at 828 is called by line 360,
and puts the key’s value into the accumulator before performing a
jump to the main routine.

The following example illustrates the program’s operation,
assuming the accumulator holds the value 01001111, $4F:

Mnemonic Accumulator Carry flag
$4F

LSR A $27 1

LSR A $13 1

LSR A $49 1

LSR A $04 1

JSR FIRST

AND #$@F $04 1

CMP #$0A $84 [

BCC OVER

OVER

ADC #$38 $34 (ASC"4") ?

JMP CHROUT

PLA $4F g

AND #$@F $aF [}

CMP #$gA

Line-by-line
A line-by-line description of Program 5 follows:

line 11@ : save accumulator on stack
line 12@ : move high nibble into low nibble

line
line
line
line
line
line
line

line 21¢ :
line 22¢ :
line 23@ :

14@ : call FIRST subroutine

154 : restore accumulator
16@ : entry for FIRST
17@ : ensure only low nibble set

187 : isit <10?
19¢ : yes, branch to OVER

20@ : no, add 7, value $A to $F

entry for OVER

add 48 to convert to ASCII code

and print, returning to line 149 or BASIC

PRINT A HEXADECIMAL ADDRESS

The hexprint routine can be extended to enable two zero page
bytes to be printed out in hexadecimal form. This is an especially
important procedure when writing machine based utilities, such as
a hex dump or disassembler. The revamped program is listed

below:

Program 6

14 REM *» PRINT TWO HEX BYTES AS x*
20 REM ** A TWO-BYTE ADDRESS #=
3@ CODE=49152

4 FOR LOOP-g TO 34

5¢ READ BYTE
60 POKE CODE+LOOP,BYTE
7@ NEXT LOOP

8d

9% REM #+ M/C DATA x«
148 REM % CALL WITH $FB, $FC HOLDING BYTES #**
ADDRESS—PRINT

114 ::

12@ DATA
13@ DATA
14¢ DATA
15¢ DATA
164 DATA
17@ DATA
187 ::

19@ DATA
2¢@ DATA

162,251
181,1
32,13,192
181,¢
32,13,192
96

T2
74,74

REM

: REM
: REM
: REM
: REM
: REM
: REM

REM

: REM
: REM

LDX #$FB
LDA $41,X
JSR $C@@D
LDA $gd.X
JSR $C@g@D
RTS

HEXPRINT

PHA
LSR A :

LSR A

41

42

21f DATA 174,74 : REM LSR A : LSK A
22¢ DATA 32,22,192 : REM JSR $Cg16
23@ DATA 1g4 : REM PLA

24@ :: REM FIRST

25¢ DATA 41,15 : REM AND #$gF
26@ DATA 241,14 : REM CMP #$@A
27@ DATA 144,2 : REM BCC $g2
28¢ DATA 1¢5,6 : REM ADC #$¢g6
299 :: REM OVER

3@@ DATA 105,48 : REM ADC #$3¢
310 DATA 176,210,255 : REM JMP $FFD2

Zero paged indexed addressing is used to access the two bytes, the
crucial location being given in the X register, which acts as the
index for the high byte, LDA $01,X (line130), and the low byte,
LDA $00.X (line 150). The all-important address in this instance is
$FB (line 130), so the bytes accessed by ADDRESS-PRINT are
$FB ($FB+0) and $FC ($FB+1). Using this method, various
addresses can be housed within zero page and any one reached
simply by seeding the X register with the location value.

Project

Adapt Program 6 to accept a five character decimal number from
the keyboard, printing its hexadecimal value on the screen.
Remember—no BASIC, and the input routine must be able to
accept numbers in the range @ to 65!

BINARY SIGNED NUMBER TO SIGNED ASCII
DECIMAL STRING

This conversion utility takes a two-byte hexadecimal number and
converts it into its equivalent decimal based ASCII character
string. For example, if the two-byte value is $7FFF, the decimal
string is 32,767, $7FFF being 32,767 in decimal. The coding uses
signed binary values so that if the most significant bit is set, a
negative value is interpreted. This is relayed in the string with a
minus sign. This means that the routine can handle values in the
range 32,767 to —32,768. When using the routine, remember that
the two’s complement representation is used, so that a hex value of
$FFFF is converted to the string —1, and $8000 returns the char-
acter string —32,767.

The two address bytes are located at $334 and $335 and the string
buffer from $FB onwards. The length of the string buffer will vary,
but its maximum length will not exceed six digits, so this number of
bytes should be reserved.

‘ START)

SAVE
ACCUMULATOR

SHIFT HIGH
NIBBLE INTO
LOWER
NIBBLE

CONVERT
FIRST
DIGIT

IS
ITLESS
THAN 19?

ADD 6 TO
CONVERT TO
A-F

CONVERT
DIGIT TO
ASCII

PRINT
ASCII
DIGIT

Yes

No

RESTORE
ACCUMULATOR .

CLEAR HIGH
NIBBLE

Figure 4.1 Hex to ASCII conversion flowchart

Program 7

1§ REM »» BINARY SIGNED NUMBER CONVERSION xx
20 REM »» INTO SIGNED DECIMAL ASCII STRING x=
30 CODE-49152 : OUTPUT-493@1

4@ FOR LOOP-g TO 163

50 READ BYTE

60 POKE CODE+LOOP,BYTE

7@ NEXT LOOP

8g

9% REM x+ M/C DATA =x

1@ DATA 16¢.90 : REM LDY #$g¢
119 DATA 152 : REM TYA

12¢ DATA 133,251 : REM STA $FB
13@% DATA 133,252 : REM STA $FC
149 DATA 133,253 : REM STA $FD
150 DATA 133,254 : REM STA $FE
16¢ DATA 133,255 : REM STA $FF
17¢ DATA 173,53,3 : REM LDA $335
184 DATA 141,56,3 : REM STA $338
190 DATA 16,15 : REM BPL $gF
2f8@ DATA 56 : REM SEC

21 DATA 152 : REM TYA

22 DATA 237,52,3 . REM SBC $334
23@% DATA 141,52,3 REM STA $334
24¢ DATA 152 : REM TYA

25¢ DATA 237,53,3 : REM SBC $335
26@ DATA 141,53,3 : REM STA $335
278 REM CONVERSION
287 DATA 169,¢ : REM LDA #$g¢
29f DATA 141,54,3 : REM STA $336
3¢@ DATA 141,55,3 : REM STA $337
319 DATA 24 : REM CLC

320 DATA 162,16 : REM LDX #$1¢@
330 :: REM LOOP

340 DATA 46,52,3 : REM ROL $334
350 DATA 46,53,3 : REM ROL $335
360 DATA 46,54,3 : REM ROL $336
378 DATA 46,55,3 : REM ROL $337

380 DATA 56 : REM SEC

START

SAVE
SIGN
BIT

CALCULATE
ABSOLUTE
VALUE

No

DIVIDE
BY
TEN

IS
QUOTIENT
=9?

ROTATE
COUNTER

l

CONVERT
BIT VALUE
TO ASCII

l

CONCATENATE
CHARACTER
TO STRING

ADD -
TO STRING

Figure 4.2 Binary to ASCII string conversion flowchart

390
499
41¢
420
438
44¢
458
460
479
48¢
49¢
509
510
520
530
544
550
560
570
580
590
ep¢
610
620
630
640
650
660
670

680
690
700
7108
720
730

748

750
760
778

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA

DATA
DATA

DATA
DATA

DATA

173,54,3
233,14
168
173,55,3
233,08
144,6
149,54, 3
141,55,3

202

208,221
46,52,3
46,53,3

24
173,54,3
195,48
32,116,192
173,52,3
13,53,3
208,187

173,56,3
16,5
169,45
32,116,192

96

REM
REM

: REM

REM
REM

: REM
: REM
: REM

REM
REM

: REM
: REM

REM
REM

: REM
: REM

REM

: REM
: REM

REM

: REM

REM
REM
REM

: REM
: REM

REM

: REM

REM SUBROUTINE TO FORM
STRING IN $FB

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA

T2

160,90
185,251,8
168
240,11

185,251,48

200
153,251, 98

REM

: REM
: REM
: REM
: REM
: REM

REM
REM

: REM
: REM

LDA $336
SBC #$gA
TAY

LDA $337
SBC #$00
BCC $d6
STY $336
STA $337
LESS—-THAN
DEX

BNE $DD
ROL $334
ROL $335
ADD-ASCII
CLC
LDA
ADC
JSR
LDA

$336
H$30
$CcP74
$334
ORA $335
BNE $BB
FINISHED
LDA $338
BPL $¢@5
LDA #$2D
JSR $c@74
POSITIVE
RTS

ASCII CHARACTER

CONCATENATE
PHA

LDY #$00
LDA $@@FB,Y
TAY
BEQ $4B

SHUFFLE-ALONG

LDA $@@FB,Y
INY
STA $0¢FB,Y

780
799

814
82¢
83¢
844
850
864
87¢
88¢
899
opp
914
920
93¢
94¢
958
960
978
98¢
99¢
1990
1814
1928
1438
14498
1950

1g6g
1978

1489

14968
1199
1114
1124
113¢
114¢
1999

DATA 136,136 : REM DEY : DEY
DATA 208,245 : REM BNE $F5

: REM ZERO-FINISH
DATA 144 : REM PLA
DATA 16g,1 : REM LDY #$d1
DATA 153,251, : REM STA $@@FB,Y
DATA 136 : REM DEY
DATA 182,251. - REM LDX $FB,Y
DATA 232 : REM INX
DATA 158,251 : REM STX $FB,Y
DATA 96 : REM RTS
REM STRING PRINTING ROUTINE

s REM STRING-PRINT
DATA 166,251 : REM LDX $FB
DATA 164,1 : REM LDY #$g1

i REM PRINT-LOOP
DATA 185,251,0 : REM LDA $FB,Y
DATA 32,218,255 : REM JSR $FFD2
DATA 2¢¢ : REM INY

DATA 282 : REM DEX

DATA 208,246 : REM BNE $F6
DATA 96 : REM RTS

REM *% GET IN A HEX NUMBER #*

PRINT CHR$(147) : PRINT

PRINT"INPUT A HEX NUMBER :$";

GOSUB 2¢¢@¢

POKE 82@,LOW : REM LOW BYTE HEX
NUMBER

GOSUB 2008

POKE 821,HIGH : REM HIGH BYTE HEX
NUMBER

SYS CODE : REM CALL CONVERSION
PRINT"ITS DECIMAL EQUIVALENT IS :";
SYS OUTPUT

END

REM %% HEX INPUT CONTROL #*

47

48

200% GOSUB 25¢8

2@¢1¢ F-NUM : PRINT Z$;

2@2¢ GOSUB 25@8

20¢3@ S-=NUM : PRINT Z$;

2040 HIGH-Fx16+S

2058 GOSUB 25¢¢

2¢6@ F-NUM : PRINT Z$;

2078 GOSUB 25@¢

2¢8@ S-NUM : PRINT Z$

2090 LOW=F*16+S

21¢¢ RETURN

2200

2499 REM *x GET HEX ROUTINE #»
25@¢ GET Z$

251@ IF Z$-="" THEN GOTO 25@8

252@ IF Z$>"F" THEN GOTO 25@¢

253@ IF Z$-"A" THEN NUM=1@: RETURN
254@ IF Z$-"B" THEN NUM=11: RETURN
255¢ IF Z$-"C" THEN NUM-12: RETURN
256¢ IF Z$-"D" THEN NUM=13: RETURN
257@ IF Z$-"E" THEN NUM-=14: RETURN
258¢ IF Z$-"F" THEN NUM-15: RETURN
2590 NUM=VAL(Z$): RETURN

Functional bytes:
251-255 ($FB-$FF) : ASCII string buffer
82@-821 ($334-$335) : binary address for
conversion
822-823 ($336-$337) : temporary storage
824 ($338) . sign flag

To demonstrate the routine’s workings, the program first prompts
for a hexadecimal number using the BASIC hex loader subroutine
at line 200). This is evaluated and placed at BINARY-ADDRESS
by lines 1050 and 1070.

The program proper begins by clearing the string buffer area
(lines 109 to 169), an important procedure which ensures no illicit
characters find their way into the ASCII string. The sign of the
number is tested by loading the high byte of the address byte into
the accumulator and saving its value in the sign flag byte. This
process will condition the Negative flag. If it is set, a negative
number is interpreted and the pluis branch to CONVERSION (line

190) fails. The next seven operations obtain the absolute value of
the two-byte number by subtracting it from itself and the set carry
bit. Thus $FFFF will result in an absolute value of 1 and $800 an
absolute value of 32,678.

The two flows of the program rejoin at line 280, where the two
temporary bytes are cleared. These bytes are used in conjunction
with the binary address bytes to form a 32-bit shift register, allow-
ing bits to flow from the low byte address to the high byte of
temporary.

The loop of lines 340 to 510 performs the conversion, by succes-
sively dividing through by ten until the quotient has a value of zero.
By this time the binary equivalent of this ASCII character being
processed will have been placed in the temporary byte. To produce
this, the loop needs sixteen iterations so the X register is used to
count these out. Converting the binary to hex involves simply
adding $30 or ASC“9” to it (lines 530 to 550).

Because it may not be immediately clear what is happening,
Table 4.1 shows the values of the accumulator and four associated
bytes after each of the 16 passes of the loop, when converting
$FFFF into its absolute ASCII value of 1. It should be clear from
this how the bits shuffle their way through the four byte ‘register’.

Table 4.1

Iteration Accumulator $334 $335 $336 $337

1]| g1 o] 1]/ J/f]
2 FF g2 1]/ 1’| Juf}
3 FF g4 Juf] 29 jJ'}
4 FF g8 [/J] /] JJ}
5 FF 19 jf] (] Jf')
6 FF 20 juJ} 1]/ J
7 FF 49] fJ] 20
8 FF 8¢ g9 Jfu} 4]/
9 FF [J] uf} g1 J/J'}
14 FF jfu] 29 g1 29
11 FF Jf} [J] g1]
12 FF [J] [/J] g1 [/J]
13 FF [J] Jf] g1)
14 FF JJ] Jfu} g1 4J')
15 FF [J] [iJ') g1 [J']
16 FF juf} [1J') g1 [

49

50

All that is now required is for this character to be added to the
string buffer. This concatenation is completed by the code of lines
699 to 880. This began by obtaining the buffer index, which con-
tains the current number of characters already concatenated. This
is stored in the first byte of the buffer, $FB in this instance. Itis then
moved across into the accumulator. Next, lines 750 to 799 move any
characters present in the buffer up memory one byte, thereby
opening up a gap of one byte into which the newly formed char-
acter can be placed (lines 810 to 870). The buffer index is also
incremented and restored at this point, before an RTS is made
back to the main body of the program.

End of program operation is tested for by logically ORing the
contents of the high and low bytes of the address. If the result is
zero, all bits have been rotated and dealt with, in which case the
sign flag byte is tested to ascertain whether a minus sign need be
placed at the start of the ASCII string (lines 60§ to 660).

Line-by-line
A line-by-line description of Program 7 follows:

line 1@@ : clear Y register

line 11@ : and accumulator

line 12@ : and then the five buffer bytes
line 17@ : get high byte for conversion
line 188 : save in sign flag

line 198 : if positive branch to CONVERSION
line 2@@ : else set Carry flag

line 21@ : clear accumulator

line 22@ : obtain absolute value of low byte
line 23@ : and save

line 24@ : clear accumulator

line 25@ : obtain absolute value of high byte
line 26@ : and save

line 278 : entry for CONVERSION

line 28@ : clear accumulator

line 298 : clear temporary storage bytes
line 318 : clear Carry flag

line 32@ : sixteen bits to process

line 33@ : entry for LOOP

line 34 : move bit 7 into Carry flag

line 35@ : and on into bit @

line 36@ : move bit 7 into Carry flag

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

370
38¢
390

499

419
429
43¢
449
450
479
480
499

510
520
530
540
550
560
570
580
59¢
600
610
620
639
640
650
660
680
69¢
700

720
730
740
750
760
778

780 -

500 :

719 .

and on into bit @

set Carry flag

get low byte of temp

subtract 10

save result in Y

get high byte of temporary

subtract carry bit

branch to LESS-THAN if divisor>dividend
else save result of operation in temporary
entry for LESS-THAN

decrement bit count

branch to LOOP until 16 bits done
rotate bit 7 into Carry flag

and on into bit @

entry for ADD-ASCII

clear Carry flag

get low byte from temporary

convert into ASCII character
concatenate on to string in buffer

get low byte of binary number

OR with high byte. If @ then all done

if not finished branch to CONVERSION
entry for FINISHED

get sign

if N = 0 branch to POSITIVE

otherwise get ASC*—"

and add it to final string

entry for POSITIVE

. back to BASIC

entry for CONCATENATE, $C074
save accumulator

initialize index

and get buffer length

move it into Y for indexing

if @ branch to ZERO-LENGTH
entry for SHUFFLE-ALONG

get character from buffer
increment index

save character one byte along
restore original address minus one

51

line 79@ : branch to SHUFFLE-ALONG until completed
line 8@@ : entry for ZERO-FINISH

line 81@ : restore accumulator

line 82@ : index past length byte

line 83@ : add character to buffer

line 84@ : decrement index

line 85@ : get length byte

line 86@ : increment it

line 878 : saveit

line 88@ : back to calling routine

line 9¢@ : entry for OUTPUT

line 91f@ : get length of string as counter

line 92@ : set index to first character

line 93@ : entry for PRINT-LOOP

line 94@ : get character

line 95@ : print it

line 968 : increment index

line 978 : decrement count

line 98@ : branch to PRINT-LOOP until all done
line 998 : back to BASIC

11¢ INPUT"WHICHDIRECTION

5 String Manipulation

In this chapter we will look at how ASCII character strings can be
manipulated using machine code routines to perform the following
operations:

1. Compare two strings.

2. Concatenate one string onto another.

3. Copy a substring from within a main string.
4. Insert a substring into a main string.

These types of routines are essential if you intend to write any
programs that manipulate data and information. Adventure games
are a typical example of this kind of program.

COMPARING STRINGS

String comparison is normally performed after the computer user
has input some information from the keyboard. In BASIC this
might be written as:

14 A$-"MOVE LEFT"
114 INPUT"WHICH DIRECTION ?"; B$
12¢ IF A$-B$ THEN PRINT "CORRECT!"

We do not always wish to test for equality, however. In BASIC, we
are able to test for unlike items using the NOT operators ‘<>'.
Thus, line 120 could have been written as:

120 IF A$ <> B% PRINT "WRONG!"
At other times, we may wish to test which of two strings has a

greater length, and this is possible in BASIC using the LEN
statement:

54

21¢ IF LEN(A$) > LEN(B$) THEN PRINT "FIRST"

Program 8 gives the assembler and BASIC listing for the string
comparison routine, which puts all the functions described above
at your disposal whenever the program is used. The Status register
holds these answers in the Zero and Carry flags. The Zero flag is
used to signal equality: if it is set (Z=1). the two strings compared
were identical; if it is cleared (Z=0) they were dissimilar.

The Carry flag returns information as to which of the two strings
was the longer: if itis set (C=1), they were identical in length or the
first string was the larger. The actual indication required here is
evaluated in conjunction with the Zero flag. If Z=@and C=1, then
a longer string rather than an equal-length string is indicated. but if
the Carry flag is returned clear (C=#0). then the second string was
longer than the first.

Program 8

1§ REM xx STRING COMPARISON ROUTINE =**
2@ CODE-49152

3@ TEST-49184

40 FOR LOOP-g TO 41

50 READ BYTE

6@ POKE CODE-+LOOP,BYTE

78 NEXT LOOP

8g :

9% REM xx M/C DATA x**

1#@¢ DATA 173,52,3 : REM LDA $334
114 DATA 2¢5,53,3 : REM CMP $335

120 DATA 144,3 : REM BCC $g3

13@ DATA 174,53,3 : REM LDX $335

149 :: REM COMPARE-STRING
150 DATA 24¢,12 : REM BEQ $@C

160 DATA 164,80 : REM LDY »$gg

178 :: REM COMPARE-BYTES
184 DATA 177,251 : REM LDA ($FB),Y
199 DATA 2@9,253 : REM CMP ($FD),Y
200 DATA 2¢8,18 : REM BNE $@A

210 DATA 20¢ : REM INY

220 DATA 2@2 : REM DEX

238 DATA 2@8,246 : REM BNE $F6

248 REM CONDITION-FLAGS

25¢ DATA 173,52,3 : REM LDA $334

(START ’

GETBYTE
FROM
STRING 1

COMPARE
WITHBYTE
IN STRING 2

SET ERROR
FLAGS END

INCREMENT
POINTERS

Yes

SET STRING
FLAGS

END

Figure5.1 Compare strings flowchart

260 DATA 2¢5,53,3 : REM CMP $335

278 REM FINISH

280 DATA 96 : REM RTS

290

g8 - REM TEST ROUTINE

31¢ DATA 32,8,192 : REM JSR $C@@g

56

320 DATA 8 : REM PHP

330 DATA 1g4 : REM PLA

340 DATA 41,3 REM AND #$#3
350 DATA 133,251 : REM STA $FB
360 DATA 96 . REM RTS

378 :

380 REM =% SET UP STRINGS FOR COMPARISON x
39¢ PRINT CHR$(147)

4¢@ INPUT "FIRST STRING :";A$
41¢ FOR LOOP-1 TO LEN(A$)

42 TEMP$-MID$ (A$,LOOP,1)

43@ A-ASC(TEMP$)

440 POKE 5@432+LO0OP-1,A

45@ NEXT LOOP

460

47@ INPUT "SECOND STRING :";B$
48¢ FOR LOOP-1 TO LEN(B$)

49¢ TEMP$-MID$ (B%$,LOOP,1)

5@@% B-ASC(TEMP$)

51¢ POKE 5@688-L00P-1,B

52@ NEXT LOOP

530

54 POKE 251,8 : POKE 252,197

55¢ POKE 253, : POKE 254,198

568 POKE 82@,LEN(A$) POKE 821,LEN(B$)
574

584 SYS TEST

59¢

60@ PRINT "RESULT IS : ";PEEK(251)

Bytes reserved:

251-252 ($FB—BFC) : address of first string
253-254 ($FD—$FE) : address of second string
82¢ ($334) . length of first string
821 ($335) . length of second string

Once run, the BASIC text of lines 380 to 520 calls for two strings to
be input. These are stored in memory from $C50) and $C600. Note
that the routine cannot handle strings greater than 256 characters in
length (though it could of course be expanded to do so). The length

of each string is also required by the routine, so this is ascertained
and stored in the appropriate zero page bytes at $334 and $335 (line
560).

To allow the string buffers to be fully relocatable, the string
addresses are held in two zero page vectors (lines 540 and 550).

String comparison proper starts by evaluating the length bytes to
find out if they are the same length. If they are not equal, then the
strings cannot be identical. However, as the routine returns infor-
mation about the lengths of the strings it is still completed—in this
case the program compares bytes through the length of the smaller
of the two strings.

Byte comparison is performed by lines 170 to 199, using post-
indexed indirect addressing. On the first non- equal characters the
main loop is exited to FINISH. Assuming the entire comparison
works. and the X register, which holds the working string length.
has been decremented to zero., the length bytes (lines 250 and 260)
are compared to condition the Zero and Carry flags before the
routine completes.

The short test routine returns the Zero and Carry flag values and
prints them out. indicating the following results:

Returned V4 C Result

) 1) ') Strings <> and string 1 larger
Strings <> and string 2 larger

—
= =
= =

Strings =

Line-by-line

A line-by-line description of Program 8 follows:

line 1@@ : get length of first string

line 118 : isitthe same length as the second string?
line 12@ : no. it's longer. so branch to COMPARE-STRING
line 13@ : yes. so get length of second string

line 148 : entry for COMPARE-STRING

line 15@ : if zero. branch to CONDITION-FLAGS
line 16@ : Iinitialize indexing register

line 178 : entry for COMPARE-BYTES

line 18@ : get character from first string

line 19@ : compare to same character in second string
line 2@@ : if dissimilar. branch to FINISH

line 21@ : increment index

57

line 228 : decrement string counter

line 23@ : branch back to COMPARE-BYTES until zero
line 24@ : entry for CONDITION-FLAG

line 25@ : get length of first string

line 26@ : compare with length of the second string
line 278 : entry for finish

line 28@ : back to calling routine

line 3@@ : entry for TEST routine

line 31@ : push status onto stack

line 32@ : pull into accumulator

line 33@ : save Z and C

line 34§ : save at location $FB

line 35@ : back to BASIC

STRINGS UNITE

Strings may be joined together by a process called ‘concatenation’.
In BASIC the addition operator ‘+’ performs this function. Thus
the program:

188 A$-"REM"
114 B$="ARK"
120 C$-A$-B$

assigns the string "'REMARK’ to the string C$. If line 120 were
rewritten as:

120 C$-B$+A$

the resultant value assigned to C$ would be ‘ARKREM’. We can
see from this that one string is simply tagged on to the end of the
other. overwriting the former’s RETURN character. but preserv-
ing the latter’s.

This process of concatenation can be performed quite readily as
Program 9 illustrates. However. the actual BASIC equivalent of
the operation we are performing here is:

A$-AB-B$

In other words, we are adding the second string on to the first
string. rather than summing the two to give a separate final string.
although this is possible with slight modifications to the assembler
text.

Program 9

1§ REM *» STRING CONCATENATION =%
2@ CODE-=-49152

3@ FOR LOOP-@ TO 96

4¢ READ BYTE

540 POKE CODE+LOOP,BYTE

60 NEXT LOOP

74

8@ REM #% M/C DATA *«

oF :: REM STRING-CONCATENATION
1@ DATA 173,52,3 : REM LDA $334
11 DATA 141,54,3 : REM STA $336
12¢ DATA 169,¢ : REM LDA #$g¢
13% DATA 141,55,3 : REM STA $337
14f DATA 24 : REM CLC

150 DATA 173,53,3 : REM LDA $335
16f DATA 1§9,52,3 : REM ADC $334
17@ DATA 176,3 : REM BCS $@3
187 DATA 76,45,192 : REM JMP $C@2D
199 :: REM TOO-LONG
2@ DATA 169,255 : REM LDA #$FF
219 DATA 141,57,3 : REM STA $339
22¢ DATA 56 : REM SEC

23@ DATA 237,52,3 : REM SBC $334
24 DATA 144,51 : REM BCC $33
25¢ DATA 141,56,3 : REM STA $338
260 DATA 169,255 : REM LDA #$FF
27@ DATA 141,52,3 : REM STA $334
28@ DATA 176,59,192 : REM JMP $C@3B
298 :: REM GOOD-LENGTH
30@ DATA 141,52,3 : REM STA $334
31f DATA 169,08 : REM LDA #$g@
32f DATA 141,57,3 : REM STA $339
33% DATA 173,53,3 : REM LDA $335
34f DATA 141,56,3 : REM STA $338
358 :: REM CONCATENATION
360 DATA 173,56,3 : REM LDA $338
378 DATA 244,21 : REM BEQ $15

38¢ :: REM LOOP

390
499
419
42¢
430
44¢
45
460
478
480
49¢
508
519
520
530
544
609
610
624
630
649
650
660
670
680
69¢
008
710
728
730
749
750
760
778
780
790
878
81g

DATA 172,55,3 : REM LDY $337
DATA 177,253 : REM LDA ($FD).Y
DATA 172,54,3 : REM LDY $336
DATA 145,251 : REM STA ($FB),Y
DATA 238,54,3 : REM INC $336
DATA 238,55,3 : REM INC $337
DATA 2#6,56,3 : REM DEC $338
DATA 288,235 : REM BNE $EB

s REM FINISHED
DATA 172,52,3 : REM LDY $334
DATA 169,13 : REM LDA #$gD
DATA 145,251 : REM STA ($FB).Y
DATA 173,57,3 : REM LDA $339
DATA 1#6 : REM ROR A

DATA 96 : REM RTS

PRINT CHR$(147)

INPUT "FIRST STRING ";A$

INPUT "SECOND STRING '";B$

F=49664 : REM $C20g

S=49920 : REM $C3gg

FOR LOOP=1 TO LEN(A$)
TEMP$-MID$ (A$,LOOP, 1)
A=ASC(TEMP$)

POKE F+LOOP-1,A

NEXT LOOP

FOR LOOP=1 TO LEN(B$)
TEMP$-MID$ (B$,LOOP, 1)
B=ASC(TEMP$)

POKE S+LOOP-1,B

NEXT LOOP

POKE 251,08 POKE 252,194
POKE 253,8 : POKE 254,195

POKE 82¢,LEN(A$)

START

{

GET TOTAL
STRING
LENGTH

Yes | CALCULATE
| TRUNCATION
INDEX
No
GETBYTE RESEED
> FROM VALUES
STRING 2
)
PLACE AT
END OF
STRING 1
\ ADJUST
INDEXES
& COUNTERS

Yes SIGNAL
ANY END
OVERFLOW
No

Figure 5.2 Concatenate strings flowchart

82¢ POKE 821,LEN(B$)
834 :

84¢ SYS CODE

850

62

860 REM x*x%% PRINT OUT FINAL STRING ##*
87¢ PRINT "FINAL STRING IS :";

88@ LOOP-g

890 REM xx REPEAT *#

9¢@¥ BYTE-PEEK (F+LOOP)

918 PRINT CHR$(BYTE);

92¢ LOOP-LOOP+1

93¢ IF BYTE=13 THEN END

94¢ GOTO 9¢P

This program allows a final string of 256 characters in length to be
manipulated. Therefore, as the program stands, the combined
lengths of the two strings should not exceed this length. If they do,
then only as many characters as space allows will be concatenated
on to the first string, leaving the second string truncated. The Carry
flag is used to signal whether any truncation has taken place, being
set if it has and cleared otherwise. As with the string comparison
routine, the string buffers are accessed via two zero page vectors
(lines 799 and 800) and two bytes are reserved to hold the length of
each string. A further two bytes are used to save index values.

The first nine machine code operations (lines 100 to 180) deter-
mine the final length of the string, by adding the length of the first
string to that of the second string. A sum greater than 256 is
signalled in the Carry flag and the branch of line 170 is performed,
in which case the number of characters which can be inserted into
the first string buffer is ascertained. The overflow indicator is
loaded with $FF if a truncation occurs; otherwise it is cleared with
$00.

The concatenating loop is held between lines 350 and 46. This
simply moves a byte from the vectored address plus the index of the
second string and places it at the end of the first string, as pointed to
by the first string index byte. This process is reiterated until the
value of ‘count’ has reached zero. Lines 480 and 500 place a
RETURN character at the end of thé string to facilitate printing
from BASIC or machine code. The Overflow flag is loaded into the
accumulator and bit 7 rotated across into the Carry flag, thereby
signalling whether truncation has occurred. Lines 610 to 770 hold
the BASIC test routine that reads in and then pokes the character
strings into memory at $C200 and $C300. After the SYS call (line
840), the final BASIC routine prints the concatenated string from
memory.

Project

Adapt the program to perform the BASIC equivalent of
C$=A$+B$ or C$=B$+AS$ on request.

Line-by-line
A line-by-line description of Program 9 now follows:

line 1@@ : get first string’s length

line 11@ : string one’s index

line 12@ : clear accumulator

line 13@ : set string two’s index to zero

line 14 : clear Carry flag

line 15@ : get second string’s length

line 16@ : and add to length of first string

line 178 : branch to TOO-LONG if total greater than 256 bytes

line 18@ : otherwise jump to GOOD-LENGTH

line 19@ : entry for TOO-LONG

line 2@@ : load accumulator with 255

line 21@ : and store to indicate overflow

line 22@ : set Carry flag and subtract

line 23@ : string one’s length from maximum length

line 248 : branch to FINISH if first string is greater than
256 bytes in length

line 25@ : save current count

line 26 : restore maximum length

line 27@ : store in string one’s length

line 28@ : jump to concatenation routine

line 29@ : entry for GOOD-LENGTH

line 3@@ : save accumulator in string one’s length

line 31@ : load with Qto clear

line 32@ : overflow indicator

line 33@ : get string two’s length

line 34@ : save in count

line 358 : entry for CONCATENATION

line 368 : get count value

line 378 : if zero, then finish

line 38¢ : entry for LOOP

line 398 : get index for string two

line 4@ : and get character from second string

line 41@ : get string one’s index

line 42@ : and place character into first string

line 43@ : increment first<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>